
Pegasus
permissioned launchSecurity Review

Cantina Managed review by:
Xmxanuel, Lead Security Researcher
Deadrosesxyz, Security Researcher
Jonatas Martins, Associate Security Researcher
May 21, 2024



Contents
1 Introduction 21.1 About Cantina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.1 Severity Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Security Review Summary 3
3 Findings 43.1 High Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.1.1 If cbr activated: incorrect cbrcoef formular results in too high redeem amounts andprotocol insolvency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2 Medium Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2.1 No sanity check for oracle.latestrounddata return values . . . . . . . . . . . . . . . . 53.2.2 Not activating or too late activation of cbr mechanism results in too high redeemamounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2.3 Users could be blocked to redeem if not on the allowlist for all rwa tokens . . . . . . . 63.2.4 User could sandwich oracle updates and steal treasury funds . . . . . . . . . . . . . . 63.2.5 Allow users to set minamountout on swaps and redeems . . . . . . . . . . . . . . . . . . 73.2.6 Oracle will return wrong price if it goes out of chainlink's minanswer/maxanswer . . . . 73.3 Low Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.3.1 Only powerful admin key can add new members to usd0 allowlist no roleadmins en-abled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.3.2 Treasury can collect fees with no corresponding locked collateral because collateralhas been returned to the redeem user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3.3 Incorrect rounding in cbrcoef use math.rounding.floor instead of

math.rounding.ceil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3.4 Follow chainlink best practices and use proxy instead of priceaggregator directly . . 93.3.5 Add safety check for set maxdepegthreshold in abstractoracle contract . . . . . . . . 103.3.6 cbrcoef might be inaccurate if treasury sends/receives rwas outside of its usualswaps/redeems within daocollateral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.3.7 Attacker can front-run calls to selfpermit and cause dos . . . . . . . . . . . . . . . . . 103.4 Gas Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.4.1 _getquoteinusd could be implemented with one normalization less . . . . . . . . . . . 113.5 Informational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.5.1 Permissioned launch restrictions and limitations . . . . . . . . . . . . . . . . . . . . . . 113.5.2 Function getquote()might return incorrect precision . . . . . . . . . . . . . . . . . . . 113.5.3 Coding style: consistent return value pattern . . . . . . . . . . . . . . . . . . . . . . . . 123.5.4 Duplicated code: tokenamounttowad and wadamounttodecimals could just call token-
amounttodecimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.5.5 Code consistency: tokendecimals could be uint8 like in the other functions in nor-

malize.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.5.6 notallowlisted() error should be used instead of notauthorized() . . . . . . . . . . 133.5.7 Skip address(0) in _update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.5.8 Apply best practices in function flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.5.9 Renaming variables to improve code understanding . . . . . . . . . . . . . . . . . . . . 143.5.10 Unused constants and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.5.11 No way to remove an active usd0rwa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz


2 Security Review Summary
Usual is a Stablecoin DeFi protocol that redistributes control and redefines value sharing. It empowersusers by aligning their interests with the platform's success.
$USD0 is a USUAL native stablecoin with real-time transparency of reserves, fully collateralized by USTreasury Bills. This eliminates fractional reserve risks and protects against the bankruptcy risks of fiat-backed stablecoins.
$USD0 can be locked into $USD0++, a liquid 4-year bond backed 1:1, offering users the alpha-yield dis-tributed as points and ensuring at least the native yield of their collateral. This provides enhanced stabilityand attractive returns for holders.
From Apr 29th to May 3rd the Cantina team conducted a review of pegasus-permissioned-launch oncommit hash d0b87f18. The team identified a total of 26 issues:

Issues Found
Severity Count Fixed Acknowledged
Critical Risk 0 0 0
High Risk 1 1 0
Medium Risk 6 2 4
Low Risk 7 7 0
Gas Optimizations 1 0 1
Informational 11 9 2
Total 26 19 7

3

https://github.com/usualdao/pegasus-permissioned-launch
https://github.com/usualdao/pegasus-permissioned-launch/tree/d0b87f18c7a893d8b8a86c56691f0d9c02f24a4e/


3 Findings
3.1 High Risk
3.1.1 If cbr activated: incorrect cbrcoef formular results in toohigh redeemamounts andprotocolinsolvency
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: In the event that the total value of the RWA tokens locked in the protocol is less than the totalsupply of USD0 tokens, a 1:1 exchange rate cannot be supported anymore, as it could lead to a bank run.
Therefore, a counter-bank run (CBR) mechanism needs to be activated.
A cbr coefficient (cbrCoef) would be calculated to reflect the real collateral value, which can be utilizedin a redemption process.
However, this is currently done incorrectly.
Incorrect Current Formula:
uint256 cbrCoef_ = Math.mulDiv(

wadTotalRwaValueInUsd + wadUsdBalanceInInsurance,

SCALAR_ONE,

totalUsdSupply,

Math.Rounding.Ceil

);

The problem is related to the insurance fund.
Additionally, the system has an insurance fund (wadUsdBalanceInInsurance) in USD0 tokens. These tokenswould be burned as a last resort to improve the exchange ratio.
It is not required to burn the tokens immediately; the insurance fund can be viewed as a commitment tonot redeem the tokens. If prices improve again, the cbrCoef could be adjusted accordingly. If the priceremains the same, a burn would be required.
Therefore, the insurance fund needs to be considered as burned in the cbrCoef calculation to obtain theimproved cbrCoef.
However, this is currently done incorrectly. Burning the insurance fund would result in a decrease in the
totalSupply and therefore needs to be subtracted in the formular.
Correct Formula:
uint256 cbrCoef_ = Math.mulDiv(

wadTotalRwaValueInUsd ,

SCALAR_ONE,

totalUsdSupply - wadUsdBalanceInInsurance,

Math.Rounding.Ceil

);

Proof of concept: Just one example to illustrate with 100m usd0 and a price drop/loss of 5%:

total usd0 supply 100mtotal rwa value locked 95minsurance fund 1m

In their current version it would result in a coef = (95 + 1)/100) = 0.96

However the correct coef should be: (95/100 - 1)= 0.959595959.
For simplification, we don't consider a price improvement and the insurance fund needs to be burned.
After the burn the total supply would be 99m usd0 and 95m collateral value.
The coef of 0.96 would lead to: 99m * 0.96 = 95.04m

4



Only 95m would be available. The protocol would be insolvent with 40k USD0 left and no correspondingcollateral.
Recommendation: The wadUsdBalanceInInsurance needs to be subtracted from the totalUsdSupply inthe cbrCoef formular.
Usual: Fixed in commit 237f6cda. cbrCoef is passed as a parameter to the activateCBR function.
Cantina Managed: Fixed.
3.2 Medium Risk
3.2.1 No sanity check for oracle.latestrounddata return values
Severity: Medium Risk
Context: ClassicalOracle.sol#L80
Description: Currently, the only validation of the return values from lastRoundData is if the answer issmaller or equal than zero.
Recommendation: When fetching a price from a chainlink oracle consider the following checks:

• oracle.latestRoundData

function latestRoundData() external view

returns (

uint80 roundId,

int256 answer,

uint256 startedAt,

uint256 updatedAt,

uint80 answeredInRound

)

Sanity Checks:
• Consider basic sanity checks:

require(answer >= 0);

require(updatedAt != 0);

require(updatedAt <= block.timestamp);

• Consider a check for staleness with a reasonable timeout:
require(block.timestamp - updatedAt < timeout)

• Consider storing the last good price as a potential fallback mechanism: answeredInRound is depre-cated in the lastest Chainlink version. If for some reason one rwa token uses an older price aggre-gator. Consider the following check:
require(answeredInRound >= roundId, "Stale price");

Usual: Fixed in commit bbaf4bf. Added a timeout check.
Cantina Managed: Fixed.
3.2.2 Not activating or too late activation of cbrmechanism results in too high redeem amounts
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: In case the total value of the rwa tokens locked in the protocol is less than the total supplyof USD0 tokens, the cbrmechanism needs to be activated, immediately.
If not activated or too late activated user would still receive a 1:1 exchange rate in redeem. This would beto the cost of not redeeming usd0 holders.
Once the cbr is finally activated, the previously inflated redemption rate will result in a lower cbrCoef tobalance out the protocol loss.
Not activating the CBR at all can lead to protocol insolvency in the worst case.

5

https://github.com/usual-dao/pegasus-permissioned-launch/commit/237f6cda46121140f3f60f6b000bd15e1080d94c
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/oracles/ClassicalOracle.sol#L80
https://github.com/usual-dao/pegasus-permissioned-launch/commit/bbaf4bf134b6fa50ba8ff9bde9d834f2621ba60d


Recommendation: The entire system needs to be monitored carefully with quick response time. Con-sider potential alternative designs, where the cbrCoef could be updated or activated by anyone.
Usual: Acknowledged. Our off-chain monitoring system monitors the protocol in real time and updatesthe CBR accordingly.
Cantina Managed: Acknowledged.
3.2.3 Users could be blocked to redeem if not on the allowlist for all rwa tokens
Severity: Medium Risk
Context: DaoCollateral.sol#L570
Description: For receiving and transferring rwa tokens the user needs to be on the allowlist of a rwa token.
This typically involves a KYC process. However, it is highly likely that for some users that's not possibledue to legal restrictions in their country of residency, etc...
The DAOCollateral contract can support up to 10 different rwa collateral types. There is no guarantee tochoose a specific rwa token in the redeem step. Users might be required to redeem a different rwa tokenthey initially swapped.
However, if getting on the allowlist is not possible for a specific user. It would be not possible to redeem.
Recommendation: This risk should be documented and users need to be aware. The contract couldoffer a view function to verify if the user is on the allowlist for all rwa tokens.
If not enforced on the contract level the app could inform the user about it before executing a swap trans-action.
Usual: Acknowledged. We are launching with a single RWA provider during the permissioned launch,which makes this a non-issue for us until we add new ones, which we would vet carefully to prevent thisfrom occurring.
Cantina Managed: Resolved.
3.2.4 User could sandwich oracle updates and steal treasury funds
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: When swapping/redeeming USD0, the received amounts depend directly on the latest re-ported Chainlink price. Considering an oracle deviation of 2%, would allow user to make a guaranteedprofit of 2% - redeemFee upon every such change of oracle price.
Example scenario:
1. Current reported RWA price is 1000 USD. The price with which it will be updated is 1020 USD.
2. User front-runs the oracle price change and redeems 1000 USD0 for 1 RWA.
3. Price gets updated to 1020 USD.
4. User then swaps the RWA back for 1020 USD0.

The example scenario did not include a redeemFee for simplicity, but as long as the redeemFee is less thanthe oracle's deviation, the attack will be profitable.
Recommendation: Keep the redeemFee close to the oracle's deviation. Do not allow for both swaps andredeems at the same time - allow for only one at a time.
Usual: Acknowledged. Our chosen redeemFee already protects against this attack vector, as sandwichingthe oracle updates would not be profitable for the attacker.
Any attacker additionally would require to be allow-listed by one of our RWA providers to be able toattempt an attack. Our RWA providers require a KYC & vetting procedure to be allow-listed, which furtherreduces the attack surface.
As an additional security measure, the oracle price changes from our RWA providers are broadcast onprotected RPCs to further reduce the occurrence of front-running

6

https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/DaoCollateral.sol#L570


Cantina Managed: Acknowledged.
3.2.5 Allow users to set minamountout on swaps and redeems
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: When swapping/redeeming within DAOCollateral, the amount of tokens a user will receivedirectly depends on the latest price reported by the oracle (and in case of redeems - the current CBRCoef).As these values can change before a user's transaction executes, or it can simply remain pending for longenough time, this could force users to take unfair swaps/redeems, which they wouldn't otherwise do.
Recommendation: Allow users to input minAmountOut that they're willing to receive.
Usual: Fixed in commit 237f6cd.
Cantina Managed: Fixed.
3.2.6 Oracle will return wrong price if it goes out of chainlink's minanswer/maxanswer
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: Chainlink oracles have a minAnswer-maxAnswer price range in which they report prices. If anasset's price goes out of this range, it will continue to report the price which the asset has crossed.
For example, if a RWA's price drops below its set minAnswer, Chainlink will continue to report minAnsweras its price, allowing for users to swap it for more USD0 than what it is really worth.
Recommendation: Check if the provided price by the oracle equals to minPrice/maxPrice and revert insuch case.
Usual: Acknowledged. Our RWA providers' oracles did not implement this specific Chainlink function.
Cantina Managed: Acknowledged.
3.3 Low Risk
3.3.1 Only powerful admin key can add new members to usd0 allowlist no roleadmins enabled
Severity: Low Risk
Context: RegistryAccess.sol#L14
Description: The RegistryAccess contract uses the AccessControlDefaultAdminRulesUpgradeable fromOpenZeppelin.
In the current implementation, the internal _setRoleAdmin function is not exposed. This means all rolescan be only granted by the admin. These can turn out to be very impractical. The admin role is verypowerful an can stop the protocol.
On the other hand adding new allowlist members to the USD0might happen very often and should requireless signatures.
Recommendation: It is possible to manage different roles with a Safe Multi-Sig or Llama.
However, if already enforced at the protocol level, we recommend exposing the _setRoleAdmin functionto allow a different roleAdmin for the ALLOWLISTED role and others.
Usual: Fixed in commit 237f6c.
Cantina Managed: Fixed.

7

https://github.com/usual-dao/pegasus-permissioned-launch/commit/237f6cda46121140f3f60f6b000bd15e1080d94c
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/registry/RegistryAccess.sol#L14
https://github.com/usual-dao/pegasus-permissioned-launch/commit/237f6cda46121140f3f60f6b000bd15e1080d94c


3.3.2 Treasury can collect fees with no corresponding locked collateral because collateral hasbeen returned to the redeem user
Severity: Low Risk
Context: DaoCollateral.sol#L517
Description: In the current design some of the collected treasury fees can have no corresponding col-lateral in the DAOCollateral.
Because the corresponding collateral has been already returned to the user in the redeem. This onlyhappens if the rwaToken has a lower precision like 106. (USDC).
The problem relies in the fact, that fees are collected in the higher precision of 10ˆ18 and are not normal-ized for the lower precision collateral.
Proof of concept: The testcase illustrates the edge case of the last redeemwhere afterwards no collateralis left in the DAOCollateral but some fee amount is left in the treasury.
However, this small dust error can happen in each redemption depending on the passed amount.
contract FeeTest is SetupTest {

function wadTokenAmountForWadPrice(

uint256 wadStableAmount,

uint256 wadPrice,

uint256 tokenDecimals

) internal pure returns (uint256) {

return Math.mulDiv(wadStableAmount, 10 ** tokenDecimals, wadPrice, Math.Rounding.Floor);

}

function testMissingFeeCollateral() public {

// system state:

uint256 usd0Amount = 99_999_999_999_999; // total minted usd0

uint256 rwaTokenAmount = 99; // rwa tokens in daoCollateral

uint8 rwaDecimals = 6;

uint256 price = 1e18;

uint256 fee = 1; // 1 bps

// simulate redeem

uint256 stableAmount = usd0Amount;

// 1. calculate stable fee

uint256 stableFee = Math.mulDiv(usd0Amount, fee, 10_000, Math.Rounding.Floor);

// 2. stable fee would be transferred to treasury

uint256 treasuryUSD0Balance = stableFee;

// 3. calculate burn amount

uint256 burnedStable = stableAmount - stableFee;

// 4. calcuate returned Collateral

uint256 returnedCollateral = wadTokenAmountForWadPrice(burnedStable, price, rwaDecimals);

// all rwa tokens are redeemed from DAOCollateral

// after the redeem no collateral left in DAOCollateral

assertEq(rwaTokenAmount, returnedCollateral);

// PROBLEM: fees in the treasury have corresponding collateral

assertTrue(treasuryUSD0Balance > 0);

// usd0 treasury balance without corresponding collateral

assertEq(treasuryUSD0Balance, 9_999_999_999);

// This happens because of the following

assertEq(

wadTokenAmountForWadPrice(burnedStable, price, 6),

wadTokenAmountForWadPrice(burnedStable + stableFee, price, 6)

);

}

}

Recommendation: Normalize the stableFee in_tranferFree before sending it to the treasury.
1. Convert the stableFee to precision of the rwaToken (This will remove the double counted usd0amounts).
2. Convert the stable fee back to the precision of the 1018 usd0.

8

https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/DaoCollateral.sol#L517


3. The existing stableFee > 0 check before transfer.
Although the problem is only about the dust amount, we recommend fix it to build a clean, elegant system.
Usual: Fixed in commit 89da9d3.
Cantina Managed: Fixed.
3.3.3 Incorrect rounding in cbrcoef use math.rounding.floor instead of math.rounding.ceil
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: Currently the rounding in the cbrCoef formular is in favor of the users with
Math.Rounding.Ceil but it should be Math.Rounding.Floor.
Currently, you would give away too many rwaTokens to the users which would hurt the last redeem usd0holder.
Invariant: After the cbrCoef_ is activated it should be possible to redeem all rwa tokens. Assuming noprice changes after the activation. This invariant is currently broken.
Proof of concept:
function testRounding() public {

// scenario:

// 100 usd0 tokens minted

// 100 rwa token in daoCollateral

// price = 1 * 1e18 - 1

// assuming a wadUsdBalanceInInsurance = 0

uint256 wadTotalRwaValueInUsd = 100 * 1e18 - 1;

uint256 totalSupply = 100 * 1e18;

uint256 price = 1 * 1e18 - 1;

uint256 cbrCoef_ =

Math.mulDiv(wadTotalRwaValueInUsd, 1e18, totalSupply, Math.Rounding.Ceil);

// cbrCoef_ will be 1e18 or 1e18-1 depending on Math.Rounding.Ceiling or Math.Rounding.Floor

// assertEq(cbrCoef_, 1 * 1e18);

// redeem calculations to get rwa tokens

uint256 amount = wadTokenAmountForWadPrice(100 * 1e18, price, 18);

uint256 amountInToken = Math.mulDiv(amount, cbrCoef_, 1e18, Math.Rounding.Floor);

// this will revert with Math.Rounding.Ceil but not with Math.Rounding.Floor

// the protocol can't give away more tokens

uint256 rwaTokenAvailable = 100 * 1e18;

assertTrue(amountInToken <= rwaTokenAvailable);

}

Recommendation: Replace Math.Rounding.Ceil with Math.Rounding.Floor in the coeff calculation.
Usual: Fixed in commit 237f6c. The cbrCoef is not calculated in the contract anymore.
Cantina Managed: Fixed.
3.3.4 Follow chainlink best practices and use proxy instead of priceaggregator directly
Severity: Low Risk
Context: ClassicalOracle.sol#L80
Description: Chainlink recommends using the proxy and not the priceAggregator directly as a best prac-tice.
Recommendation: Follow the mentioned best practices from Chainlink:

You can call the latestRoundData() function directly on the aggregator, but it is a best practice touse the proxy instead so that changes to the aggregator do not affect your application. Similarto the proxy contract, the aggregator contract has a latestAnswer variable, owner address,latestTimestamp variable, and several others.

9

https://github.com/usual-dao/pegasus-permissioned-launch/pull/15/commits/89da9d3af7018244ba9966257e02d1fa2f54a3fa
https://github.com/usual-dao/pegasus-permissioned-launch/commit/237f6cda46121140f3f60f6b000bd15e1080d94c
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/oracles/ClassicalOracle.sol#L80
https://docs.chain.link/data-feeds


Usual: We intended to use the proxy but added a better name to indicate the contact we want to use incommit bbaf4bf.
Cantina Managed: Fixed.
3.3.5 Add safety check for set maxdepegthreshold in abstractoracle contract
Severity: Low Risk
Context: AbstractOracle.sol#L116
Description: The setMaxDepegThreshold() function in the AbstractOracle contract does not include asafety check for the maxDepegThreshold to limit it to a maximum value of 10_000. If set to a higher value,the _checkDepegPrice() function could revert due to an underflow in SCALAR_ONE - threshold.
Recommendation: It's recommended to ensure that maxDepegThreshold does not exceed 10_000:

function setMaxDepegThreshold(uint256 maxAuthorizedDepegPrice) external virtual {

// ...

if ($.maxDepegThreshold == maxAuthorizedDepegPrice) revert SameValue();

+ if ($.maxDepegThreshold > BASIS_POINT_BASE) revert InvalidMaxDepegThreshold();

}

Usual: Fixed in commit bbaf4bf.
Cantina Managed: Fixed.
3.3.6 cbrcoef might be inaccurate if treasury sends/receives rwas outside of its usualswaps/redeems within daocollateral

Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: When CBRCoef is calculated it fetches the Treasury's current balance for each of thevalid RWAs it holds. The problem is that these values could change and be inaccurate if Treasuryswaps/receives/sends any of the RWAs it holds, leading to an inaccurate CBRCoef

It would be ideal if the RWA balances were tracked internally instead (upon every swap/redeem), so evenif Treasury sends/receives any RWA, it would not affect DAOCollateral's accounting.
Recommendation: Consider tracking each of the RWA's balances internally. Also, consider adding anadmin-only adjustTreasury function which will adjust any of the values if deemed necessary.
Usual: We removed the cbrCoef calculation from the contract. Therefore, this issue was fixed in commit237f6cd.
Cantina Managed: Fixed.
3.3.7 Attacker can front-run calls to selfpermit and cause dos
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: DaoCollateral inherits both Multicall and selfPermit to allow users to give approval andswap/ redeem all in one transaction. The problem is that anyone is able to front-run the user's transactionand use the permit directly, causing the user's transaction to revert.
Recommendation: Put the permit call in a try-catch statement
Usual: Fixed in commit cddc9b0. A swapWithPermit function as been added together with a try/catchblock. The SelfPermit contract will be removed.
Cantina Managed: Fixed.

10

https://github.com/usual-dao/pegasus-permissioned-launch/commit/bbaf4bf134b6fa50ba8ff9bde9d834f2621ba60d
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/oracles/AbstractOracle.sol#L116
https://github.com/usual-dao/pegasus-permissioned-launch/commit/bbaf4bf134b6fa50ba8ff9bde9d834f2621ba60d
https://github.com/usual-dao/pegasus-permissioned-launch/commit/237f6cda46121140f3f60f6b000bd15e1080d94c
https://github.com/usual-dao/pegasus-permissioned-launch/commit/cddc9b0bd6a9af0eda0187dfffc5d2924f98f1d6


3.4 Gas Optimization
3.4.1 _getquoteinusd could be implemented with one normalization less
Severity: Gas Optimization
Context: DaoCollateral.sol#L464
Description: This _getQuoteInUsd could be implemented in another way with one less normalization:
Recommendation:
function _getQuoteInUsd(uint256 tokenAmount, address rwaToken)

internal

view

returns (uint256 wadAmountInUSD)

{

(uint256 wadPriceInUSD, uint256 decimals) = _getPriceAndDecimals(rwaToken);

return Math.mulDiv(tokenAmount, wadPriceInUSD, 10 ** decimals, Math.Rounding.Floor);

}

Usual: Acknowledged.
Cantina Managed: Resolved.
3.5 Informational
3.5.1 Permissioned launch restrictions and limitations
Severity: Informational
Context: (No context files were provided by the reviewer)
Description: These are some considerations about the permissioned launch.
1. There are no secondary markets planned for Usd0 in the permissioned launch.
2. This restriction is possible because Usd0 itself has an allowlist.
3. The DAOCollateral contract will not include any stablecoins, which means that the depeg check willnever revert (see: AbstractOracle._checkDepegPrice). In case any stablecoin is added as collateralit could revert while calling activateCBR().
4. The permissioned launch is primarily focused on USYC as collateral.
5. The oracle interface has been reviewed under the assumption of only Chainlink oracles.

Usual: Acknowledged.
Cantina Managed: Acknowledged.
3.5.2 Function getquote()might return incorrect precision
Severity: Informational
Context: AbstractOracle.sol#L132
Description: The function getQuote() in the AbstractOracle contract is only used in tests. However, itreturns in the token's precision, not necessarily in 18 decimals. This could potentially break integrationsto this contract.
Recommendation: It’s recommended to either set the token precision to 18 decimals or remove thisfunction.
Usual: Fixed in commit 18e1f7f.
Cantina Managed: Fixed.

11

https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/DaoCollateral.sol#L464
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/oracles/AbstractOracle.sol#L132
https://github.com/usual-dao/pegasus-permissioned-launch/commit/18e1f7f82436cc19d3186c829287565359f642b4


3.5.3 Coding style: consistent return value pattern
Severity: Informational
Context: normalize.sol#L57
Description: Currently, both ways to return values in Solidity are used:
function option1() public returns (uint256 wadAmount) {

//...

wadAmount = /*...*/ ;

}

function option2() public returns (uint256) {

return wadAmount;

}

Recommendation: For consistency, we recommend sticking to one pattern.
Usual: Fixed in commit 18e1f7f.
Cantina Managed: Fixed.
3.5.4 Duplicated code: tokenamounttowad and wadamounttodecimals could just call tokenamounttodec-

imals

Severity: Informational
Context: normalize.sol#L34
Description: There is no need to re-implement the decimal convert logic in tokenAmountToWad and
wadAmountToDecimals.
Recommendation: Both functions could just use the existing tokenAmountToDecimals in normalize.sol

function tokenAmountToWad(uint256 tokenAmount, uint256 tokenDecimals)

internal

pure

returns (uint256) {

return tokenAmountToDecimals(tokenAmount, uint8(tokenDecimals), 18);

}

function wadAmountToDecimals(uint256 wadAmount, uint8 targetDecimals)

internal

pure

returns (uint256) {

return tokenAmountToDecimals(wadAmount, 18, targetDecimals);

}

Usual: Fixed in commit 18e1f7f.
Cantina Managed: Fixed.
3.5.5 Code consistency: tokendecimals could be uint8 like in the other functions in normalize.sol

Severity: Informational
Context: normalize.sol#L34
Description: uint8 and uint256 types are used for token decimals.
Recommendation: The tokenDecimal parameter in tokenAmountToWad could be uint8 like in other placesin the codebase.
Usual: Fixed in commit 9e3f22a.
Cantina Managed: Fixed.

12

https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/utils/normalize.sol#L57
https://github.com/usual-dao/pegasus-permissioned-launch/commit/18e1f7f82436cc19d3186c829287565359f642b4
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/utils/normalize.sol#L34
https://github.com/usual-dao/pegasus-permissioned-launch/commit/18e1f7f82436cc19d3186c829287565359f642b4
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/utils/normalize.sol#L34
https://github.com/usual-dao/pegasus-permissioned-launch/commit/9e3f22a755beb021c143b9cd71e594fbeaacd518


3.5.6 notallowlisted() error should be used instead of notauthorized()
Severity: Informational
Context: Usd0.sol#L172
Description: The NotAllowlisted() error is imported in Usd0 contract but not used. Instead, the NotAu-

thorized() error is used in the _update() function when checking the ALLOWLISTED role. This should bereplaced with the NotAllowlisted() error.
Recommendation: It’s recommended to replace NotAuthorized() to NotAllowlisted().
Usual: Fixed in commit 9e3f22a.
Cantina Managed: Fixed.
3.5.7 Skip address(0) in _update()

Severity: Informational
Context: Usd0.sol#L171-L176
Description: Before updating the balances, a validation checks whether both from and to addresses havethe ALLOWLISTED role. In the tests, the deployment includes adding the ALLOWLISTED role to address(0).However, if these lines were removed, the functionality of minting and burning would be broken. It'smore efficient to directly fix this issue in the code by skipping the role verification when the from or to is
address(0).
Recommendation: It’s recommended to skip the check for ALLOWLISTED when the from or to are ad-

dress(0):
- if (!$.registryAccess.hasRole(ALLOWLISTED, from)) {

+ if (!$.registryAccess.hasRole(ALLOWLISTED, from) && from != address(0)) {

revert NotAuthorized();

}

- if (!$.registryAccess.hasRole(ALLOWLISTED, to)) {

+ if (!$.registryAccess.hasRole(ALLOWLISTED, to) && to != address(0)) {

revert NotAuthorized();

}

Usual: Fixed in commit 9e3f22a.
Cantina Managed: Fixed.
3.5.8 Apply best practices in function flow
Severity: Informational
Context: ClassicalOracle.sol#L58
Description: As a best practice, it's recommended to start with access control, followed by parameter val-idation. The function ClassicalOracle- initializeTokenOracle() does not follow these best practices.
Recommendation: As a best practice, it's recommended to start with access control, followed by param-eter validation.
Usual: Fixed in commit 9e3f22a.
Cantina Managed: Fixed.

13

https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/token/Usd0.sol#L172
https://github.com/usual-dao/pegasus-permissioned-launch/commit/9e3f22a755beb021c143b9cd71e594fbeaacd518
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/token/Usd0.sol#L171-L176
https://github.com/usual-dao/pegasus-permissioned-launch/commit/9e3f22a755beb021c143b9cd71e594fbeaacd518
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/oracles/ClassicalOracle.sol#L58
https://github.com/usual-dao/pegasus-permissioned-launch/commit/9e3f22a755beb021c143b9cd71e594fbeaacd518


3.5.9 Renaming variables to improve code understanding
Severity: Informational
Context: AbstractOracle.sol#L125
Description: Some variables can be easily confused due to their similar functions, such as
AbstractOracle.getPrice() and DAOCollateral._getPriceAndDecimals(). To improve code readability,note that _getPriceAndDecimals has the same input parameter, rwaToken, and also returns a priceand decimals. However, these decimals are the rwaToken.decimals. In AbstractOracle.getPrice(),
decimalsPrice should be used instead of decimals as it relates to the price decimals.
Recommendation: It is recommended to rename the decimals to decimalsPrice:

function getPrice(address token) public view override returns (uint256) {

- (uint256 price, uint256 decimals) = _latestRoundData(token);

+ (uint256 price, uint256 decimalsPrice) = _latestRoundData(token);

// ...

}

Usual: Fixed in commit 9e3f22a.
Cantina Managed: Fixed.
3.5.10 Unused constants and errors
Severity: Informational
Context: constants.sol#L3, errors.sol#L3
Description: There are some declared constants and errors that should not be in the main codebase, asthey are either unused or used only in scripts, mocks, or tests. Those used should be separated into adifferent file and placed in their respective folders.
Recommendation: It's recommended to remove or separate all unused code from the main codebase.
Usual: Fixed in commit bbaf4bf.
Cantina Managed: Fixed.
3.5.11 No way to remove an active usd0rwa

Severity: Informational
Context: (No context files were provided by the reviewer)
Description: Currently, within TokenMapping, RWAs can only be added, but there's no way to remove anyof them. In case the protocol has reached its limit of RWAs and wishes to change one of the used ones,there's no way to do so.
Recommendation: Consider adding a removeUSD0Rwa function.
Usual: Acknowledged. This design is intended.
Cantina Managed: Resolved.

14

https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/oracles/AbstractOracle.sol#L125
https://github.com/usual-dao/pegasus-permissioned-launch/commit/9e3f22a755beb021c143b9cd71e594fbeaacd518
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/constants.sol#L3
https://cantina.xyz/code/80abeb66-ce03-45e0-8adb-719707f29325/packages/solidity/src/errors.sol#L3
https://github.com/usual-dao/pegasus-permissioned-launch/commit/bbaf4bf134b6fa50ba8ff9bde9d834f2621ba60d

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification


	Security Review Summary
	Findings
	High Risk
	If cbr activated: incorrect cbrcoef formular results in too high redeem amounts and protocol insolvency

	Medium Risk
	No sanity check for oracle.latestrounddata return values
	Not activating or too late activation of cbr mechanism results in too high redeem amounts
	Users could be blocked to redeem if not on the allowlist for all rwa tokens
	User could sandwich oracle updates and steal treasury funds
	Allow users to set minamountout on swaps and redeems
	Oracle will return wrong price if it goes out of chainlink's minanswer/maxanswer

	Low Risk
	Only powerful admin key can add new members to usd0 allowlist no roleadmins enabled
	Treasury can collect fees with no corresponding locked collateral because collateral has been returned to the redeem user
	Incorrect rounding in cbrcoef use math.rounding.floor instead of math.rounding.ceil
	Follow chainlink best practices and use proxy instead of priceaggregator directly
	Add safety check for set maxdepegthreshold in abstractoracle contract
	cbrcoef might be inaccurate if treasury sends/receives rwas outside of its usual swaps/redeems within daocollateral
	Attacker can front-run calls to selfpermit and cause dos

	Gas Optimization
	_getquoteinusd could be implemented with one normalization less

	Informational
	Permissioned launch restrictions and limitations
	Function getquote() might return incorrect precision
	Coding style: consistent return value pattern
	Duplicated code: tokenamounttowad and wadamounttodecimals could just call tokenamounttodecimals
	Code consistency: tokendecimals could be uint8 like in the other functions in normalize.sol
	notallowlisted() error should be used instead of notauthorized()
	Skip address(0) in _update()
	Apply best practices in function flow
	Renaming variables to improve code understanding
	Unused constants and errors
	No way to remove an active usd0rwa



