{ "cells": [ { "cell_type": "code", "metadata": { "id": "1005944835_0.34864291594519803" }, "execution_count": null, "source": [ "%%bash\npip install torch==1.13.1" ], "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1005944835_0.3903753858877983" }, "execution_count": null, "source": [ "import torch\nprint(torch. __version__)" ], "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1005944835_0.5185274770795416" }, "execution_count": null, "source": [ "import torch\nimport torch.nn as nn\nimport torch.nn.functional as f" ], "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1005944835_0.4635300909217901" }, "execution_count": 1, "source": [ "from Notebook.DSNotebook.NotebookExecutor import NotebookExecutor\nnb = NotebookExecutor()\ndf_Iris = nb.get_data('11121675159938577', '@SYS.USERID', 'True',{},[])\ndf_Iris" ], "outputs": [ { "data": { "text/plain": [ " sepal_length sepal_width petal_length petal_width species\n0 5.1 2.0 1.0 0.2 setosa\n1 4.9 2.2 1.1 0.2 setosa\n2 4.7 2.2 1.2 0.2 setosa\n3 4.6 2.2 1.2 0.2 setosa\n4 5.0 2.3 1.3 0.2 setosa\n.. ... ... ... ... ...\n145 6.7 3.9 6.4 2.3 virginica\n146 6.3 4.0 6.6 1.9 virginica\n147 6.5 4.1 6.7 2.0 virginica\n148 6.2 4.2 6.7 2.3 virginica\n149 5.9 4.4 6.9 1.8 virginica\n\n[150 rows x 5 columns]" ], "text/html": [ "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.12.01.00.2setosa
14.92.21.10.2setosa
24.72.21.20.2setosa
34.62.21.20.2setosa
45.02.31.30.2setosa
..................
1456.73.96.42.3virginica
1466.34.06.61.9virginica
1476.54.16.72.0virginica
1486.24.26.72.3virginica
1495.94.46.91.8virginica
\n

150 rows × 5 columns

\n
" ] }, "metadata": {}, "execution_count": 2, "output_type": "execute_result" } ] }, { "cell_type": "code", "metadata": { "id": "1005944835_0.6494884794028646" }, "execution_count": 2, "source": [ "import torch\nimport torch.nn as nn\nimport torch.nn.functional as f\nimport pandas as pd\n\ndef func2():\n \n from Notebook.DSNotebook.NotebookExecutor import NotebookExecutor\n nb = NotebookExecutor()\n df_Iris = nb.get_data('11121675159938577', '@SYS.USERID', 'True',{},[])\n\n df = df_Iris.copy()\n\n from sklearn import preprocessing\n le = preprocessing.LabelEncoder()\n df['species'] = le.fit_transform(df.species.values);\n\n X = df.drop('species', axis=1)\n y = df['species']\n\n X_v = X.values\n y_v = y.values\n\n from sklearn.model_selection import train_test_split\n X_train, X_test, y_train, y_test = train_test_split(X_v,y_v,test_size=0.2,random_state=33)\n\n X_train_t = torch.FloatTensor(X_train)\n X_test_t = torch.FloatTensor(X_test)\n\n # in pytorch if you use cross entropy loss we don't need to do one-hot encoding for multiclass scenario\n y_train_t = torch.LongTensor(y_train)\n y_test_t = torch.LongTensor(y_test)\n\n from Notebook.DSNotebook.NotebookExecutor import NotebookExecutor\n nb = NotebookExecutor()\n loaded_model = nb.load_saved_model('11121675747735683')\n\n data_list = []\n with torch.no_grad():\n for i, data in enumerate(loaded_model(X_test_t)):\n data_list.append(data.argmax().item())\n\n data_series = pd.Series(data_list) \n X_test_d = pd.DataFrame(X_test, columns=X.columns)\n pred = pd.concat([X_test_d, data_series], axis=1)\n pred.rename({0: 'predictions'}, axis=1, inplace=True)\n\n return pred" ], "outputs": [] }, { "cell_type": "code", "metadata": { "id": "1005944835_0.7591795775284809" }, "execution_count": 3, "source": [ "func2()" ], "outputs": [ { "data": { "text/plain": [ " sepal_length sepal_width petal_length petal_width predictions\n0 5.7 3.2 4.8 1.3 1\n1 6.7 3.0 4.0 1.4 1\n2 4.7 2.7 1.5 0.2 0\n3 6.5 2.9 3.5 1.5 1\n4 6.1 3.6 5.8 1.4 2\n.. ... ... ... ... ...\n25 6.2 3.5 5.6 1.8 2\n26 6.1 3.1 4.7 1.4 1\n27 6.1 3.0 4.2 1.3 1\n28 6.5 4.1 6.7 2.0 2\n29 5.9 4.4 6.9 1.8 2\n\n[30 rows x 5 columns]" ], "text/html": [ "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
sepal_lengthsepal_widthpetal_lengthpetal_widthpredictions
05.73.24.81.31
16.73.04.01.41
24.72.71.50.20
36.52.93.51.51
46.13.65.81.42
..................
256.23.55.61.82
266.13.14.71.41
276.13.04.21.31
286.54.16.72.02
295.94.46.91.82
\n

30 rows × 5 columns

\n
" ] }, "metadata": {}, "execution_count": 4, "output_type": "execute_result" } ] }, { "cell_type": "code", "metadata": { "id": "1005944835_0.511567765595818" }, "execution_count": null, "source": [ "from Notebook.DSNotebook.NotebookExecutor import NotebookExecutor\nnb = NotebookExecutor()\nloaded_model = nb.load_saved_model('11121675747735683')" ], "outputs": [] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 2 }