
Blockchain, Emerging Technology, and Web2
CYBERSECURITY PRODUCT & SERVICE ADVISORY
Blockchain, Emerging Technology, and Web2
CYBERSECURITY PRODUCT & SERVICE ADVISORY

RTLabs
Demether Protocol

Audit Report

Document Control
CONFIDENTIAL REVIEW(v1.1)

Audit_Report_DMTH-PRO_REVIEW_11

Aug 4, 2024 v0.1 João Simões: Initial draft

Aug 5, 2024 v0.2 Michal Bajor: Added findings

Aug 5, 2024 v1.0 Charles Dray: Approved

Aug 26, 2024 v1.1 João Simões: Reviewed findings

Points of Contact Kartik Swami-
nathan

RTLabs k@rtlabs.xyz

Jack Shi RTLabs jack@rtlabs.xyz
Charles Dray Resonance charles@resonance.security

Testing Team João Simões Resonance joao.simoes@resonance.security
Ilan Abitbol Resonance ilan.abitbol@resonance.security
Michał Bazyli Resonance michal.bazyli@resonance.security
Michal Bajor Resonance michal.bajor@resonance.security

Copyright and Disclaimer

© 2024 Resonance Security, Inc. All rights reserved.

The information in this report is considered confidential and proprietary by Resonance and is
licensed to the recipient solely under the terms of the project statement of work. Reproduction
or distribution, in whole or in part, is strictly prohibited without the express written permission of
Resonance.

All activities performed by Resonance in connection with this project were carried out in accor-
dance with the project statement of work and agreed-upon project plan. It’s important to note that
security assessments are time-limited and may depend on information provided by the client, its
affiliates, or partners. As such, the findings documented in this report should not be considered a
comprehensive list of all security issues, flaws, or defects in the target system or codebase.

Furthermore, it is hereby assumed that all of the risks in electing not to remedy the security is-
sues identified henceforth are sole responsibility of the respective client. The acknowledgement and
understanding of the risks which may arise due to failure to remedy the described security issues,
waives and releases any claims against Resonance, now known or hereafter known, on account of
damage or financial loss.

2 © 2024 Resonance Security, Inc

Contents

1 Document Control 2

Copyright and Disclaimer . 2

2 Executive Summary 4

System Overview . 4

Repository Coverage and Quality. 4

3 Target 6

4 Methodology 7

Severity Rating. 8

Repository Coverage and Quality Rating. 9

5 Findings 10

No Threshold Or Heartbeat Update Mechanisms Implemented To Combat Staleness 12

Payable Function May Lead To Minting Of Less Tokens . 13

Unnecessary Usage Of receive() Function . 14

Possible To Bypass DepositsManager And Call LiquidityPool functions directly 15

Missing Setter For Variable _minter . 16

Insufficient Validation Of _fee. 17

Sending _fee On Local Minting May Cause Loss Of DETH . 18

Function _convertToShares Vulnerable To Denial Of Service. 19

Missing Zero Address Validation Of token . 20

Incorrect Usage Of Function __Ownable_init() . 21

Missing Zero Address Validation Of sfrxETH . 22

Missing Zero Address Validation Of messenger. 23

Missing Validation Of msg.value. 24

Incorrect Usage Of Initializing Functions . 25

Incorrect Function Visibility of Initializing Functions . 26

Redundant Code On Arithmetic Operations . 27

A Proof of Concepts 28

3 © 2024 Resonance Security, Inc

Executive Summary
RTLabs contracted the services of Resonance to conduct a comprehensive security audit of their

smart contracts between July 26, 2024 and August 5, 2024. The primary objective of the assess-
ment was to identify any potential security vulnerabilities and ensure the correct functioning of smart
contract operations.

During the engagement, Resonance allocated 2 engineers to perform the security review. The en-
gineers, including an accomplished professional with extensive proficiency in blockchain and smart-
contract security, encompassing specialized skills in advanced penetration testing, and in-depth
knowledge of multiple blockchain protocols, devoted 7 days to the project. The project’s test targets,
overview, and coverage details are available throughout the next sections of the report.

The ultimate goal of the audit was to provide RTLabs with a detailed summary of the findings,
including any identified vulnerabilities, and recommendations to mitigate any discovered risks. The
results of the audit are presented in detail further below.

System Overview

Demether is a cutting-edge multichain protocol designed to maximize yield across different blockchain
networks. By leveraging a sophisticated blend of restaking, stablecoins, and other financial deriva-
tives, Demether ensures efficient and secure high-yield opportunities for its users. Demether is de-
signed for users seeking to maximize their ETH yields across multiple blockchain layers while mini-
mizing risk and complexity.

The system is composed of several components: deposits managers that handle user deposits in
native Ether and WETH, a liquidity pool on the layer-1 chain to handle the staking of user deposits, a
protocol token to represent user shares and a messenger contract to handle all bridging interactions.

As a general workflow, a user is able to deposit Ether into the protocol and have the respec-
tive shares minted to his address. The shares can be bridged to layer-1 and layer-2 chains and the
liquidity can be staked into a liquidity pool using frxEth and EigenLayer.

Repository Coverage and Quality

Code Tests Documentation

7 / 10 7 / 10 8 / 10

Resonance’s testing team has assessed the Code, Tests, and Documentation coverage and qual-
ity of the system and achieved the following results:

- The code follows development some best practices and makes use of known patterns, stan-
dard libraries, and language guides. It is easily readable and uses the latest stable version of
relevant components. Overall, code quality is good.

4 © 2024 Resonance Security, Inc

- Unit and integration tests are included. The tests cover both technical and functional require-
ments. Code coverage is undetermined. Overall, tests coverage and quality is good.

- The documentation includes the specification of the system, technical details for the code and
some relevant explanations of workflows and interactions. Overall, documentation coverage
and quality is good.

5 © 2024 Resonance Security, Inc

Target

The objective of this project is to conduct a comprehensive review and security analysis of the
smart contracts that are contained within the specified repository.

The following items are included as targets of the security assessment:

- Repository: demether-xyz/demether-ethereum/src

- Hash: 8978ab328f992c61c3df89e5c4d9c0fc23cf3a09

The following items are excluded:

- External and standard libraries

- Files pertaining to the deployment process

- Financial related attacks

6 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/src

Methodology

In the context of security audits, Resonance’s primary objective is to portray the workflow of
a real-world cyber attack against an entity or organization, and document in a report the findings,
vulnerabilities, and techniques used by malicious actors. While several approaches can be taken
into consideration during the assessment, Resonance’s core value comes from the ability to correlate
automated and manual analysis of system components and reach a comprehensive understanding
and awareness with the customer on security-related issues.

Resonance implements several and extensive verifications based off industry’s standards, such
as, identification and exploitation of security vulnerabilities both public and proprietary, static and
dynamic testing of relevant workflows, adherence and knowledge of security best practices, assur-
ance of system specifications and requirements, and more. Resonance’s approach is therefore con-
sistent, credible and essential, for customers to maintain a low degree of risk exposure.

Ultimately, product owners are able to analyze the audit from the perspective of a malicious actor
and distinguish where, how, and why security gaps exist in their assets, and mitigate them in a timely
fashion.

Source Code Review - Solidity EVM

During source code reviews for Web3 assets, Resonance includes a specific methodology that
better attempts to effectively test the system in check:

1. Review specifications, documentation, and functionalities

2. Assert functionalities work as intended and specified

3. Deploy system in test environment and execute deployment processes and tests

4. Perform automated code review with public and proprietary tools

5. Perform manual code review with several experienced engineers

6. Attempt to discover and exploit security-related findings

7. Examine code quality and adherence to development and security best practices

8. Specify concise recommendations and action items

9. Revise mitigating efforts and validate the security of the system

Additionally and specifically for Solidity EVM audits, the following attack scenarios and tests are
recreated by Resonance to guarantee the most thorough coverage of the codebase:

- Reentrancy attacks

- Frontrunning attacks

- Unsafe external calls

- Unsafe third party integrations

- Denial of service

- Access control issues

7 © 2024 Resonance Security, Inc

- Inaccurate business logic implementations

- Incorrect gas usage

- Arithmetic issues

- Unsafe callbacks

- Timestamp dependence

- Mishandled panics, errors and exceptions

Severity Rating

Security findings identified by Resonance are rated based on a Severity Rating which is, in turn,
calculated off the impact and likelihood of a related security incident taking place. This rating pro-
vides a way to capture the principal characteristics of a finding in these two categories and produce
a score reflecting its severity. The score can then be translated into a qualitative representation to
help customers properly assess and prioritize their vulnerability management processes.

The impact of a finding can be categorized in the following levels:

1. Weak - Inconsequential or minimal damage or loss

2. Medium - Temporary or partial damage or loss

3. Strong - Significant or unrecoverable damage or loss

The likelihood of a finding can be categorized in the following levels:

1. Unlikely - Requires substantial knowledge or effort or uncontrollable conditions

2. Likely - Requires technical knowledge or no special conditions

3. Very Likely - Requires trivial knowledge or effort or no conditions

Likelihood
Very Likely Likely Unlikely

Im
pa

ct

Strong Critical High Medium

Medium High Medium Low

Weak Medium Low Info

8 © 2024 Resonance Security, Inc

Repository Coverage and Quality Rating

The assessment of Code, Tests, and Documentation coverage and quality is one of many goals of
Resonance to maintain a high-level of accountability and excellence in building the Web3 industry.
In Resonance it is believed to be paramount that builders start off with a good supporting base, not
only development-wise, but also with the different security aspects in mind. A product, well thought
out and built right from the start, is inherently a more secure product, and has the potential to be a
game-changer for Web3’s new generation of blockchains, smart contracts, and dApps.

Accordingly, Resonance implements the evaluation of the code, the tests, and the documentation
on a score from 1 to 10 (1 being the lowest and 10 being the highest) to assess their quality and
coverage. In more detail:

- Code should follow development best practices, including usage of known patterns, standard
libraries, and language guides. It should be easily readable throughout its structure, completed
with relevant comments, and make use of the latest stable version components, which most
of the times are naturally more secure.

- Tests should always be included to assess both technical and functional requirements of the
system. Unit testing alone does not provide sufficient knowledge about the correct function-
ing of the code. Integration tests are often where most security issues are found, and should
always be included. Furthermore, the tests should cover the entirety of the codebase, making
sure no line of code is left unchecked.

- Documentation should provide sufficient knowledge for the users of the system. It is useful
for developers and power-users to understand the technical and specification details behind
each section of the code, as well as, regular users who need to discern the different functional
workflows to interact with the system.

9 © 2024 Resonance Security, Inc

Findings

During the security audit, several findings were identified to possess a certain degree of security-
related weaknesses. These findings, represented by unique IDs, are detailed in this section with
relevant information including Severity, Category, Status, Code Section, Description, and Recom-
mendation. Further extensive information may be included in corresponding appendices should it
be required.

An overview of all the identified findings is outlined in the table below, where they are sorted
by Severity and include a Remediation Priority metric asserted by Resonance’s Testing Team. This
metric characterizes findings as follows:

"Quick Win" Requires little work for a high impact on risk reduction.

"Standard Fix" Requires an average amount of work to fully reduce the risk.

"Heavy Project" Requires extensive work for a low impact on risk reduction.

RES-01 No Threshold Or Heartbeat Update Mechanisms
Implemented To Combat Staleness Resolved

RES-02 Payable Function May Lead To Minting Of Less Tokens Resolved

RES-03 Unnecessary Usage Of receive() Function Resolved

RES-04 Possible To Bypass DepositsManager And Call LiquidityPool
functions directly Resolved

RES-05 Missing Setter For Variable _minter Resolved

RES-06 Insufficient Validation Of _fee Resolved

RES-07 Sending _fee On Local Minting May Cause Loss Of DETH Resolved

RES-08 Function _convertToShares Vulnerable To Denial Of Service Acknowledged

RES-09 Missing Zero Address Validation Of token Resolved

RES-10 Incorrect Usage Of Function __Ownable_init() Resolved

RES-11 Missing Zero Address Validation Of sfrxETH Resolved

RES-12 Missing Zero Address Validation Of messenger Resolved

RES-13 Missing Validation Of msg.value Resolved

RES-14 Incorrect Usage Of Initializing Functions Resolved

10 © 2024 Resonance Security, Inc

RES-15 Incorrect Function Visibility of Initializing Functions Resolved

RES-16 Redundant Code On Arithmetic Operations Resolved

11 © 2024 Resonance Security, Inc

Critical

No Threshold Or Heartbeat Update Mechanisms
Implemented To Combat Staleness
RES-DMTH-PRO01 Business Logic Resolved

Code Section

• src/DepositsManagerL1.sol#L145-L157

• src/DepositsManagerL2.sol#L193-L206

• src/DepositsManagerL2.sol#L170

Description

The protocol implements bridging features between layer-1 and layer-2 blockchains to sync the
rate at which shares of tokens are minted for the users. By calling the function syncRate() on the
contract DepositsManagerL1, a message is sent to several layer-2 chains to sync their rates with the
new rate calculated on the layer-1 chain. On the layer-2 chains, when such a message is received, the
rate is updated while the variable rateSyncBlock tracks the last block of when the updated occurred.

When minting tokens on a layer-2 chain, the function getConversionAmount() is called to calcu-
late how many shares of the token should be minted for the user based on the current rate. The only
verification being made simply guarantees that a single rate update was performed in the past. It
does not guarantee that the rate is up to date. This opens up the possibility of financial attacks by
malicious users that can take advantage of stale rates to take advantages during minting.

Recommendation

It is recommended to implement a proper update mechanism that takes into consideration the
staleness of the rate. Such mechanism may be implemented based on rate thresholds for a prede-
fined amount or heartbeat verifications.

Status

The issue has been fixed in 79b1dd095b9c8a2d9a27623e5058622c255bf64b.

12 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL1.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

High

Payable Function May Lead To Minting Of Less To-
kens
RES-DMTH-PRO02 Business Logic Resolved

Code Section

• src/DepositsManagerL2.sol#L98

Description

The function deposit() is marked as payable, allowing for transfer of native Ether into the smart
contract. This function further calls the internal function _deposit() while providing _amountIn as
an input parameter. This effectively means that the amount of minted tokens for the user will solely
depend on the provided input parameter _amountIn. If the user mistakenly sends Ether when calling
this function, they will not be able to mint those funds as tokens.

Recommendation

It is recommended to remove the payable modifier of the function deposit(), only allowing the
direct deposit of Ether via the function depositEth().

Status

The issue has been fixed in dc99eabaf4d975b722355a4e3e5098db3c99a610.

13 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

Medium

Unnecessary Usage Of receive() Function
RES-DMTH-PRO03 Business Logic Resolved

Code Section

• src/LiquidityPool.sol#L238

Description

The LiquidityPool contract is implementing a receive function. This indicates that this contract
can successfully receive a native balance transfer. However, the fact that this receive implementa-
tion is actually empty makes such transfers be out-of-flow. Such transfers can lead to vulnerabilities
related to the accounting in the extreme cases. However, they also can cause an inherent loss for any
legitimate user who was tricked or made a genuine mistake. Such transfers will not be accounted
for accordingly by the contracts so users will lose their native tokens without being able to use the
protocol.

Recommendation

It is recommended to remove the unnecessary receive function.

Status

The issue has been fixed in 12379fd731038d171228ff7dc6e8ac5d54c5de05.

14 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/LiquidityPool.sol

Medium

Possible To Bypass DepositsManager And Call Liq-
uidityPool functions directly
RES-DMTH-PRO04 Access Control Resolved

Code Section

• src/LiquidityPool.sol#L96-106

Description

The Demether protocol defines a specific intended flow for adding liquidity to the protocol.
Namely, in order to deposit ETH, users will need to call the depositETH function implemented in
the DepositsManagerL1 contract. This function implements appropriate checks, fee calculation and
token minting before it calls the addLiquidity function defined in the LiquidityPool contract. The
addLiquidity function is mostly responsible for creating shares in the LiquidityPool contract.
However, the addLiquidity function does not implement any access control that would allow it to
be executed only if called by DepositsManagerL1 contract. As a consequence, anyone can call the
addLiquidity function directly effectively bypassing the accounting done in DepositsManagerL1.

Similarly, the processLiquidity function defined in the LiquidityPool contract can be called
directly, without calling the processLiquidity function defined in the DepositsManagerL1 contract.

Recommendation

It is recommended to implement an access control mechanism that will allow only the
DepositsManagerL1 contract to call the addLiquidity and processLiquidity functions in the
LiquidityPool contract.

Status

The issue has been fixed in f60e848172e442fc8138b87f59cf75588e322f72.

15 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/LiquidityPool.sol

Medium

Missing Setter For Variable _minter
RES-DMTH-PRO05 Business Logic Resolved

Code Section

• src/DOFT.sol

Description

The variable _minter does not implement a setter function. If the entity responsible for control-
ling the address pointed by the variable _minter becomes compromised, the entire protocol may be
at risk, and may ultimately lead to total loss of funds.

Recommendation

It is recommended to implement a setter function for the variable _minter to ensure if it were
ever to get compromised, the protocol could update the variable and continue normal operations.

Status

The issue has been fixed in f2f74b3c75ddeed8e581c5aef53ef5a1531f5082.

16 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DOFT.sol

Medium

Insufficient Validation Of _fee
RES-DMTH-PRO06 Data Validation Resolved

Code Section

• src/LiquidityPool.sol#L263-L267

• src/DepositsManagerL2.sol#L210-L214

Description

The fees used within the protocol are not sufficiently validated, and are therefore not restrictive
enough of their upper and lower bounds. The fees can both be set to the max value and to the value 0,
both of them being dangerous to the protocol that can eventually cause loss of funds, or confidence
from users of the platform.

Recommendation

It is recommended to define a specific range that protocol fees need to be inside of. Then, each
relevant function should implement an assertion that the fee value resides in a specified range.

Status

The issue has been fixed in 235f686ff87d951f6d1ef05e5ef76f0ab0d49402.

17 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/LiquidityPool.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

Medium

Sending _fee On Local Minting May Cause Loss Of
DETH
RES-DMTH-PRO07 Business Logic Resolved

Code Section

• src/DepositsManagerL1.sol#L75

• src/DepositsManagerL2.sol#L114

Description

The local minting feature of both DepositsManagerL1 and DepositsManagerL2 contracts does
not require a fee, since the fee should only be used for bridging purposes. However, it is possible to
send a non-zero fee via the input parameter _fee, effectively allowing for users to lose unnecessary
funds.

Recommendation

It is recommended to implement validations to ensure local minting processes do not charge
fees.

Status

The issue has been fixed in ebfb2e383734b8909cc860e1f0fc38ba0a220dc0.

18 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL1.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

Low

Function _convertToShares Vulnerable To Denial
Of Service
RES-DMTH-PRO08 Business Logic Acknowledged

Code Section

• src/LiquidityPool.sol#L181

Description

The function _convertToShares() is used by addLiquidity() to calculate the total amount of
shares supply on the protocol. The calculation of the supply is proportional to the value tracked by
the variable totalPooledEther. Not only does this variable increase via addLiquidity(), but also
via receive() and selfdestruct(). When any of the latter situation happens, the variable supply
does not increase. For specially crafted transactions, it may be possible for a malicious user to deny
the smart contract from servicing legitimate users.

It should be noted that the impact of this vulnerability directly depends on the amount of Ether
the malicious user is willing to spend to grief other users.

Recommendation

It is recommended to implement an accounting mechanism for the shares supply only taking into
consideration the amount of Ether that was deposited via addLiquidity(). This could be achieved
with the use of token smart contracts that track native assets, e.g. WETH.

Status

The issue was acknowledged by Demether’s team. The development team stated
"While the precision issue identified can theoretically be exploited under specific condi-
tions—primarily early in the protocol’s lifecycle—the practical impact is significantly lim-
ited. The resources required to exploit this vulnerability would be disproportionate to any
potential gains. Additionally, an early seeding of the protocol by the project will further
mitigate this risk, making the issue implausible in practice. Thus, we accept the resolution
with the reduced severity and acknowledge that it may not be worth the heavy refactoring
necessary to completely resolve this.".

19 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/LiquidityPool.sol

Low

Missing Zero Address Validation Of token
RES-DMTH-PRO09 Data Validation Resolved

Code Section

• src/DepositsManagerL1.sol#L82

• src/DepositsManagerL1.sol#L94

• src/DepositsManagerL1.sol#L111

• src/DepositsManagerL2.sol#L133

• src/DepositsManagerL2.sol#L144

• src/DepositsManagerL2.sol#L161

Description

Throughout the DepositsManagerL1 and DepositsManagerL2 smart contracts the token state
variable is used to perform external calls. However, this variable is not validated against the Zero
Address, allowing for undefined behavior within the protocol.

Recommendation

It is recommended to perform a validation against the Zero Address to ensure external calls are
handled properly and successfully.

Status

The issue has been fixed in 9a190fb1fbb6682e87d698bd24b0d02c94bae931.

20 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL1.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL1.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL1.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

Low

Incorrect Usage Of Function __Ownable_init()
RES-DMTH-PRO10 Business Logic Resolved

Code Section

• src/LiquidityPool.sol#L83

Description

The function initialize() on the upgradeable smart contract LiquidityPool does not call its
parent’s OwnableAccessControl initializer function __OwnableAccessControl_init(). Instead, it is
calling __Ownable_init().

While it is possible to call some parents’ initializer functions out of order or higher in the inher-
itance chain, it is not recommended to do so as it will lead to development errors and undefined
behavior within the protocol.

Recommendation

It is recommended to only call immediate parents’ initializer functions in the proper inheritance
order and let them call their parents’ initializer functions.

Status

The issue has been fixed in 07c47c69be099ca5fa08f02546bbd39ee02daa4f.

21 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/LiquidityPool.sol

Low

Missing Zero Address Validation Of sfrxETH
RES-DMTH-PRO11 Data Validation Resolved

Code Section

• src/LiquidityPool.sol#L147

Description

Throughout the LiquidityPool smart contract the sfrxETH state variable is used to perform exter-
nal calls. However, this variable is not validated against the Zero Address, allowing for undefined
behavior within the protocol.

Recommendation

It is recommended to perform a validation against the Zero Address to ensure external calls are
handled properly and successfully.

Status

The issue has been fixed in ccc1fd0255ccf8f2d9b6d1e5803b87964d856870.

22 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/LiquidityPool.sol

Low

Missing Zero Address Validation Of messenger
RES-DMTH-PRO12 Data Validation Resolved

Code Section

• src/DepositsManagerL2.sol#L136

• src/DepositsManagerL2.sol#L187

Description

Throughout the DepositsManagerL2 smart contract the messenger state variable is used to per-
form external calls. However, this variable is not validated against the Zero Address, allowing for
undefined behavior within the protocol.

Recommendation

It is recommended to perform a validation against the Zero Address to ensure external calls are
handled properly and successfully.

Status

The issue has been fixed in f4049014f1cf1e6e3c1de3accd2964aa4bbaf696.

23 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

Low

Missing Validation Of msg.value
RES-DMTH-PRO13 Data Validation Resolved

Code Section

• src/DepositsManagerL2.sol#L114

Description

The function depositETH() does not validate the Ether received from the user identified within
the global variable msg.value. This variable is then used in an arithmetic operation along with an-
other input variable _fee, which is controlled by the user. This effectively means that it may be
possible for a user to trigger an integer underflow condition.

Recommendation

It is recommended to validate both the input parameter _fee and the Ether sent by the user, and
only allow arithmetic operations between filtered and intended values.

Status

The issue has been fixed in 864dbae8c33bfb8180416ebb3a85ee29e9d1350d.

24 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

Info

Incorrect Usage Of Initializing Functions
RES-DMTH-PRO14 Code Quality Resolved

Code Section

• src/OwnableAccessControl.sol#L48-L52

• src/DepositsManagerL1.sol#L54-L60

• src/DepositsManagerL2.sol#L75-L85

Description

The functions _init() and _init_unchained() are an implementation of OpenZeppelin’s Up-
gradeable Proxies design standard and are used to serve as the constructor of upgradeable con-
tracts. Despite being both used as initializers, they possess slightly different use cases to correctly
implement the analog linearization of smart contract constructors.

The function _init() should be used and implemented to embed the linearized calls to all par-
ent initializers. The function _init_unchained() should be used to perform the initialization of the
variables for the current contract only.

As a consequence of this design, it is possible that, due to the lack of automatic linearization,
the calling of _init() functions initializes the same contract multiple times. For these cases, the
_init_unchained() function may be used manually to avoid double initialization, however it will
break the upgradeability design and compatibility between smart contracts on the blockchain.

Additionally, the inherited smart contracts should be initialized according to their inheritance
order, from the most base-like to the most derived.

There are multiple instances where contracts do not follow the design standard in the following
account:

• _init_unchained() function is not used.

• Initialization according to inheritance order is incorrect

Recommendation

It is recommended to follow OpenZeppelin’s Upgradeable Proxies design standard to the best of
the possibilities, and follow the necessary recommendations to maintain composability, interoper-
ability, and consistency across the blockchain.

It should be noted however, that it is not always possible to follow the recommendations to their
full extend due to double initialization issues, and in those cases it may be required to manually
initialize the parent contracts.

Status

The issue has been fixed in 8ec3e47376fa618386154e64ea90d1857ea8a73e.

25 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/OwnableAccessControl.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL1.sol
https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/DepositsManagerL2.sol

Info

Incorrect Function Visibility of Initializing Func-
tions
RES-DMTH-PRO15 Code Quality Resolved

Code Section

• src/OwnableAccessControl.sol#L48-L52

Description

Smart contract upgradeability using OpenZeppelin’s standard, requires contracts to use initial-
izer functions. The function to use on child contract should be named initialize() and should pos-
sess the initializer modifier, while parent contracts should have _init() and _init_unchained()
functions with the modifier onlyInitializing, where there would otherwise be constructors called
automatically on non-upgradeable smart contracts.

The initializer functions on the parent smart contracts are meant to be initialized by the child
contract, as such, their visibility can be constrained to internal. The following functions do not
implement the proper visibility to encourage a principle of least privilege:

• The visibility of the function __OwnableAccessControl_init() is incorrectly set as public.

Recommendation

It is recommended to assign a function’s visibility according to the necessary privileges required
to call that function. The visibility of parent’s initializer function on inherited upgradeable smart
contracts should be set to internal.

Status

The issue has been fixed in 8ec3e47376fa618386154e64ea90d1857ea8a73e.

26 © 2024 Resonance Security, Inc

https://github.com/demether-xyz/demether-ethereum/blob/8978ab328f992c61c3df89e5c4d9c0fc23cf3a09/src/OwnableAccessControl.sol

Info

Redundant Code On Arithmetic Operations
RES-DMTH-PRO16 Code Quality Resolved

Code Section

Not specified.

Description

Throughout the source code of the protocol, there are several instances where uint256 variables
are being compared to 0. The comparison of these variables being lesser than or equal to 0 is redun-
dant as uint256 variables can only contain 0 or positive values.

Recommendation

It is recommended to remove the redundant checks to improve code readability and gas usage.

Status

The issue has been fixed in 9de3c2a1dafe9e3811a51108d76ea7bf1d22c641.

27 © 2024 Resonance Security, Inc

Proof of Concepts

RES-08 Function _convertToShares Vulnerable To Denial Of Service

LiquidityPool.t.sol (added lines):

...

contract AddLiquidityTest is TestSetup {
...

function test_exploit1() external {
vm.deal(address(depositsManagerL1), 1 ether);
vm.prank(address(depositsManagerL1)); // Using the authorized caller
liquidityPool.addLiquidity{value: 100 wei}();
assertEq(liquidityPool.totalShares(), 100 wei);

// Malicious user adds ETH to liquidityPool
vm.deal(address(liquidityPool), 12_000 wei);

// Next deposit will revert
vm.prank(address(depositsManagerL1)); // Using the authorized caller
liquidityPool.addLiquidity{value: 100 wei}();

}
}

...

28 © 2024 Resonance Security, Inc

	Document Control
	Copyright and Disclaimer

	Executive Summary
	System Overview
	Repository Coverage and Quality

	Target
	Methodology
	Severity Rating
	Repository Coverage and Quality Rating

	Findings
	No Threshold Or Heartbeat Update Mechanisms Implemented To Combat Staleness
	Payable Function May Lead To Minting Of Less Tokens
	Unnecessary Usage Of receive() Function
	Possible To Bypass DepositsManager And Call LiquidityPool functions directly
	Missing Setter For Variable _minter
	Insufficient Validation Of _fee
	Sending _fee On Local Minting May Cause Loss Of DETH
	Function _convertToShares Vulnerable To Denial Of Service
	Missing Zero Address Validation Of token
	Incorrect Usage Of Function __Ownable_init()
	Missing Zero Address Validation Of sfrxETH
	Missing Zero Address Validation Of messenger
	Missing Validation Of msg.value
	Incorrect Usage Of Initializing Functions
	Incorrect Function Visibility of Initializing Functions
	Redundant Code On Arithmetic Operations

	Proof of Concepts

