
Python 4: Complex Selection
Teaching resource

3MB
Python 4 - Complex Selection.pptx

Resources

Slides Python 4: Selection

You will need to either have Python IDLE installed or have access to an

online Python IDE. We have used https://editor.raspberrypi.org/en

Activity worksheets are included in this lesson. You will need to distribute

these to your pupils

We have added a walk-through video below

Prior Knowledge

Printing, mathematical operators, data types and input using Python

Selection in Python using if..elif..else

Vocabulary

debug - to find and remove errors in programs

nested selection - having one if statement inside another if statement

Lesson walk-through

https://4077022412-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FwAuC4Q5WQz4ea2O2b2JP%2Fuploads%2Fgx68HomHKoxDxcoC72n6%2FPython%204%20-%20Complex%20Selection.pptx?alt=media&token=7d7c2c77-57a8-42a9-980b-015ff9b5b818
https://editor.raspberrypi.org/en

To teach pupils to

Show slide 3 which extends the exit ticket from the last lesson. Ask pupils to work

out what the Python program would output for each of the given input examples.

You might like to split the class or ask them to do this in pairs and then show their

answers on mini whiteboards.

extend their use of if..elif..else to make decisions in Python programs

use nested selection

debug programs

Learning Objectives

Slide Notes

Lesson Introduction

You need to be logged in to access

The purpose of this exercise is to ensure that pupils can trace through a program

without having to run it and that they understand the order of instructions in nested

selection statements. You might need to explain some of the answers, e.g. Y and

-10

The answers are:

Show slide 6 and distribute Activity 1 and ask pupils to identify and show the route

the algorithm would take through the flowchart given for specific inputs. This allows

you to check that individual pupils have understood this. They could draw a line or

highlight, as you see fit.

Answers are given in slides 7–8. Discuss these and ask pupils to check their work.

Input

Y

0

Y

-10

Y

10

N

0

N

-1

cheese

-100

Activity 1: Nested Selection

Activity 2: Nested Selection in Python

Show slide 10 on the board and ask pupils to write a program for that algorithm.

This flowchart intentionally mirrors the previous example to allow pupils to build

familiarity.

As the exercise on the worksheet is going to include testing, you might like to ask

the class what is the minimum number of test cases they need to demonstrate that

their program produces the correct answers. If they need a hint, you might like to

ask them about the routes through the algorithm. The answer is that they need at

least four test cases to check that each branch produces the right answer.

A test case is a complete set of inputs that allow a program to run. In this case, an

example of a single test case is 15 and Yes

The worksheet includes test cases that pupils should use to fully test their code.

They are not checking for robust code at this point, e.g. if they enter a non-integer

for age, the program will crash. They are checking that the program produces the

correct output, given suitable inputs.

If you haven't talked about testing before, you might like to explain the process to

the class. The test table is intentionally only partially complete.

Test tables are used to plan and record the outcomes of individual test cases. It is

helpful to encourage pupils to record the expected output (what should their program

produce) and actual output (what does their program actually produce?).

The Python solution is shown on slide 11.

Use slides 12–14 to discuss testing further. Pupils must actually run the program

with the given inputs to check that it produces the right output, rather than

assuming that it does! This discipline helps pupils to create robust programs and

tackle tracing questions that they might encounter in GCSE examinations.

Key Concept: Debugging

Debugging program code can be difficult and frustrating. The purpose of this

section of the lesson is to give your pupils some experience of debugging.

Encourage them to try these things the next time they get stuck, rather than just

asking you!

Show slide 16 and ask pupils what the user would expect to be output when they

enter 14 and Yes. The answer is "The ticket price is £ 5". However, as you can see,

the program outputs "The ticket price is £ 8". Don't allow pupils to say what the

error is yet, this exercise is about methods for finding errors.

Show slide 17 and ask those pupils who have spotted the error, what questions they

could ask someone else to help them find the error or what they could do to help

themselves if they were stuck. If the class is stuck, you might want to hint that they

should search the code for where price gets set to 8 and then work backwards.

Slide 18: An example of a useful question that you or another pupil could ask

someone who was stuck on this exercise is, "What must the values of age and

member be for line 10 to be reached?"

Slide 19 shows another way of finding an error in a program like this is to look at

what does work. We could check that the values have been stored correctly by

outputting the value of age and number on a new line of code under line 2. If they

are still stuck, they could add the print statements on lines 4 and 10. Does this

output help pupils to find the error?

You can see from the output above, the program has decided that you are not a

member! Why? It must be that member is not equal to "Y", but we asked the user to

enter Yes or No! That is the error. Line 3 should be changed to

if member == "Yes":

Slide 20 describes rubber duck debugging. This is a really powerful method that

you can practice with your class the next time they ask you to help them find an

error in their code. If you ask them to explain why they think their code is correct,

they will often find the error themselves. Explaining their code requires them to

think about it in a more useful way.

Slide 22: Ask pupils to do the debugging exercises. It is important to encourage

them to explain how they would find the error, rather than just identifying it, but this

can be a difficult skill to develop. The answers follow each question slide.

In Exercise 1, line 4 was not actually storing the result of mark / 100 in the mark

variable. So when line 5 was run, mark was still a whole number so it was never

less than 0.5

Line 4 should be changed to mark = mark / 100

For an even better solution, create a new variable to hold the percentage by

changing line 5 to percentage = mark / 100 and line 6 to

if percentage < 0.50: . This is better because it avoids the poor practice of

changing the data type of a variable.

In Exercise 2, the error is that line 10 is indented so it is part of the else branch of

the last condition. This means that the program only outputs the result if the score

is less than or equal to the high score. The solution is to remove the indentation so

that the print is lined up with the if . This is shown on slide 27.

Activity 3: Debugging

Exercise 1 - Explanation

Exercise 2 - Explanation

In the plenary, you might like to recap on the use of nested selection and

debugging techniques. Then ask pupils to spot the error in the example on slide 28.

This is a tricky one that you might like to follow up in the next lesson. The correct is

if answer == “Yes” or answer == “yes”: because every part of a conditional

statement must evaluate to a Boolean value: True or False. The string "yes" is not a

Boolean value, so it must be compared to something.

Plenary

