
Python 10: 1D Lists
Teachers Resource

Printing, mathematical operators, data types and input using Python

3MB
Python 10 -1D Lists.pptx

Resources

Slides Python 10: 1D Lists

You will need to either have Python IDLE installed or have access to an

online Python IDE. We have used https://editor.raspberrypi.org/en

Activity worksheets are included in this lesson. You will need to distribute

these to your pupils

We have added a walk-through video below

Prior Knowledge

Data types in Python

counted while loops in Python

Selection using if..elif..else in a while loop

Lesson walk-through

https://4077022412-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FwAuC4Q5WQz4ea2O2b2JP%2Fuploads%2FZdt2shodTgZjNH4ai7ky%2FPython%2010%20-1D%20Lists.pptx?alt=media&token=66bdc866-2144-4203-b55e-93fa04b977a3
https://editor.raspberrypi.org/en

To teach pupils to:

It is a deliberate decision to use while loops before for loops. Iterating is a

fundamental operation in programming, and using a while loop for iteration can

help pupils to understand the concept of manual index handling and loop control.

Once this is properly understood and pupils can use it with more complex

problems, then for loops are introduced as a useful and efficient shortcut.

be able to use indexes to reference individual elements is a list

be able to use a while loop to iterate over a list

be able to use selection in a while loop lists

be able to use parallel lists

Learning Objectives

Teacher Note

You need to log in to access videos

Slides 2 - 3: Show this code and give pupils time to rearrange the lines. There are

many ways of tackling this, you could:

The solution is shown on slide 3.

Slide 4: Remind pupils about the use of square brackets in strings. If your class are

feeling less confident as you hoped, you might like to ask them to try this code.

Slide 5: Show this slide and describe the use of lists. You might like to precede this

slide with a discussion about how you could store the names of all the pupils in the

class. You would not want to have individual variables as that would be difficult to

manipulate, and you would have to edit your code if you had new students. What

we would like is a way of storing multiple values in the same variable. You could

use a single string and put spaces in between, but that wouldn't work with some

names, and it would take a lot of processing.

Link the fact that a string is a sequence of elements, which are single characters,

and a list is a sequence of elements that can be entire strings, integers etc.

Highlight the fact that we use indexes and square brackets in the same way as we

did with strings.

print the code out and cut it up so they can physically rearrange the lines

you could type the code into an online Parson's Puzzle tool such as

https://parsons.problemsolving.io

you could ask pupils to write down the line numbers and note which lines are

indented

Slide Notes

Starter

Activity 1 - Iterating over a list

https://parsons.problemsolving.io/

Slide 7: Show the code which iterates over the names list and highlight how a list is

created in code and how you can access a single element.

Pupils should then type the code in and run it. It is preferable that they type it in

rather than copy, as they will pay more attention to it if they have to type it. You

might like to ask them to change the code, for example, they could add more

elements in the list, only output every second element or iterate backwards.

They should then go on to the exercises. The solutions follow on slides 9 - 10.

Slide 9: Check that pupils have used len(food) and not just used a fixed value.

Some pupils will erroneously type this to get the last element.

print(f"The last item is {food[length]}")

Remind pupils that indexes start at 0, so the last element is at index position

length - 1 .

Slide 10: We have not explicitly told pupils how to change an element in a list, so

they might need a hint. See if they can make a sensible guess and they can try it

out.

Slide 12: append() adds to the end of a list. Point out the syntax, as it is common for

pupils to misuse this command.

Slide 13: remove() deletes a specific element from a list. You provide the value you

want to remove, not the index.

Slide 14: Ask pupils to try the append and remove examples and then do just

Exercise 1 on their worksheet.

Slide 15: This slide shows the solution and includes the output if the colour they

want to remove actually exists in the list.

Activity 2: List Operations

Slide 16: This slide shows the error message received when we try to remove

something that doesn't exist in a list. Ask pupils what they should do to avoid their

program crashing like this. They can't be sure that the user will enter the values

correctly, so they must change their code.

Slide 17: Use this slide to support your discussion about how to avoid a program

crashing if the value you are trying to remove is not in the list.

Slide 18: This slide shows a loop which iterates over the colours list and remembers

if an input colour is found using a Boolean variable, found. Give pupils time to read

this code. You might find it beneficial to ask them to type it in and run it. Once they

are confident with this, move on to the next slide.

Slide 19: This slide shows how we can use the Boolean variable, found , to only

remove the input element if it was found in the list.

Slides 20–21: This slide shows how we can output an error message if the input

value is not found in the list. Pupils should try this code and then complete the

exercises.

Slide 22: This is the solution to Exercise 2.

Slide 23: The solution to Exercise 3 is shown on this slide. It extends the idea of

checking if something is found in the list before doing something else.

Slide 24: This slide shows the output when the user enters a colour that was

already in the list.

Slide 26: Ask pupils to predict what this code will output. Do not allow them to run it

until they have made their prediction. It doesn't matter if they are wrong; the

important thing is that they think about it.

Slide 27: Once they have an answer, ask them to run the code. You could then

continue the PRIMM approach by encouraging them to investigate the code, make

Activity 3: Parallel Lists

changes to it, and use it as a model for a different exercise.

Slides 29–31: These slides show the answers to the parallel lists exercise.

Pupils should discuss the code shown and consider why you must not sort parallel

lists. Notice that there is nothing that links the names list to the scores list, we

must keep them in the same order.

Plenary

