

The SlowMist Security Team received the team's application for smart contract security audit of the AWE Network

(AWE) on 2025.02.18. The following are the details and results of this smart contract security audit:

Token Name :

AWE Network (AWE)

The contract address :

AWE Token

https://basescan.org/address/0x1b4617734c43f6159f3a70b7e06d883647512778 (Proxy)

https://basescan.org/address/0xf3c2540c95a81d9c06d3db779c71d65ae66b04eb (Implementation)

AWEGovernor

https://basescan.org/address/0xae18aed3dd3c9cd1d0a180315b6b5fcd61ef20f1

AWETimelockController

https://basescan.org/address/0x91876f0f9ba79a165422286fd9e4620238c42929

The audit items and results :

(Other unknown security vulnerabilities are not included in the audit responsibility scope)

NO. Audit Items Result

1 Replay Vulnerability Passed

2 Denial of Service Vulnerability Passed

3 Race Conditions Vulnerability Passed

4 Authority Control Vulnerability Audit Low Risk

5 Integer Overflow and Underflow Vulnerability Passed

6 Gas Optimization Audit Passed

7 Design Logic Audit Passed

8 Uninitialized Storage Pointers Vulnerability Passed

9 Arithmetic Accuracy Deviation Vulnerability Passed

NO. Audit Items Result

10 "False top-up" Vulnerability Passed

11 Malicious Event Log Audit Passed

12 Scoping and Declarations Audit Passed

13 Safety Design Audit Passed

14 Non-privacy/Non-dark Coin Audit Passed

Audit Result : Low Risk

Audit Number : 0X002502200001

Audit Date : 2025.02.18 - 2025.02.20

Audit Team : SlowMist Security Team

Summary conclusion : This upgradeable token contract contains the Governor and Timelock sections and does not

contain the dark coin functions. The total amount of contract tokens remains unchangeable. The contract does not

have the Overflow and the Race Conditions issue.

The project team has transferred the DEFAULT_ADMIN_ROLE and the UPGRADER_ROLE of the AWE token contract

to the AWETimelockController in the 0xd2a0bf5efb0f6a32726fa81d91eb092df85e918df266c7013191b45983b57555

and 0x07d6f1f4d95b37788ad4bf84793c51574d1a8779206b65b5b60a51314546a61a transactions.

During the audit, we found the following issue:

The source code:

AWE.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {ERC20Upgradeable} from "@openzeppelin/contracts-

upgradeable/token/ERC20/ERC20Upgradeable.sol";

The VETO_GUARDIAN can directly cancel a proposal through the cancel function in the AWEGovernor

contract when the proposal is in the Pending, Active, Succeeded, or Queued state. This will lead to the risk

of over-privileged. And the VETO_GUARDIAN is a 3/5 multisig contract owned by 5 EOA addresses.

1.

import {

 ERC20PermitUpgradeable,

 NoncesUpgradeable

} from "@openzeppelin/contracts-

upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol";

import {AccessControlUpgradeable} from "@openzeppelin/contracts-

upgradeable/access/AccessControlUpgradeable.sol";

import {ERC20VotesUpgradeable} from

 "@openzeppelin/contracts-

upgradeable/token/ERC20/extensions/ERC20VotesUpgradeable.sol";

import {Initializable} from "@openzeppelin/contracts-

upgradeable/proxy/utils/Initializable.sol";

import {UUPSUpgradeable} from "@openzeppelin/contracts-

upgradeable/proxy/utils/UUPSUpgradeable.sol";

import {VotesUpgradeable} from "@openzeppelin/contracts-

upgradeable/governance/utils/VotesUpgradeable.sol";

//SlowMist// The contract does not have the Overflow and the Race Conditions issue

/// @title AWE

/// @author AWE Network

contract AWE is

 Initializable,

 ERC20Upgradeable,

 ERC20PermitUpgradeable,

 ERC20VotesUpgradeable,

 AccessControlUpgradeable,

 UUPSUpgradeable

{

 bytes32 public constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE");

 /// @custom:oz-upgrades-unsafe-allow constructor

 constructor() {

 _disableInitializers();

 }

 /// @notice Initializes the token and inherited contracts.

 function initialize() external initializer {

 __ERC20_init("AWE Network", "AWE");

 __ERC20Permit_init("AWE Network");

 __ERC20Votes_init();

 __AccessControl_init();

 __UUPSUpgradeable_init();

 _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

 _grantRole(UPGRADER_ROLE, msg.sender);

 _mint(msg.sender, 2_000_000_000 * 10 ** decimals());

 }

 /// @inheritdoc VotesUpgradeable

 function clock() public view override returns (uint48) {

 return uint48(block.timestamp);

 }

 /// @inheritdoc VotesUpgradeable

 function CLOCK_MODE() public pure override returns (string memory) {

 return "mode=timestamp";

 }

 /// @inheritdoc ERC20PermitUpgradeable

 function nonces(address owner) public view override(ERC20PermitUpgradeable,

NoncesUpgradeable) returns (uint256) {

 return super.nonces(owner);

 }

 /// @inheritdoc ERC20Upgradeable

 function _update(address from, address to, uint256 value)

 internal

 override(ERC20Upgradeable, ERC20VotesUpgradeable)

 {

 super._update(from, to, value);

 }

 /// @inheritdoc UUPSUpgradeable

 function _authorizeUpgrade(address newImplementation) internal override

onlyRole(UPGRADER_ROLE) {}

}

AWETimelockController.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import "@openzeppelin/contracts/governance/TimelockController.sol";

//SlowMist// The contract does not have the Overflow and the Race Conditions issue

contract AWETimelockController is TimelockController {

 string private _name;

 constructor(

 string memory name_,

 uint256 minDelay,

 address[] memory proposers,

 address[] memory executors,

 address admin

) TimelockController(minDelay, proposers, executors, admin) {

 name = name;

 }

 function name() public view returns (string memory) {

 return _name;

 }

}

AWEGovernor.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {Governor} from "@openzeppelin/contracts/governance/Governor.sol";

import {GovernorVotes} from

"@openzeppelin/contracts/governance/extensions/GovernorVotes.sol";

import {GovernorTimelockControl} from

 "@openzeppelin/contracts/governance/extensions/GovernorTimelockControl.sol";

import {GovernorSettings} from

"@openzeppelin/contracts/governance/extensions/GovernorSettings.sol";

import {GovernorVotesQuorumFraction} from

 "@openzeppelin/contracts/governance/extensions/GovernorVotesQuorumFraction.sol";

import {IVotes} from "@openzeppelin/contracts/governance/utils/IVotes.sol";

import {TimelockController} from

"@openzeppelin/contracts/governance/TimelockController.sol";

import {GovernorCountingFractional} from

"@openzeppelin/contracts/governance/extensions/GovernorCountingFractional.sol";

//SlowMist// The contract does not have the Overflow and the Race Conditions issue

/// @title AWEGovernor

/// @author AWE Network

/// @notice A governance contract to govern AWE protocol decision making.

/// @custom:security-contact

contract AWEGovernor is

 GovernorCountingFractional,

 GovernorVotes,

 GovernorTimelockControl,

 GovernorSettings,

 GovernorVotesQuorumFraction

{

 /// @notice Human readable name of this Governor.

 string private constant GOVERNOR_NAME = "AWE Network Governor";

 /// @notice An immutable address that can veto proposals.

 address public immutable VETO_GUARDIAN;

 /// @param _token The token used for voting on proposals.

 /// @param _initialQuorumNumerator The initial percentage of total votes needed to

pass a

 /// proposal.

 /// @param _initialVotingDelay The delay before voting on a proposal begins.

 /// @param _initialVotingPeriod The period of time voting will take place.

 /// @param _initialProposalThreshold The number of tokens needed to create a

proposal.

 /// @param _timelock The timelock used for managing proposals.

 /// @param _vetoGuardian The initial address that can cancel a proposal at different

points in the

 /// proposal lifecycle.

 constructor(

 IVotes _token,

 uint256 _initialQuorumNumerator,

 uint48 _initialVotingDelay,

 uint32 _initialVotingPeriod,

 uint256 _initialProposalThreshold,

 TimelockController _timelock,

 address _vetoGuardian

)

 GovernorVotes(_token)

 GovernorVotesQuorumFraction(_initialQuorumNumerator)

 GovernorSettings(_initialVotingDelay, _initialVotingPeriod,

_initialProposalThreshold)

 GovernorTimelockControl(_timelock)

 Governor(GOVERNOR_NAME)

 {

 VETO_GUARDIAN = _vetoGuardian;

 }

 /// @inheritdoc Governor

 /// @dev We allow an immutable address to have the ability to cancel a proposal at

any stage

 /// of the proposal lifecycle except in the situation it was defeated or executed.

 //SlowMist// The VETO_GUARDIAN can directly cancel a proposal through the cancel

function when the proposal is in the Pending, Active, Succeeded, or Queued state. This

will lead to the risk of over-privileged

 function cancel(

 address[] memory _targets,

 uint256[] memory _values,

 bytes[] memory _calldatas,

 bytes32 _descriptionHash

) public virtual override returns (uint256) {

 // The proposalId will be recomputed in the `_cancel` call further down. However

we need the

 // value before we do the internal call, because we need to check the proposal

state BEFORE the

 // internal `_cancel` call changes it. The `hashProposal` duplication has a cost

that is

 // limited, and that we accept.

 uint256 proposalId = hashProposal(_targets, _values, _calldatas,

_descriptionHash);

 if (_msgSender() == VETO_GUARDIAN) {

 _validateStatus(

 proposalId,

 _encodeStateBitmap(ProposalState.Pending) |

_encodeStateBitmap(ProposalState.Active)

 | _encodeStateBitmap(ProposalState.Succeeded) |

_encodeStateBitmap(ProposalState.Queued)

);

 return _cancel(_targets, _values, _calldatas, _descriptionHash);

 }

 _validateStatus(proposalId, _encodeStateBitmap(ProposalState.Pending));

 if (_msgSender() != proposalProposer(proposalId)) revert

GovernorOnlyProposer(_msgSender());

 return _cancel(_targets, _values, _calldatas, _descriptionHash);

 }

 /// @inheritdoc GovernorSettings

 /// @dev We override this function to resolve ambiguity between inherited contracts.

 function proposalThreshold()

 public

 view

 virtual

 override(Governor, GovernorSettings)

 returns (uint256)

 {

 return GovernorSettings.proposalThreshold();

 }

 /// @inheritdoc GovernorTimelockControl

 /// @dev We override this function to resolve ambiguity between inherited contracts.

 function state(uint256 proposalId)

 public

 view

 virtual

 override(Governor, GovernorTimelockControl)

 returns (ProposalState)

 {

 return GovernorTimelockControl.state(proposalId);

 }

 /// @inheritdoc GovernorTimelockControl

 /// @dev We override this function to resolve ambiguity between inherited contracts.

 function _executor()

 internal

 view

 virtual

 override(Governor, GovernorTimelockControl)

 returns (address)

 {

 return GovernorTimelockControl._executor();

 }

 /// @inheritdoc GovernorTimelockControl

 /// @dev We override this function to resolve ambiguity between inherited contracts.

 function _cancel(

 address[] memory _targets,

 uint256[] memory _values,

 bytes[] memory _calldatas,

 bytes32 _descriptionHash

) internal virtual override(Governor, GovernorTimelockControl) returns (uint256) {

 return GovernorTimelockControl._cancel(_targets, _values, _calldatas,

_descriptionHash);

 }

 /// @inheritdoc GovernorTimelockControl

 /// @dev We override this function to resolve ambiguity between inherited contracts.

 function _executeOperations(

 uint256 _proposalId,

 address[] memory _targets,

 uint256[] memory _values,

 bytes[] memory _calldatas,

 bytes32 _descriptionHash

) internal virtual override(Governor, GovernorTimelockControl) {

 return GovernorTimelockControl._executeOperations(

 _proposalId, _targets, _values, _calldatas, _descriptionHash

);

 }

 /// @inheritdoc GovernorTimelockControl

 /// @dev We override this function to resolve ambiguity between inherited contracts.

 function _queueOperations(

 uint256 _proposalId,

 address[] memory _targets,

 uint256[] memory _values,

 bytes[] memory _calldatas,

 bytes32 _descriptionHash

) internal virtual override(Governor, GovernorTimelockControl) returns (uint48) {

 return GovernorTimelockControl._queueOperations(

 _proposalId, _targets, _values, _calldatas, _descriptionHash

);

 }

 /// @inheritdoc GovernorTimelockControl

 /// @dev We override this function to resolve ambiguity between inherited contracts.

 function proposalNeedsQueuing(uint256 _proposalId)

 public

 view

 virtual

 override(Governor, GovernorTimelockControl)

 returns (bool)

 {

 return GovernorTimelockControl.proposalNeedsQueuing(_proposalId);

 }

 /// @notice A re-implementation of `_validateStateBitmap` on the Governor contract

as that

 /// function is private. We used the code from

 /// [this](https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/cae60c595b37b1e7ed7dd50ad0257387ec07c0cf/contracts/governance/Governor.

sol#L734)

 /// line.

 function _validateStatus(uint256 _proposalId, bytes32 _allowedStates)

 internal

 view

 returns (ProposalState)

 {

 ProposalState currentState = state(_proposalId);

 if (_encodeStateBitmap(currentState) & _allowedStates == bytes32(0)) {

 revert GovernorUnexpectedProposalState(_proposalId, currentState,

_allowedStates);

 }

 return currentState;

 }

}

Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

