
Python 2: Variables,
Input and Casting
Teaching resource

3MB
Python 2 - Variables, Input and Casting.pptx

Resources

Lesson slides Python 2: variables, Input and Casting

You will need to either have Python IDLE installed or have access to an

online Python IDE. We have used https://editor.raspberrypi.org/en

Activity worksheets are included in this lesson. You will need to distribute

these to your pupils

Prior Knowledge

Printing in Python

The use of mathematical operators in Python

The concepts and usage of data types in Python

Vocabulary

cast - to change a value from one data type to another, e.g. string to integer

input - input is when you ask the user to enter a value which you can then

use in your program

variable - a name given to a storage location in memory where you hold

data values

Lesson walk-through

https://4077022412-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FwAuC4Q5WQz4ea2O2b2JP%2Fuploads%2FLFOUoXuOPUmeOdZ09cHW%2FPython%202%20-%20Variables%2C%20Input%20and%20Casting.pptx?alt=media&token=ef6d1581-36bd-4885-9a99-4dac53eee4c3
https://editor.raspberrypi.org/en

To teach pupils to

Slide 3: Recap the end of the last lesson with the starter. Ensure that pupils are

using the correct terminology: data type, operator, operand and concatenation.

Slides 4–6: Reinforce the use of the term 'concatenation'. Note that spaces must be

explicitly included, and you cannot use the + operator when the data types of the

Create and use variables

Get input from the user

Convert values between different data types using casting

Learning Objectives

Slide Notes

Lesson Introduction

You need to be logged in to access

operands are different. For example, the third line of code would result in an error

because it is attempting to add a string and an integer.

Slide 8: Ask pupils to complete Activity 1 on their worksheets. They should try each

example, note down the output, and answer the question.

The output is shown on slide 9. The comma allows a print statement to output

multiple things in one line of code. These can be literal values, e.g. "Fred", or

variables, e.g. name. Notice that the use of a comma inserts a space at that point.

Note: It is possible to use print formatting using Python's f-strings to eliminate the

unwanted space in the last example. We will come to this in a later lesson.

Slides 10–11: Pupils sometimes struggle with this concept. The formal definition is

that a variable is a label that points to an area of the computer's RAM where a value

can be stored. We refer to variables using labels, e.g. name, age, score, rather than

memory addresses as they are more user-friendly.

The idea of a box might be helpful to some. Imagine a room full of boxes. You

would need them to be labelled if you stood any chance of finding something once

you had stored it. However, it is important to note that a variable can only contain

one item (until we get on to lists in a later session), so if you put something in the

variable, it replaces what was there before.

code = "ABC"
number = 123
result = code + number // You cannot add a string to an integer

Activity 1: Investigate the print statement

Key Concept: Variables

Activity 2: Variable Naming

Slide 13: Show pupils these rules and conventions. The hard rules are underlined,

the others are conventions. Note that your GCSE exam board might have its own

rules which must supersede these shown.

Once you have discussed these rules and conventions, ask pupils to do the activity.

The answers are also on slide 14.

This activity uses Sentance et al's PRIMM framework. You might like to read about

it here.

The purpose of this task is to model the PRIMM framework and allow pupils to gain

confidence with what we have covered so far.

Variable name example Okay? Explanation

high_score ✅

x ❌
Single-letter - this is too

short to be descriptive

Surname ❌ Starts with a capital letter

third.place ❌ Has a full-stop in it

the_highest_value_scored ❌ Too long

P - Predict: pupils are asked to try to work out what a new piece of code will do,

without running it

R - Run: then they run it to see if they were correct and note anything significant

I - Investigate: then they investigate it

M - Modify: then they change it to make it do slightly different things

M - Make: finally, they use models to create something new

Activity 3: Printing variables

Step 1: Predict

https://primmportal.com/

Slide 16: Pupils should work in pairs and discuss what they think each example will

do. It is important to emphasise that it doesn't matter if they get their answers

wrong; the importance of this is for them to engage with the code and try to work

out what it does. They must not cheat by running the code yet!

Slides 17–18: Now pupils should run each example in turn and note down what they

output. The output is shown on slide 18.

Slide 19: use this slide to discuss what the pupils have observed about the input

command.

Slide 20: Pupils should try to make some directed changes and note the effect.

These three examples explore some common errors.

Slide 16

Step 2: Run

Step 3: Investigate

The answers are on slides 21–26

1. The name is used in a print statement before a value has been stored in it

2. The user is asked for input, but it is not stored in a variable.

3. The input value is stored in variable, COUNTRY , but we try to print variable,

country . Python is case-sensitive, so these two variables are not the same as

each other.

Slide 27: Ask pupils to change this code to ask for a game name and high score

instead. An example solution is also on slide 28.

Slide 29: Now ask pupils to use this as a model to write a different program which

asks about animals. They can decide what to output for this one, though we are a

Step 4: Modify

Step 5: Make

little limited until we have covered selection (if)!

There is an example solution on slide 30.

Slides 32-33: Start with the investigation task in the pupil worksheet. This allows

pupils to discover the issue for themselves: the input statement always gives you

a string data type and this is not very useful if you want to be able to manipulate

numbers. Pupils should try to explain why this has happened before the class

discussion prompted on slide 34.

Slides 35–36: Discuss and demonstrate the use of int and float to convert

data. Note that converting a number with a decimal part to an integer will result in

the program crashing. E.g.

Slides 36: Now ask pupils to do the casting exercises. The answers are on slides

38–40.

Common errors to look out for

Pupils often get int() and input() or float() and input() the wrong way around, e.g.

count = input(int("How many millepedes do you have? ")) // Incorrect

The reason the code above is incorrect is that it is trying to convert the string "How

many millepedes do you have?" to an integer and then use that as an input prompt as

the inner brackets are evaluated first.

The correction is:

count = int(input("How many millepedes do you have? ")) // Correct

Activity 4: Casting between data types

Activity 5: Casting Exercises

This is explored in the exit ticket.

Wrap up the lesson by asking pupils for a single sentence to summarise each

lesson objective.

The exit ticket is to correct the code shown, as it is a common error.

The answer is that input and int are the wrong way around! It will try to convert

the string “Enter a number” to an integer and it will crash. It should be:

number = int(input("Enter a number "))

Remember that you always evaluate the inner brackets first: do the input and then

convert what was entered to an integer. The erroneous code tried to convert the string

"Enter a number" itself to an integer, which is impossible.

Plenary

