
Usual PegasusSecurity Review

Cantina Managed review by:
Xmxanuel, Lead Security Researcher
Deadrosesxyz, Security Researcher
Jonatas Martins, Associate Security Researcher

June 10, 2024



Contents
1 Introduction 21.1 About Cantina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.1 Severity Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Security Review Summary 3
3 Findings 43.1 Medium Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.1.1 usd0.blacklist allows to blacklist address(0) which would halt the protocol . . . . . 43.1.2 usd0pp.emergencywithdraw event doesn't pause mint and unwrap. . . . . . . . . . . . . 43.1.3 Possible to mint usd0pp tokens before bondstart . . . . . . . . . . . . . . . . . . . . . 43.1.4 Permit call within provideusd0receiveusdcwithpermit will almost certainly fail . . . . 53.1.5 Attacker can DoS all swaprwatostbcintent calls . . . . . . . . . . . . . . . . . . . . . . . 53.2 Low Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2.1 intent_type_hash is declared incorrectly . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2.2 Blacklisted or not whitelisted user can hold usd0pp tokens . . . . . . . . . . . . . . . . 63.2.3 Apartially filled usdc ordermight be avoidedby swapperengine.provideusd0receiveusdccallers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2.4 daocollateral has no invalidnonce function for intents . . . . . . . . . . . . . . . . . 73.2.5 Missing amountintoken > type(uint128).max check in daocollateral._swaprwatostbc 73.2.6 No registryaccess.onlymatchingrole(allowlisted) check in the swaprwatostbcfunctions compared to swap and redeem . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2.7 Users who are blacklisted/not allowlisted can fill swapperengine with unfillable orders 73.2.8 daocollateral#_swaprwatostbc will leave a few wei of usd0 stuck within the contract 83.3 Gas Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3.1 swapperengine could minimize the erc20 transfers of usd0 and usdc . . . . . . . . . . . 83.3.2 The price from the oracle could be cached inside the loop in swapperengine._-

provideusd0receiveusdc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3.3 The redundant set of unmatchedusd0inwad in the else clause can be removed . . . . . 93.3.4 Skip external permit() call to save gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.4 Informational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.4.1 swapperEngine assumes a 1$ == 1 usd0, a depeg would allow arbitrage and resultsin losses for usdc depositors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.4.2 No maxusdcprice for buyer's and no minusdcprice for sellers in swapperengine . . . . 93.4.3 Lack of events for usd0.blacklist and usd0.unblacklist‘ . . . . . . . . . . . . . . . . . . 103.4.4 Different implementation for swapperengine.swapusd0 avoiding dust . . . . . . . . . . 103.4.5 Remove all TODOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.4.6 Unused constants in constants.sol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.4.7 If $.usd0.balanceof(msg.sender) < requiredusd0amount check only happens in
provideusd0receiveusdcwithpermit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.4.8 Consider an amount parameter for usd0pp.unwrap . . . . . . . . . . . . . . . . . . . . . 113.4.9 Incorrect/incomplete natspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.4.10 emergencywithdraw does unnecessary address(0) check . . . . . . . . . . . . . . . . . 12

1



1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz


2 Security Review Summary
Usual is a Stablecoin DeFi protocol that redistributes control and redefines value sharing. It empowersusers by aligning their interests with the platform's success.
$USD0 is a USUAL native stablecoin with real-time transparency of reserves, fully collateralized by USTreasury Bills. This eliminates fractional reserve risks and protects against the bankruptcy risks of fiat-backed stablecoins.
$USD0 can be locked into $USD0++, a liquid 4-year bond backed 1:1, offering users the alpha-yield dis-tributed as points and ensuring at least the native yield of their collateral. This provides enhanced stabilityand attractive returns for holders.
From May 17th to May 22nd the Cantina team conducted a review of pegasus-solidity on commit hash3d1b7406. The team identified a total of 27 issues in the following risk categories:

Issues Found
Severity Count Fixed Acknowledged
Critical Risk 0 0 0
High Risk 0 0 0
Medium Risk 5 4 1
Low Risk 8 7 1
Gas Optimizations 4 4 0
Informational 10 7 3
Total 27 22 5

3

https://github.com/usualdao/pegasus
https://github.com/usualdao/pegasus/tree/3d1b7406f53dd267516fb2fff417113ad0aa40d0/


3 Findings
3.1 Medium Risk
3.1.1 usd0.blacklist allows to blacklist address(0) which would halt the protocol
Severity: Medium Risk
Context: Usd0.sol#L194
Description: The blacklist function in the USD0 token contract allows to blacklist addresses. A black-

listed address cannot use USD0. There is a missing check in the blacklist function:
if (account == address(0)) {

revert InvalidAddress();

}

If the address(0) is blacklisted it would be not possible to mint or burn USD0 tokens. This could be espe-cially problematic if different roles are used to manage the blacklisting and other overall admin func-tionality like pausing the protocol. The blacklist role would get indirect the power to halt the protocol.
Recommendation: Add the following check to the blacklist function:
if (account == address(0)) {

revert InvalidAddress();

}

Usual: Fixed in PR 1016.
Cantina Managed: Fixed.
3.1.2 usd0pp.emergencywithdraw event doesn't pause mint and unwrap.
Severity: Medium Risk
Context: Usd0PP.sol#L193
Description: The USD0PP contract has an emergency function called emergencyWithdrawwhich allowswith-drawing all USD0 tokens. In case of an emergencyWithdraw, it would still be possible to mint new bondtokens or call unwrap after the bond duration is finished.
The unwrap function would exchange bond tokens for USD0. After an emergencyWithdraw event, the con-tract can still accumulate new USD0 tokens with mint, but this would result in a first-come, first-servedsituation for unwrap after the bond has finished.
Recommendation: Consider adding a pause functionality to the contract or pause the mint function incase of an emergencyWithdraw event.
Usual: Fixed in PR 1046.
Cantina Managed: Fixed.
3.1.3 Possible to mint usd0pp tokens before bondstart

Severity: Medium Risk
Context: Usd0PP.sol#L143
Description: The USD0PP contract is an implementation of a four-year bond for USD0. In the constructor,a bondStart timestamp parameter defines the start of the bond. The bondStart is required to be a times-tamp in the future. However, the mint function is missing a check to ensure tokens can only be mintedwhen the bond has started.
Recommendation: Add the following check to the mint function:
if (block.timestamp < $.bondStart) {

revert BondNotStarted();

}

4

https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/token/Usd0.sol#L194
https://github.com/usual-dao/pegasus/pull/1016/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/token/Usd0PP.sol#L193
https://github.com/usual-dao/pegasus/pull/1046/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/token/Usd0PP.sol#L143


Usual: Fixed in PR 1021.
Cantina Managed: Fixed.
3.1.4 Permit call within provideusd0receiveusdcwithpermit will almost certainly fail
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description:Within provideUsd0ReceiveUSDCWithPermit, the user specifies the amount of USDC theywantto take and based on that amount a permit call is made.
uint256 requiredUsd0Amount =

_getUsd0WadEquivalent(amountUsdcToTakeInNativeDecimals, usdcWadPrice);

// Authorization transfer

if ($.usd0.balanceOf(msg.sender) < requiredUsd0Amount) {

revert InsufficientUSD0Balance();

}

try IERC20Permit(address($.usd0)).permit(

msg.sender, address(this), requiredUsd0Amount, deadline, v, r, s

) {} catch {} // s

The problem is that amountUsdcToTakeInNativeDecimals is dynamically calculated and is subject tochanges and in order for the permit to work, it would need amountUsdcToTakeInNativeDecimals toexactly match the amount from the signature.
Recommendation: Allow users to specify the exact amount of funds they'll permit.
Usual: Fixed in PR 1071.
Cantina Managed: Fixed.
3.1.5 Attacker can DoS all swaprwatostbcintent calls
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: Within DaoCollateral, users can use signatures (Intent) to authorize admins/ other usersto execute _swapRWAtoStbc on their behalf (swap RWA for USDC). The problem is that the provided Intentsignature neither includes partialMatching parameter, nor a minimum amount of USDC to be taken.
This, combinedwith the fact that swapRWAtoStbcIntent is permisionless, allows any user to front-run a callto swapRWAtoStbcIntent and use the provided intent to only take a dust position (using partialMatching
== true). This would later make the honest transaction revert, as the nonce provided in the Intent willhave already been used.
Recommendation: Add partialMatching as part of the signature. Consider making swapRWAtoStbcIn-

tent a restricted function.
Usual: Acknowledged. Calling the DaoCollateral requires being ALLOWLISTED. If an allowlisted addressstarts to call swapRWAtoStbcIntent continuously to the disadvantage of the USDC buyer, the address willbe removed.
Cantina Managed: Acknowledged.

5

https://github.com/usual-dao/pegasus/pull/1021/files
https://github.com/usual-dao/pegasus/pull/1071/files


3.2 Low Risk
3.2.1 intent_type_hash is declared incorrectly
Severity: Low Risk
Context: DaoCollateral.sol#L754
Description: In the EIP-712 specification, the hash struct that is signed refersto the struct type. However, the INTENT_TYPE_HASH is currently declared as kec-

cak256("swapRWAtoStbcIntent(uint256[],Approval,Intent,bool)"), which refers to theinvoked function, not the signed struct. To ensure compatibility with EIP-712, this difference needs to befixed.
Recommendation: The recommendation is to separate the signature from the Intent struct and usethen use the Intent as the INTENT_TYPE_HASH:
- bytes32 constant INTENT_TYPE_HASH = keccak256("swapRWAtoStbcIntent(uint256[],Approval,Intent,bool)");

+ bytes32 constant INTENT_TYPE_HASH = keccak256("SwapIntent(address recipient,address rwaToken,uint256

amountInTokenDecimals,uint256 nonce,uint256 deadline)")`↪→

Usual: Fixed in PR 1064.
Cantina Managed: Fixed.
3.2.2 Blacklisted or not whitelisted user can hold usd0pp tokens
Severity: Low Risk
Context: Usd0PP.sol#L257
Description: The Usd0 contract implements a blacklist and whitelist. To transfer tokens, a user mustbe on the whitelist and not on the blacklist. However, the Usd0PP contract does not perform this checkbefore transferring tokens. This allows any user to transfer Usd0PP tokens to a user who is not whitelistedor is blacklisted.
While this does not have any impact because a malicious user cannot redeem their Usd0 tokens, addingthese conditions would make the contracts more consistent.
Recommendation: It’s recommended to check if a user is already blacklisted or not whitelisted beforetransferring tokens.
Usual: Fixed in PR PR 1045.
Cantina Managed: Fixed.
3.2.3 A partially filled usdc order might be avoided by swapperengine.provideusd0receiveusdccallers
Severity: Low Risk
Context: SwapperEngine.sol#L140
Description: If a user deposits USDC to the swapperEngine, the amount needs to be at least the minimu-

mUSDCAmountProvided. However, an order can be partially fulfilled. The remaining amount might not beworth filling for other USDC buyers to reduce gas costs.
This situation would force the USDC depositor to withdraw their order from a long-term perspective.
Recommendation: This implication most likely needs to be accepted with the current design. The onlysolution would be to require the provideUsd0ReceiveUSDC to buy USDC in multiples of a certain factor. Forexample, enforce an amount increase in 100 USDC steps.
Usual: Acknowledged. Users need to be allowlisted to use USD0 which prohibits malicious gas-wastingon orderTaking by leaving small amounts. Most users will use the app provided by the Usual team, whichwill include orders with a lower amount, and our intent-system will closely monitor & prioritize full ordercompletion.
Cantina Managed: Acknowledged.

6

https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/DaoCollateral.sol#L754
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#definition-of-hashstruct
https://github.com/usual-dao/pegasus/pull/1064/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/token/Usd0PP.sol#L257
https://github.com/usual-dao/pegasus/pull/1045/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/swapperEngine/SwapperEngine.sol#L140


3.2.4 daocollateral has no invalidnonce function for intents
Severity: Low Risk
Context: DaoCollateral.sol#L749
Description: There is no invalidNonce function in the DAOCollateral contract. It would be not possibleto cancel a DaoCollateral.swapRWAtoStbcIntent by the message signer.
Recommendation: Add a invalidNonce function to the DaoCollateral contract to cancel a signature.The function would increase the nonce counter for the msg.sender.
Usual: Fixed in PR 1075.
Cantina Managed: Fixed.
3.2.5 Missing amountintoken > type(uint128).max check in daocollateral._swaprwatostbc

Severity: Low Risk
Context: DaoCollateral.sol#L576
Description: The _swapRWAtoStbc function doesn't have an amountInToken > type(uint128).max checklike the swap function. This check should be added since swapRWAtoStbc performs operations similar tothose in DaoCollateral.swap.
Recommendation: Add the same safety checks to the _swapRWAtoStbc as for the swap function.
Usual: Fixed in PR 1036.
Cantina Managed: Fixed.
3.2.6 No registryaccess.onlymatchingrole(allowlisted) check in the swaprwatostbc functionscompared to swap and redeem
Severity: Low Risk
Context: DaoCollateral.sol#L723
Description: There is no registryAccess.onlyMatchingRole(ALLOWLISTED) check for the daoCollat-

eral.swapRWAtoStbc functions. Since the swapRWAtoStbc function performs operations internally similarto swap and redeem, this check should be added.
Recommendation: Consider if overall the registryAccess.onlyMatchingRole(ALLOWLISTED) check is re-quired for the swap and redeem functions. If so, the swapRWAtoStbc function should include it as well.
Usual: Fixed in PR PR 1050.
Cantina Managed: Fixed.
3.2.7 Users who are blacklisted/not allowlisted can fill swapperengine with unfillable orders
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: In order for a user to be able to receive Usd0, they'd need to be allowlisted/ not blacklisted.In case they don't satisfy any of the criteria, they won't be able to receive it. However, this would not stopthem from creating orders within SwapperEngine via depositUSDC.
Only when an honest user attempts to fill their order, the Usd0 transfer will fail, halting the execution ofthe transaction. This could cause many user transactions to unexpectedly revert while in the middle offilling multiple orders, effectively resulting in loss of funds in terms of the failed transaction's gas cost.
Recommendation: Do not allow users who cannot receive Usd0 to create orders within SwapperEngine.
Usual: Fixed in PR 1054.
Cantina Managed: Fixed.

7

https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/DaoCollateral.sol#L749
https://github.com/usual-dao/pegasus/pull/1075/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/DaoCollateral.sol#L576
https://github.com/usual-dao/pegasus/pull/1036/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/DaoCollateral.sol#L723
https://github.com/usual-dao/pegasus/pull/1050/files
https://github.com/usual-dao/pegasus/pull/1054/files


3.2.8 daocollateral#_swaprwatostbc will leave a few wei of usd0 stuck within the contract
Severity: Low Risk
Context: (No context files were provided by the reviewer)
Description: When swapperEngine#swapUsd0 is called within _swapRWAtoStbc, the returned value istrusted to be the exact amount of Usd0 that is not used. However, due to rounding downs, this is not thecase:
uint256 dust = amountUsd0ToProvideInWad

- _getUsd0WadEquivalent(amountUsdcToTakeInNativeDecimals, usdcWadPrice);

When calculating the unused dust amount, the contract wrongfully assumes that _ge-

tUsd0WadEquivalent(amountUsdcToTakeInNativeDecimals, usdcWadPrice); will return the actualswapped Usd0 amount. This is based on the assumption that _getUsd0WadEquivalent(x, usdcWadPrice)

+ _getUsd0WadEquivalent(y, usdcWadPrice);=_getUsd0WadEquivalent(x+y, usdcWadPrice);‘.
However, since _getUsd0WadEquivalent rounds down the result, it could cause the left side of the equationabove to be 1 wei less than the right side. Every wei difference caused due to the amount of different of
orderIds taken will remain stuck within DaoCollateral.
Recommendation: Instead of calculating how much should the unused amount be, simply track thebalance difference of the msg.sender.
Usual: Fixed in PR 1025.
Cantina Managed: Fixed.
3.3 Gas Optimization
3.3.1 swapperengine could minimize the erc20 transfers of usd0 and usdc

Severity: Gas Optimization
Context: SwapperEngine.sol#L315
Description: In the current SwapperEngine design, each ordermatch results in two ERC20 transfers insidethe _provideUsd0ReceiveUSDC function.
Recommendation: The transfer of USDC from the contract to the recipient could happen once with thetotal sum outside of the loop. Instead of using a push pattern for the USD0 transfers, the orders could bemarked as fulfilled, and the depositor would have to call the contract again to receive the USD0 (pullpattern).
The depositor could provide an array of different orderId, resulting in one USD0transfer.
However, this would require transferring theUSD0amounts first to the contract inside

the_provideUsd0ReceiveUSDC‘ function.
Usual: Fixed in PR 1067
Cantina Managed: Fixed.
3.3.2 The price from the oracle could be cached inside the loop in swapperengine._-

provideusd0receiveusdc

Severity: Gas Optimization
Context: SwapperEngine.sol#L313
Description: In SwapperEngine._provideUsd0ReceiveUSDC the price from the oracle could be cached in-stead of calling the oracle each time inside of the loop.
Recommendation: Cache the price of USDC in a local variable and avoid calling the oracle contract eachtime inside the loop.
Usual: Fixed in PR 1077.
Cantina Managed: Fixed.

8

https://github.com/usual-dao/pegasus/pull/1025/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/swapperEngine/SwapperEngine.sol#L315
https://github.com/usual-dao/pegasus/pull/1067/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/swapperEngine/SwapperEngine.sol#L313
https://github.com/usual-dao/pegasus/pull/1077/files


3.3.3 The redundant set of unmatchedusd0inwad in the else clause can be removed
Severity: Gas Optimization
Context: SwapperEngine.sol#L396-L398
Description: The variable unmatchedUsd0InWad is already set to 0, so there's no need to reset it in the elseclause.
Recommendation: The recommendation is to remove the else clause.
Usual: Fixed in PR 1037.
Cantina Managed: Fixed.
3.3.4 Skip external permit() call to save gas
Severity: Gas Optimization
Context: DaoCollateral.sol#L587
Description: Ausermay have already added approval before calling the function and setting the Approvalparameter to null in certain cases. When they then call the swapRWAtoStbc() function, there is no need tocall the permit() function. Skipping the permit() saves gas.
Recommendation: It’s recommended to skip the permit() call when it’s not set.
Usual: Fixed in PR 1062.
Cantina Managed: Fixed.
3.4 Informational
3.4.1 swapperEngine assumes a 1$ == 1 usd0, a depeg would allow arbitrage and results in lossesfor usdc depositors
Severity: Informational
Context: (No context files were provided by the reviewer)
Description: The current SwapperEngine assumes 1 USD0 == 1 USD. If the price of 1 USD0 falls below 1

USD, this would open an arbitrage opportunity. The arbitrager would buy USD0 at a cheaper price and takeall the USDC deposits in the SwapperEngine for profit.
Recommendation: This assumption needs to be documented, and USDC depositors need to be madeaware of the risk.
Usual: Acknowledged. This assumption is safeguarded by several mechanisms, such as price-depegchecks, the CBRmechanism, pausability, offchainmonitoring and our own routingmechanism preventingUSDC deposits for an unfavorable trade if other DeFi solutions offer better rates (i.e. curvepool/uniswap).
Cantina Managed: Acknowledged.
3.4.2 No maxusdcprice for buyer's and no minusdcprice for sellers in swapperengine

Severity: Informational
Context: (No context files were provided by the reviewer)
Description: The SwapperEngine has no option to define a maxUSDCPrice for buyers. Similarly, sellers donot have the option to define a minimumUSDCPrice. The actual price is provided by a USDC oracle. Since the
buyer is the taker by calling provideUsd0ReceiveUSDC, they could optimize returns by performing tradesat low USDC prices. On the other hand, sellers have some control because they could trigger a buyer
Intent at a high USDC price by calling DaoCollateral.swapRWAtoStbcIntent.
Recommendation: This behavior needs to be documented and users should be aware of the risk.
Usual: Acknowledged.
Cantina Managed: Acknowledged.

9

https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/swapperEngine/SwapperEngine.sol#L396-L398
https://github.com/usual-dao/pegasus/pull/1037/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/DaoCollateral.sol#L587
https://github.com/usual-dao/pegasus/pull/1062/files


3.4.3 Lack of events for usd0.blacklist and usd0.unblacklist‘
Severity: Informational
Context: Usd0.sol#L188
Description: Currently, the blacklist functions blacklist and unBlacklist don't use events.
Recommendation: Add an event for Blacklist and Unblacklist.
Usual: Fixed in PR 1016.
Cantina Managed: Fixed.
3.4.4 Different implementation for swapperengine.swapusd0 avoiding dust

Severity: Informational
Context: SwapperEngine.sol#L378
Description: Instead of calculating the conversion between USD0 and USDC which can result in dustamounts. The calculation could be based on usd0.balanceOf to be precise.
Recommendation: swapUsd0 function based on usd0.balanceOf:
function swapUsd0(

address recipient,

uint256 amountUsd0ToProvideInWad,

uint256[] memory orderIdsToTake,

bool partialMatchingAllowed

) external nonReentrant returns (uint256) {

uint256 usdcWadPrice = _getUsdcWadPrice();

SwapperEngineStorageV0 storage $ = _swapperEngineStorageV0();

uint256 preUSD0Balance = $.usd0.balanceOf(address(msg.sender));

uint256 unmatched = _provideUsd0ReceiveUSDC(

recipient, _getUsdcAmountFromUsd0WadEquivalent(amountUsd0ToProvideInWad, usdcWadPrice),

orderIdsToTake, partialMatchingAllowed↪→

);

if (unmatched == 0) {

return 0;

}

return amountUsd0ToProvideInWad - (preUSD0Balance - $.usd0.balanceOf(address(msg.sender)));

}

Alternatively, the _provideUsd0ReceiveUSDC function could return the total taken usd0 amount.
Usual: Fixed in PR 1025.
Cantina Managed: Fixed.
3.4.5 Remove all TODOs
Severity: Informational
Context: DaoCollateral.sol#L616
Description: As a best practice, the code to be deployed should not contain any TODO comments.
Recommendation: The recommendation is to remove or implement all TODOs
Usual: Fixed in PR 1035.
Cantina Managed: Fixed.

10

https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/token/Usd0.sol#L188
https://github.com/usual-dao/pegasus/pull/1016/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/swapperEngine/SwapperEngine.sol#L378
https://github.com/usual-dao/pegasus/pull/1025
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/DaoCollateral.sol#L616
https://github.com/usual-dao/pegasus/pull/1035/files


3.4.6 Unused constants in constants.sol

Severity: Informational
Context: constants.sol#L43
Description: Multiple constants are not used in the current version like CANCEL_FEE, MAX_CANCEL_FEE,WAD_MINIMUM_RWA_CONSTRUCTOR, etc..
Recommendation: Remove unused constants or constants only used in tests from the constants.sol.
Usual: Fixed in PR 1034.
Cantina Managed: Fixed.
3.4.7 If $.usd0.balanceof(msg.sender) < requiredusd0amount check only happens in

provideusd0receiveusdcwithpermit

Severity: Informational
Context: SwapperEngine.sol#L366
Description: The check if ($.usd0.balanceOf(msg.sender) < requiredUsd0Amount) then revert,is an early revert condition for the provideUsd0ReceiveUSDCWithPermit function. In the regular
provideUsd0ReceiveUSDC function such a check doesn't exist.
Recommendation: This check is not specific to the provideUsd0ReceiveUSDCWithPermit and could beused in provideUsd0ReceiveUSDC as well.
Usual: Fixed in PR 1047.
Cantina Managed: Fixed.
3.4.8 Consider an amount parameter for usd0pp.unwrap
Severity: Informational
Context: Usd0PP.sol#L193
Description: Currently, there is no amount parameter in the unwrap function. Currently a unwrap call woulduse the entire balanceOf bond tokens of the msg.sender.
Recommendation: Consider adding an amount parameter to USD0PP.unwrap to allow users more flexi-bility.
Usual: Acknowledged.
Cantina Managed: Acknowledged.
3.4.9 Incorrect/incomplete natspec
Severity: Informational
Context: ISwapperEngine.sol#L41, ISwapperEngine.sol#L60
Description: There are some case where the NatSpec is incorrect:
1. ISwapperEngine.sol#L42: Missing the @return statement
2. ISwapperEngine.sol#L60: The @return statement is incorrect, it returns the unmatched amount ofUSD0 in WAD.

Recommendation: It's recommended to fix the NatSpec.
Usual: Fixed in PR 1027.
Cantina Managed: Fixed.

11

https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/constants.sol#L43
https://github.com/usual-dao/pegasus/pull/1034/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/swapperEngine/SwapperEngine.sol#L366
https://github.com/usual-dao/pegasus/pull/1047/files
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/token/Usd0PP.sol#L193
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/interfaces/ISwapperEngine.sol#L41
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/interfaces/ISwapperEngine.sol#L60
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/interfaces/ISwapperEngine.sol#L42
https://cantina.xyz/code/39ae145b-d6ca-48bb-bfb9-bc182e99ea45/src/interfaces/ISwapperEngine.sol#L60
https://github.com/usual-dao/pegasus/pull/1027/files


3.4.10 emergencywithdraw does unnecessary address(0) check
Severity: Informational
Context: (No context files were provided by the reviewer)
Description:
function emergencyWithdraw(address safeAccount) external {

Usd0PPStorageV0 storage $ = _usd0ppStorageV0();

if (!$.registryAccess.hasRole(DEFAULT_ADMIN_ROLE, msg.sender)) {

revert NotAuthorized();

}

if (safeAccount == address(0)) {

revert NullAddress();

}

IERC20 usd0 = $.usd0;

uint256 balance = usd0.balanceOf(address(this));

// get the collateral token for the bond

usd0.safeTransfer(safeAccount, balance);

emit EmergencyWithdraw(safeAccount, balance);

}

Here, the contract does a check that the provided safeAccount is not address(0) in order to avoid mistak-enly sending the funds to it. However, that is unnecessary as usd0 is an OZ ERC20 and it will revert on atransfer to address(0).
Recommendation: Remove the address(0) check.
Usual: Fixed in PR 1021.
Cantina Managed: Fixed.

12

https://github.com/usual-dao/pegasus/pull/1021/files

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification


	Security Review Summary
	Findings
	Medium Risk
	usd0.blacklist allows to blacklist address(0) which would halt the protocol
	usd0pp.emergencywithdraw event doesn't pause mint and unwrap.
	Possible to mint usd0pp tokens before bondstart
	Permit call within provideusd0receiveusdcwithpermit will almost certainly fail
	Attacker can DoS all swaprwatostbcintent calls

	Low Risk
	intent_type_hash is declared incorrectly
	Blacklisted or not whitelisted user can hold usd0pp tokens
	A partially filled usdc order might be avoided by swapperengine.provideusd0receiveusdc callers
	daocollateral has no invalidnonce function for intents
	Missing amountintoken > type(uint128).max check in daocollateral._swaprwatostbc
	No registryaccess.onlymatchingrole(allowlisted) check in the swaprwatostbc functions compared to swap and redeem
	Users who are blacklisted/not allowlisted can fill swapperengine with unfillable orders
	daocollateral#_swaprwatostbc will leave a few wei of usd0 stuck within the contract

	Gas Optimization
	swapperengine could minimize the erc20 transfers of usd0 and usdc
	The price from the oracle could be cached inside the loop in swapperengine._provideusd0receiveusdc
	The redundant set of unmatchedusd0inwad in the else clause can be removed
	Skip external permit() call to save gas

	Informational
	swapperEngine assumes a 1$ == 1 usd0, a depeg would allow arbitrage and results in losses for usdc depositors
	No maxusdcprice for buyer's and no minusdcprice for sellers in swapperengine
	Lack of events for usd0.blacklist and usd0.unblacklist`
	Different implementation for swapperengine.swapusd0 avoiding dust
	Remove all TODOs
	Unused constants in constants.sol
	If $.usd0.balanceof(msg.sender) < requiredusd0amount check only happens in provideusd0receiveusdcwithpermit
	Consider an amount parameter for usd0pp.unwrap
	Incorrect/incomplete natspec
	emergencywithdraw does unnecessary address(0) check



