
Substance
Exchange -

Exchange V4
Smart Contract Security

Assessment

Prepared by: Halborn

Date of Engagement: August 3rd, 2023 - August 29th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 ASSESSMENT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

2 RISK METHODOLOGY 9

2.1 EXPLOITABILITY 10

2.2 IMPACT 11

2.3 SEVERITY COEFFICIENT 13

2.4 SCOPE 15

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) INCONSISTENCY IN USER BALANCE CALCULATIONS ALLOWS FOR

EXPLOITS IN WITHDRAWALS - CRITICAL(10) 19

Description 19

Code Location 19

Proof Of Concept 20

BVSS 20

Recommendation 20

Remediation Plan 20

4.2 (HAL-02) INCORRECT TOKEN TRANSFER IN VESTING FUNCTION OF STAKING

SMART CONTRACT - CRITICAL(9.2) 21

Description 21

Code Location 21

1

Proof Of Concept 22

BVSS 22

Recommendation 22

Remediation Plan 22

4.3 (HAL-03) ORDERS CAN GET STUCK IN CANCELLED STATE DUE TO MISSING

DEADLINE CHECK - MEDIUM(5.6) 23

Description 23

Code Location 23

BVSS 24

Recommendation 24

Remediation Plan 24

4.4 (HAL-04) GAS STIPEND IN USERWITHDRAWETH FUNCTION AFFECTING GNO-

SIS SAFE INTERACTIONS - MEDIUM(5.6) 26

Description 26

Code Location 26

BVSS 26

Recommendation 27

Remediation Plan 27

4.5 (HAL-05) INCOMPATIBILITY WITH REBASING/DEFLATIONARY/INFLATION-

ARY TOKENS - MEDIUM(6.2) 28

Description 28

Code Location 28

Proof Of Concept 28

BVSS 29

Recommendation 29

Remediation Plan 29

4.6 (HAL-06) NON-STANDARD ERC20 TOKENS WILL REVERT - MEDIUM(5.6) 30

2

Description 30

Code Location 30

BVSS 30

Recommendation 30

Remediation Plan 31

4.7 (HAL-07) IMPLEMENTATIONS CAN BE INITIALIZED - LOW(2.5) 32

Description 32

BVSS 32

Recommendation 32

Remediation Plan 32

4.8 (HAL-08) CONTRACTS CANNOT BE PAUSED - LOW(3.3) 33

Description 33

BVSS 33

Recommendation 33

Remediation Plan 33

4.9 (HAL-09) SOLIDITY 0.8.20 CAN BREAK THE COMPATIBILITY ON THE

MULTICHAIN - LOW(2.3) 34

Description 34

Code Location 34

BVSS 34

Recommendation 35

Remediation Plan 35

4.10 (HAL-10) BROKEN FUNCTIONALITY IN stake FUNCTION PREVENTS DIRECT

INTERACTIONS - LOW(2.1) 36

Description 36

Code Location 36

3

BVSS 37

Recommendation 37

Remediation Plan 37

4.11 (HAL-11) MISSING/INCOMPLETE NATSPEC COMMENTS - INFORMA-

TIONAL(0.0) 38

Description 38

Code Location 38

BVSS 38

Recommendation 38

Remediation Plan 38

4.12 AUTOMATED SECURITY SCAN 39

Description 39

Results 39

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/25/2023 Gokberk Gulgun

0.2 Document Updates 08/26/2023 Gokberk Gulgun

0.3 Draft Review 08/30/2023 Gabi Urrutia

1.0 Remediation Plan 09/19/2023 Gokberk Gulgun

1.1 Remediation Plan Review 09/19/2023 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Substance Exchange is a Perpetual Decentralized Exchange where users can

interact with futures and options and also can be Liquidity Providers

earning from traders.

Substance Exchange engaged Halborn to conduct a security assessment on

their smart contracts beginning on August 3rd, 2023 and ending on August

29th, 2023. The security assessment was scoped to the smart contracts

provided in the Substance Exchange V3 GitHub repository. Commit hashes

and further details can be found in the Scope section of this report.

1.2 ASSESSMENT SUMMARY

Halborn was provided about 4 weeks for the engagement and assigned a

full-time security engineer to review the security of the smart contracts

in scope. The engineer is a blockchain and smart contract security expert

with advanced penetration testing and smart contract hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

• Identify potential security issues within the smart contracts.

• Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which were mostly addressed by Substance Exchange .

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/ElijahYao/SubstanceExchangeV1

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this assessment. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the assessment:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/functions

(solgraph).

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment. (Foundry, Brownie)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

13

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

14

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

1. IN-SCOPE TREE & COMMIT :

Code repositories:

1. Substance Exchange V4

• Repository: SubstanceExchangeV1

• Commit ID: 70064da2385541ebb59e85dfc79d911bd5d4b19b

Out-of-scope:

• third-party libraries and dependencies.

• economic attacks.

2. REMEDIATION COMMIT IDs :

• 51d826b6ae84364b6b6aa2927ec4679235bf76eb

• f5d8a07b3d34ed4efb80a4cb2be5e217ffbb9b70

• e3bcd45831222c853af17b7b6f1774e68cab28c1

• e627f170380c479ae32b635096f43219f07bb267

• d9201004c50f3618dd8637f34225dba97b38116d

15

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/ElijahYao/SubstanceExchangeV1/tree/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core
https://github.com/ElijahYao/SubstanceExchangeV1/tree/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core
https://github.com/ElijahYao/SubstanceExchangeV1/commit/51d826b6ae84364b6b6aa2927ec4679235bf76eb
https://github.com/ElijahYao/SubstanceExchangeV1/pull/142/commits/f5d8a07b3d34ed4efb80a4cb2be5e217ffbb9b70
https://github.com/ElijahYao/SubstanceExchangeV1/pull/142/commits/e3bcd45831222c853af17b7b6f1774e68cab28c1
https://github.com/ElijahYao/SubstanceExchangeV1/commit/e627f170380c479ae32b635096f43219f07bb267
https://github.com/ElijahYao/SubstanceExchangeV1/commit/d9201004c50f3618dd8637f34225dba97b38116d

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

2 0 4 4 1

16

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) INCONSISTENCY IN USER
BALANCE CALCULATIONS ALLOWS FOR

EXPLOITS IN WITHDRAWALS
Critical (10) SOLVED - 08/25/2023

(HAL-02) INCORRECT TOKEN TRANSFER
IN VESTING FUNCTION OF STAKING

SMART CONTRACT
Critical (9.2) SOLVED - 08/25/2023

(HAL-03) ORDERS CAN GET STUCK IN
CANCELLED STATE DUE TO MISSING

DEADLINE CHECK
Medium (5.6) SOLVED - 09/16/2023

(HAL-04) GAS STIPEND IN
USERWITHDRAWETH FUNCTION AFFECTING

GNOSIS SAFE INTERACTIONS
Medium (5.6) SOLVED - 08/25/2023

(HAL-05) INCOMPATIBILITY WITH
REBASING/DEFLATIONARY/INFLATIONARY

TOKENS
Medium (6.2) FUTURE RELEASE

(HAL-06) NON-STANDARD ERC20 TOKENS
WILL REVERT

Medium (5.6) SOLVED - 08/25/2023

(HAL-07) IMPLEMENTATIONS CAN BE
INITIALIZED

Low (2.5) SOLVED - 08/28/2023

(HAL-08) CONTRACTS CANNOT BE PAUSED Low (3.3) SOLVED - 08/25/2023

(HAL-09) SOLIDITY 0.8.20 CAN BREAK
THE COMPATIBILITY ON THE MULTICHAIN

Low (2.3) SOLVED - 08/22/2023

(HAL-10) BROKEN FUNCTIONALITY IN
stake FUNCTION PREVENTS DIRECT

INTERACTIONS
Low (2.1) RISK ACCEPTED

(HAL-11) MISSING/INCOMPLETE NATSPEC
COMMENTS

Informational
(0.0)

ACKNOWLEDGED

17

EX
EC

UT
IV

E
OV

ER
VI

EW

18

FINDINGS & TECH
DETAILS

4.1 (HAL-01) INCONSISTENCY IN USER
BALANCE CALCULATIONS ALLOWS FOR
EXPLOITS IN WITHDRAWALS -
CRITICAL(10)

Description:

The smart contract for SubstanceExchangeV1 has an inconsistency in how

userBalance and lockUserBalance are calculated and checked. Specifically,

the userWithdraw function does not consider the user’s locked balance

• Order Creation: Users can create an order using the makeOrder func-

tion.

• Locking User Balance: When an order is made, the lockUserBalance

function is called, which checks the user’s available balance through

the getAvailableToken function.

• User Withdrawal: Users can withdraw their balance using the

userWithdraw function.

• Inconsistency: The userWithdraw function does not consider the

user’s locked balance.

Code Location:

UserBalance.sol#L148

Listing 1

1 function lockUserBalance(

2 address _token ,

3 address _user ,

4 uint256 _amount

5) external isManager {

6 _validTokenAddress(_token);

7 if (getAvailableToken(_token , _user) < _amount) {

8 revert UserBalance__InsufficientAvailableTokenAmount ()

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core/UserBalance.sol#L148

ë ;

9 }

10 lockedBalance[_user][_token] += _amount;

11 _emitUserBalanceUpdate(_user , _token);

12 }

Proof Of Concept:

Step 1 : Firstly, the users can create an order with makeOrder function.

Step 2 : On the lockUserBalance call, the user’s available balance is

checked through getAvailableToken function.

Step 3 : After the creating an order, the user can call userWithdraw

function.

Step 4 : However, the user is locked balance is not considered on the

userWithdraw function. Even if the user does not have any balance, user

can call userClaimOptionProfit and _cancelOrder.

BVSS:

AO:A/AC:L/AX:M/C:N/I:C/A:C/D:C/Y:N/R:N/S:U (10)

Recommendation:

Modify the userWithdraw function to consider the user’s locked balance

before allowing a withdrawal.

Remediation Plan:

SOLVED: The Substance Exchange team solved the issue by deleting the

lockUserBalance variable.

Commit ID: 51d826b6ae84364b6b6aa2927ec4679235bf76eb

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/commit/51d826b6ae84364b6b6aa2927ec4679235bf76eb

4.2 (HAL-02) INCORRECT TOKEN
TRANSFER IN VESTING FUNCTION OF
STAKING SMART CONTRACT -
CRITICAL(9.2)

Description:

In the vest function, the rewardToken is being transferred instead of the

stakingToken. This could lead to a critical issue where users receive

the wrong token upon vesting, which is not what they initially staked.

This discrepancy could lead to financial loss for the users and could

severely undermine the trust in the staking platform.

Code Location:

StakingReward.sol#L151

Listing 2

1 function vest(uint256 tokenId) external {

2 // Anyone can HELP the fully locked NFT to begin vesting

3 // if (ownerOf(tokenId) != msgSender ()) revert

ë StakingReward__NotOwner ();

4 _updateReward ();

5 StakedPosition storage position = positions[tokenId];

6 if (position.unlockTime > block.timestamp) revert

ë StakingReward__NotVesting ();

7 if (position.lastClaimTime > 0) revert

ë StakingReward__AlreadyVested ();

8

9 position.lastClaimTime = block.timestamp;

10 position.reward = earned(tokenId);

11 totalShare -= position.share;

12 rewardToken.transfer(address(exchangeWallet), position.

ë amount);

13 exchangeWallet.increaseBalance(address(rewardToken),

ë ownerOf(tokenId), position.amount);

14

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/token/StakingReward.sol#L151

15 emit StartVesting(tokenId , position.reward);

16 }

Proof Of Concept:

• Users will receive rewardToken instead of their original stakingToken

upon vesting.

• This could lead to financial imbalances within the smart contract,

affecting the overall tokenomics.

BVSS:

AO:A/AC:L/AX:M/C:N/I:H/A:H/D:C/Y:N/R:N/S:U (9.2)

Recommendation:

Modify the vest function to transfer the stakingToken back to the user

instead of the rewardToken.

Remediation Plan:

SOLVED: The Substance Exchange team solved the issue by sending the cor-

rect token.

Commit ID: e627f170380c479ae32b635096f43219f07bb267

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/commit/e627f170380c479ae32b635096f43219f07bb267

4.3 (HAL-03) ORDERS CAN GET STUCK
IN CANCELLED STATE DUE TO MISSING
DEADLINE CHECK - MEDIUM (5.6)

Description:

The makeOrder function in the smart contract allows for the creation of

orders with various parameters, including a _deadline. However, there

is no check to ensure that the _deadline is greater than the current

block timestamp. As a result, during the execution of the fillOrder

function, orders can be directly marked as cancelled if they don’t meet

this condition, leading to orders getting stuck in a cancelled state.

Code Location:

/core/option/Option.sol#L244-L245

Listing 3

1 function makeOrder(

2 address _user ,

3 uint256 _option ,

4 uint256 _epoch ,

5 uint256 _batch ,

6 uint256 _productId ,

7 uint256 _maxPrice ,

8 uint256 _size ,

9 uint256 _deadline

10) external payable onlyManager returns (uint256 cost) {

11 if (_option >= nextOptionId) {

12 revert Option__InvalidOption ();

13 }

14 if (msg.value < minExecutionFee) {

15 revert Option__InsufficientExecutionFee ();

16 }

17 if (epochBatch[_option][_epoch] < _batch) {

18 revert Option__InvalidBatch ();

19 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core/option/Option.sol#L244-L245

20 if (_productId >= optionProduct[_option][_epoch][_batch].

ë length) {

21 revert Option__InvalidProductId ();

22 }

23 if (_deadline > strikeTimeRecord[_option][_epoch][_batch]) {

24 revert Option__InvalidDeadline ();

25 }

26 cost = _maxPrice * _size;

27 // last order is currentNonce - 1 ?

28 // so using a 0 index here

29 uint256 nonce = traderNonce[_user]++;

30 traderOrder[_user][nonce] = Struct.OptionOrder ({

31 optionId: _option ,

32 epochId: _epoch ,

33 batch: _batch ,

34 productId: _productId ,

35 maxPrice: _maxPrice ,

36 size: _size ,

37 deadline: _deadline ,

38 executionFee: msg.value ,

39 valid: true

40 });

41 emit MakeOptionOrder(_user , nonce , _option , _epoch , _batch ,

ë _productId , _maxPrice , _size , _deadline , msg.value);

42 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:L/R:N/S:U (5.6)

Recommendation:

Modify the makeOrder function to include a check that ensures the _deadline

is greater than the current block timestamp.

Remediation Plan:

SOLVED: The Substance Exchange team solved the issue by adding a deadline

check.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Commit ID: d9201004c50f3618dd8637f34225dba97b38116d

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/commit/d9201004c50f3618dd8637f34225dba97b38116d

4.4 (HAL-04) GAS STIPEND IN
USERWITHDRAWETH FUNCTION AFFECTING
GNOSIS SAFE INTERACTIONS - MEDIUM
(5.6)

Description:

The userWithdrawETH function in the smart contract uses the transfer

method to send Ether, which has a gas stipend of 2300 by default. However,

Gnosis Safe contracts require more than 2600 gas for successful execu-

tion, as documented here. This discrepancy in gas requirements makes it

impossible for Gnosis Safe contracts to interact with the userWithdrawETH

function.

Code Location:

UserBalance.sol#L128

Listing 4

1 function userWithdrawETH(uint256 _amount) external {

2 address user = msgSender ();

3 userBalance[user][address(weth)] -= _amount;

4 weth.withdraw(_amount);

5 payable(user).transfer(_amount);

6 emit Withdraw(user , address(weth), _amount);

7 _emitUserBalanceUpdate(user , address(weth));

8 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:L/R:N/S:U (5.6)

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://help.safe.global/en/articles/40813-why-can-t-i-transfer-eth-from-a-contract-into-a-safe
https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core/UserBalance.sol#L128

Recommendation:

Replace the transfer function with a low-level call to allow for a

customizable gas stipend.

Remediation Plan:

SOLVED: The Substance Exchange team solved the issue by changing the

function.

Commit ID: 51d826b6ae84364b6b6aa2927ec4679235bf76eb

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/commit/51d826b6ae84364b6b6aa2927ec4679235bf76eb

4.5 (HAL-05) INCOMPATIBILITY WITH
REBASING/DEFLATIONARY/INFLATIONARY
TOKENS - MEDIUM (6.2)

Description:

The protocol does not appear to support rebasing/deflationary/inflation-

ary tokens whose balance changes during transfers or over time. The

necessary checks include at least verifying the amount of tokens trans-

ferred to contracts before and after the actual transfer to infer any

fees/interest.

Code Location:

UserBalance.sol#L79C1-L86C6

Listing 5

1 function userDeposit(address _token , uint256 _amount) external

ë {

2 _validTokenAddress(_token);

3 address user = msgSender ();

4 IERC20(_token).safeTransferFrom(user , address(this),

ë _amount);

5 userBalance[user][_token] += _amount;

6 emit Deposit(user , _token , _amount);

7 _emitUserBalanceUpdate(user , _token);

8 }

Proof Of Concept:

Step 1 : User A calls the userDeposit function to deposit 100 tokens into

the contract.

Step 2 : Due to the deflationary nature of the token, a fee (e.g., 1%)

is deducted during the transfer.

Step 3 : The contract, however, records a deposit of 100 tokens, although

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core/UserBalance.sol#L79C1-L86C6

only 99 tokens (100 tokens - 1% fee) were transferred due to the fee.

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:M/Y:N/R:N/S:U (6.2)

Recommendation:

Ensure checking previous balance/after balance equals to the amount for

any rebasing/inflation/deflation. Consider adding support in contracts

for such tokens before accepting user-supplied tokens. Finally, consider

supporting deflationary / rebasing / etc. tokens by extra checking the

balances before/after or strictly inform your users not to use such tokens

if they don’t want to lose them.

Remediation Plan:

PENDING: The Substance Exchange team claims that they will not white-list

any deflationary/inflationary token. The Team is committed to addressing

this issue in a forthcoming release whenever they will white-list any

deflationary/inflationary token.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.6 (HAL-06) NON-STANDARD ERC20
TOKENS WILL REVERT - MEDIUM (5.6)

Description:

The library Option.sol contains the function to perform ERC20 tokens

transfers in the protocol. However, this library uses the interface of

IERC20 from OpenZeppelin which enforces the return value on transfer.

This pattern is not followed by all ERC20 tokens, for example USDT. If

attempting to transfer these tokens, the contract will revert, preventing

the transaction to be executed.

Code Location:

/core/option/Option.sol#L385

Listing 6

1 function transfer(

2 address _token ,

3 address _to ,

4 uint256 _amount

5) external onlyManager {

6 IERC20(_token).transfer(_to , _amount);

7 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:L/R:N/S:U (5.6)

Recommendation:

It is recommended to use OpenZeppelin’s SafeERC20 wrapper and the

safeTransfer function to transfer the tokens.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core/option/Option.sol#L385

Remediation Plan:

SOLVED: The Substance Exchange team solved the issue by using SafeERC20

wrapper.

Commit ID: f5d8a07b3d34ed4efb80a4cb2be5e217ffbb9b70

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/pull/142/commits/f5d8a07b3d34ed4efb80a4cb2be5e217ffbb9b70

4.7 (HAL-07) IMPLEMENTATIONS CAN BE
INITIALIZED - LOW (2.5)

Description:

The contracts are upgradable, inheriting from the Initializable contract.

However, the current implementations are missing the _disableInitializers

() function call in the constructors. Thus, an attacker can initialize

the implementation. Usually, the initialized implementation has no direct

impact on the proxy itself; however, it can be exploited in a phishing

attack. In rare cases, the implementation might be mutable and may have

an impact on the proxy.

BVSS:

AO:A/AC:L/AX:M/C:N/I:L/A:N/D:L/Y:L/R:N/S:U (2.5)

Recommendation:

It is recommended to call _disableInitializers within the contract’s

constructor to prevent the implementation from being initialized.

Remediation Plan:

SOLVED: The contracts now implement the _disableInitializers() function

call in the constructors.

Commit ID : e3bcd45831222c853af17b7b6f1774e68cab28c1

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol#L145
https://github.com/ElijahYao/SubstanceExchangeV1/pull/142/commits/e3bcd45831222c853af17b7b6f1774e68cab28c1

4.8 (HAL-08) CONTRACTS CANNOT BE
PAUSED - LOW (3.3)

Description:

It was observed the contracts in scope lack the pause functionality. In

case a vulnerability is discovered in any of the contracts or if any of

the contracts is an object of an attack, protocol governance is unable

of halting contract operations to manage the losses.

BVSS:

AO:A/AC:L/AX:H/C:N/I:N/A:C/D:N/Y:N/R:N/S:U (3.3)

Recommendation:

Review the Pausable contract from OpenZeppelin and decorate mission-

critical contract functions with the whenNotPaused modifier.

Remediation Plan:

SOLVED: The Substance Exchange team solved the issue by adding pause

functionality.

Commit ID : 51d826b6ae84364b6b6aa2927ec4679235bf76eb

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/commit/51d826b6ae84364b6b6aa2927ec4679235bf76eb

4.9 (HAL-09) SOLIDITY 0.8.20 CAN
BREAK THE COMPATIBILITY ON THE
MULTICHAIN - LOW (2.3)

Description:

Solidity version 0.8.20 introduced the support for PUSH 0, a feature

not available in prior versions. While this might seem like a useful

addition, it has potential compatibility issues across different types

of blockchains. If a contract’s pragmas are locked to Solidity version

0.8.20, certain blockchains may not support this new feature, thereby

causing the contract functionality to break.

This issue might hinder the contract’s ability to be deployed across

multiple chains, restricting its interoperability and potentially lead-

ing to unexpected behavior in the smart contract on chains that don’t

support the PUSH 0 feature. It might also lead to failed transactions

or unanticipated contract behavior, which could have severe financial

implications and impact user trust.

Code Location:

Delegatable.sol#L3

Listing 7

1 pragma solidity ^0.8.19;

BVSS:

AO:A/AC:M/AX:M/C:H/I:L/A:N/D:N/Y:N/R:P/S:C (2.3)

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core/Delegatable.sol#L3

Recommendation:

Consider the compatibility across different blockchain environments when

deciding on a Solidity version. If interoperability is a priority, it is

recommended to either use a lower Solidity version that has widespread

support or implement feature detection checks to avoid using features

that are unsupported on a given chain.

Remediation Plan:

SOLVED: The Substance Exchange team solved the issue by locking pragma

in the hardhat config file.

Commit ID : hardhat.config.ts#L45

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/release/v4.1/hardhat.config.ts#L45

4.10 (HAL-10) BROKEN FUNCTIONALITY
IN stake FUNCTION PREVENTS DIRECT
INTERACTIONS - LOW (2.1)

Description:

The stake function in the smart contract is intended to allow users to

stake a certain amount of tokens for a specified lockup time. However,

the function currently does not permit direct interactions, leading to

broken functionality.

Code Location:

StakingReward.sol#L126

Listing 8

1 function stake(uint256 amount , uint256 lockupTime) external {

2 if (amount <= 0) revert StakingReward__CannotStakeZero ();

3 _updateReward ();

4 address user = msgSender ();

5 uint256 share = (amount * boostMultiplier(lockupTime)) /

ë BOOST_PRECISION;

6 exchangeWallet.transfer(stakingToken , user , address(this),

ë amount);

7 totalShare += share;

8 uint256 tokenId = nextTokenId ++;

9 StakedPosition storage position = positions[tokenId];

10 position.amount = amount;

11 position.unlockTime = block.timestamp + lockupTime;

12 position.rewardPerSharePaid = rewardPerShare ();

13 position.share = share;

14

15 emit CreatePosition(tokenId , amount , share , lockupTime);

16

17 _mint(user , tokenId);

18 }

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/blob/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/token/StakingReward.sol#L126

BVSS:

AO:A/AC:L/AX:M/C:N/I:L/A:L/D:N/Y:N/R:N/S:U (2.1)

Recommendation:

Review the stake function to ensure that it allows for direct interactions

as intended.

Remediation Plan:

RISK ACCEPTED: The Substance Exchange team accepted the risk of the issue.

The team claims that it is design by default.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.11 (HAL-11) MISSING/INCOMPLETE
NATSPEC COMMENTS - INFORMATIONAL
(0.0)

Description:

The functions are missing @param for some of their parameters. Given

that NatSpec is an important part of code documentation, this affects

code comprehension, auditability, and usability.

Code Location:

SubstanceExchangeV1

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation:

Consider adding in full NatSpec comments for all functions to have complete

code documentation for future use.

Remediation Plan:

ACKNOWLEDGED: The Substance Exchange team acknowledged the issue.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/ElijahYao/SubstanceExchangeV1/tree/70064da2385541ebb59e85dfc79d911bd5d4b19b/contracts/core

4.12 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers in

order to locate any vulnerabilities.

Results:

MythX did not identify any vulnerabilities in the contracts.

The findings obtained as a result of the MythX scan were examined, and

they were not included in the report, as they were determined false

positives.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	AUTOMATED SECURITY SCAN
	Description
	Results

