

Code Security Audit Report

For

SubStanceX

Nov 9th 2023

Table of Contents

Summary

Overview

Audit Summary

Result Summary

Audit Result

SSX-01(High): x.Delegatehub _aggregate DOS Vulnerability

SSX-02(Medium): x.Delegatehub SetDelegate Binding Issue

SSX-03(Medium):x.Delegatehub Arbitrary External Call

SSX-04(Low): x.Delegatehub TraderDelegate Zero Address Bypass

About

Summary

This report has been prepared for SubStanceX to discover issues and

vulnerabilities in the source code of the SubStanceX project as well as

any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed,

utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following

consideration:

⚫ Testing the smart contracts against both common and uncommon attack

vectors.

⚫ Assessing the codebase to ensure compliance with current best practices and

industry standards.

⚫ Ensuring contract logic meets the specifications and intentions of the client.

⚫ Cross referencing contract structure and implementation against similar smart

contracts produced by industry leaders.

⚫ Thorough line-by-line manual review of the entire codebase by industry

experts.

Overview

Audit Scope

Contract Name ChiliSwapContract

Platform Etherum

Language Solidity

Code Base https://github.com/ElijahYao/SubstanceExchangeV1/t

ree/feature/v5_test

Commit 141540ca5c89b001df5ae43515b6515d9b896482

Result Summary

Vulnerability Level Total Pending Solved Acknowledged

Critical 0 0 0 0

High 1 0 1 0

Medium 2 0 2 0

Low 1 0 1 0

Audit Result

SSX-01(High): x.Delegatehub _aggregate DOS

Vulnerability

Category Severity Location Status

Code Issue High DelegationHub.sol:125 Solved

Description

The DelegateHub _aggregate method performs a validation at the

end to check if msg.value + receivedEth

is equal to valAccumulator. If they are not equal, the method will revert.

However, there is a potential security vulnerability due to

the receivedEth variable being a global variable that can be modified

by the UB contract. By utilizing the UB contract to transfer a certain

4

Total issues

Critical High Medium Low

amount of ETH, it is possible to cause a scenario where msg.value +

receivedEth

and valAccumulator are never equal.

Vulnerability Analysis

1. In the aggregate function, after the delegate call is completed,

there is a validation check if (msg.value + receivedEth !=

valAccumulator) and if it evaluates to true, the function will revert.

Here, msg.value represents the value sent by the user during their

function call, and valAccumulator is the cumulative sum of the

values sent by the user. However, receivedEth is derived from the

ETH sent to the DelegateHub contract from the UB contract.

2. In the UB contract, there is a function that allows modification of

the global variable receivedEth. This poses a significant security

risk as it can lead to a situation where the validation check in the

DelegateHub contract fails, resulting in a revert of the transaction.

Recommendation

Using a temporary variable to store the value of ETH transferred from

the UB contract to the Hub contract during user transactions is indeed

a recommended approach for addressing the vulnerability. By doing

so, you can compare the stored value with msg.value + receivedEth to

check for any discrepancies.

SSX-02(Medium):x.Delegatehub SetDelegate Binding

Issue

Category Severity Location Status

Code Issue Medium DelegateHub.sol:86 Solved

Description

The binding mechanism in the setDelegate function of DelegateHub

is insecure and vulnerable to phishing and multiple binding issues. This

is because the uniqueness of the address is not verified, allowing a

malicious actor to set different users to the same 1ct address. As a

result, they can manipulate other users' accounts and steal their assets.

Vulnerability Analysis

1. In the DelegateHub contract, using the setDelegate function to set

the same delegate address

If such a scenario exists where:

User 0xA sets the delegate address 1ct as 0xax.

Malicious user 0xB also sets the delegate address 1ct as 0xax (the

same address as user 0xA's 1ct address).

2. Calling the tradeDelegate function under the circumstances where:

delegations[0xA] == 0xax (where 0xax is the delegate address associated

with user 0xA's 1ct)

delegations[0xB] == 0xax (where 0xax is the delegate address associated

with user 0xB's 1ct)

and bypassing the permission check delegations[trader] !=

msg.sender allows user 0xA to set the trader parameter as user

0xB's address, thereby gaining unauthorized access to user 0xB's

account information.

Recommendation

1. Ensure the uniqueness of 1CT addresses and user addresses, and

prohibit multiple bindings to prevent unauthorized operations.

2. Strengthen the security of the initial binding process by

implementing specific restrictions. For example, require users to

stake a certain amount of tokens or perform additional actions

when binding to a 1CT address. This helps prevent attackers from

misleading users into binding to malicious 1CT addresses.

SSX-03(Medium):x.Delegatehub Arbitrary External Call

Category Severity Location Status

Code Issue Medium DelegateHub.sol:128 Solved

Description

There is an Arbitrary External Call vulnerability in

the _aggregate method of the DelegateHub contract, allowing an

attacker to exploit it by calling the approve and transfer methods of

WETH to steal users' WETH assets transferred to the Hub contract.

Vulnerability Analysis

1. There is an Arbitrary External Call issue present in this scenario. A

malicious attacker can exploit it by using the Hub contract to call

the approve method of WETH and grant an unlimited approval to

a malicious address.

2. When other legitimate users call the corresponding method in the

UB contract through the Hub contract, the WETH token balance of

the Hub contract will increase.

3. When a malicious attacker confirms the presence of WETH in the

Hub contract address, they can proceed to exploit it by using

the transfer function to steal users' WETH tokens.

Recommendation

It is recommended to establish a mapping to maintain a record of

target addresses and the corresponding methods that can be called

on those addresses.

SSX-04(Low): x.Delegatehub TraderDelegate Zero

Address Bypass

Category Severity Location Status

Code Issue Medium DelegateHub.sol:86 Solved

Description

In the traderDelegate method of DelegateHub, the condition if

(delegations[trader] != msg.sender) is used to check if a user has

authorized the "trader" as their delegate address. However, if a user

has not set a delegate address, the value of delegations[trader] will be

0. This means that if msg.sender is the zero address, it can bypass the

condition check.

This issue cannot be exploited on the Ethereum mainnet, but it may

exist on derivative chains or other Ethereum-based networks where

certain system transactions use the zero address. Such as this

transaction:

https://arbiscan.io/tx/0x68fbb0145741531ab272d92f34fd9b1b6df62186a3f3

a444f17471231146c07e

Vulnerability Analysis

If a user has not set a delegate address, the value

of delegations[trader] will default to the zero address. In this case,

if msg.sender is also set to the zero address, it can bypass the

permission check and potentially manipulate arbitrary user data.

Recommendation

Add an additional check to verify if msg.sender is not the zero address

(0x0). .

About

Damocles is a 2023 web3 security company specializing in online

security services, including smart contract audit, Product audit,

penetration testing, GameFi security audit and cheat detection.

Main Web: https://damocleslabs.com/

Medium: https://damocleslabs.medium.com/

Twitter: https://twitter.com/DamoclesLabs

Email: support@damocleslabs.com

https://damocleslabs.com/
https://damocleslabs.medium.com/
https://twitter.com/DamoclesLabs

