@Diligence

AUDITS

FUZZING SCRIBBLE ABOUT

Glif Filecoin InfinityPool

1 Executive Summary

2 Scope

2.1 Objectives

3 Security Specification
3.1 Actors

3.2 Trust Model
4 System Overview

5 Findings

5.1 InfinityPool contract
authorization bypass attack

Critical v Fixed

5.2 Agent Data Oracle signed
credential front-running attack

v Fixed

5.3 Wrong accounting for
totalBorrowed inthe
InfinityPool.writeOff function

v Fixed

5.4 Wrong accounting for
totalBorrowed inthe

InfinityPool.pay function

v Fixed

5.5 The
beneficiaryWithdrawable
function can be called by anyone
v Fixed

5.6 An Agent can borrow even
with existing debt in interest
payments Medium | ¢ Fixed

5.7 The

AgentPolice.distributeliquidat
edFunds ()

function can have undistributed
residual funds 'Medium | v Fixed

5.8 An Agent can be upgraded

even if there is no new
implementation 'Medium

v Fixed

5.9 Potential re-entrancy issues
when upgrading the contracts

[Minor AT

5.10 InfinityPool is subject to a
donation with inflation attack if

emtied. (Y3 | ¢ Fixed

511 MaxWithdraw should

potentially account for the funds
available in the ramp. ({53

v Fixed

5.12 The upgradeability of
MinerRegistry, AgentPolice, and
Agent is overcomplicated and has
a hight chance of errors. [[Ii]3

Acknowledged

5.13 Mint function in the Infinity
pool will emit the incorrect value.

[Minor AT

5.14 Incorrect Operator Used

m ¥ Fixed

5.15 Potential overpayment due to
rounding imprecision [l
Won't Fix

516 jumpStartAccount should be

subject to the same approval
checks as regular borrow. [[Ii73

v Fixed

517 No Miner migration is
happening in the current

Date April 2023

Chingiz Mardanov, Sergii

Auditors
Kravchenko

1 Executive Summary

This report presents the results of our engagement with the GLIF team to review a new Filecoin leasing protocol for Filecoin
Storage Providers called GLIF Pools. The goal of the Protocol is to make possible the deployment of multiple Filecoin leasing
pools, allowing a single Agent (representing a Filecoin Storage Provider) to lease FIL for use as pledge collateral on the Filecoin
blockchain. This audit focused on the underlying Protocol code, as well as the Infinity Pool implementation as the first leasing
pool built on the Protocol.

The review was conducted over three weeks, from April 10th, 2023 to April 28th, 2023, by Chingiz Mardanov and Sergii
Kravchenko. A total of 5 person-weeks were spent. The fixes were reviewed over 3 days, from May 3d, 2023 to May 5th, 2023.

Prior to this review, a 10 person-weeks, informal protocol review occurred, after which the code was significantly changed. We
are happy to mention that the code size, quality and business logic were drastically improved, making it easier to understand and
audit the codebase. While this is the case, we still have identified several major issues that needed to be addressed. We also
would like to mention that given the short time alloted for the audit and several trust assumptions the Protocol has to be used
cautiously.

The GLIF Pools protocol has a large potential feature set and surface area, so the following assumptions were made about the
state of the system in order to conduct an audit in a reasonable amount of time:

e The system contains only 1 leasing pool.
e The Agent Data Oracle is controlled solely by the GLIF team.

e All owner and operator keys with control over important parts of the Protocol are multisig wallets controlled by the GLIF
team.

e The Filecoin precompiles used throughout the Protocol to interact with Filecoin’s built-in Minor Actor have already been
audited.

Any changes to the protocol code, such as upgrades, adding off-ramp or adding additional pools, must undergo additional
audits.

The security of this Protocol relies heavily on the centralization nature of its current state and any decrease in the centralization
must be carefully evaluated and audited. Users must understand that the GLIF Pools Protocol is centralized and controlled by the
GLIF team. We also talk about this in Trust Model section. All the issues were addressed by the GLIF team, the details of which
can be found in the Findings section.

2 Scope

Our review focused on the commit hash bf2sba12e6e13c87b1dfdcfachoec2767bbesafs . The list of files in scope can be found in the
Appendix. The fixes were presented on the commit hash 70dae7826c9299eb610f3300b0ac5e35b139913 .

2.1 Objectives
Together with the GLIF team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 Security Specification

This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for
documentation. The purpose of this section is to identify specific security properties that were validated by the audit team.

3.1 Actors

In the current system we can identify a few key actors. In order to simplify things we will do that from two different levels:
external and internal relative the protocol.

On external level we have 3 main actors:

e Depositors - users who are willing to provide capital depending on the terms of the specific pool. From their perspective
they are interacting with an ERC4626 vault that will have withdrawals done via a queuing system.

e Filecoin Storage Providers - are the once that will borrow the capital provided by the depositors. Those funds can either be
withdrawn, when correct computerization checks are passed or used to further expand the storage provision operation.

https://github.com/glif-confidential/pools/tree/bf28b412e0e13c87b1dfdcf4cb6ee2707bbe44f8
https://github.com/glif-confidential/pools/tree/070dae7820c9299eb610f3300b0ae5e35b139913
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

implementation of the Agent

Acknowledged

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

e GLIF Protocol - acts as a place where depositors and borrowers can be matched based on the deals they would like to
support.

e Oracle - is used to get the miners information of the storage provider is initially controlled by the GLIF team. Values that are
passed using this oracle are crucial to the correct operation of the protocol.

On the internal level things are a bit more complex. Now we will outline the main participants that build up the main protocol.

InfinityPool - is an actor where the main actions of the protocol would happen. This pools is where depositors can deposit their
funds wFIL and FIL in the current iteration and Agents can later borrow those funds.

Agent - is the contract that represents the borrower in the context of the protocol. Agent will obtain control over all of the
storage provider’s miners. Transferring the ownership over the miners to the Agent contract is what prevents the borrower from
running away with the borrowed funds. Agent can be though of as borrowers bank account and only funds that are not used as
collateral can be withdrawn from that account.

AgentPolice - is a contract that will be controlled by the GLIF team from launch. AgentPolice verifies actions that are taking place
on chain as well as oversee processes such as putting an Agent in administration or liquidating and Agent in default.

3.2 Trust Model

After thoroughly reviewing the codebase we would like to highlight that it heavily relies on a strong trust assumption that the
development team will not only act with integrity and good faith but also exercise a high level of caution when making any future
code changes. While we understand that trust is a fundamental aspect of any collaborative project, it is important to
acknowledge that this trust assumption presents a significant risk to the security and reliability of the system. Such trust
assumption include but are not limited to:

e Upgradeability of the majority of the contract such as PoolRegistry , MinerRegistry , Agent €.t.C.

e Since upgradeability is done in a rather complex manner of redeploying contracts with previously non-empty state any
upgrades should be done extremely carefully after an extensive testing and verification.

e For proper operation all actions that borrowers can take rely on the data submitted by a centralized oracle operated by the
GLIF team. If that oracle starts reporting incorrect values the entire protocol security will be jeopardized.

e Entire concept of administration as well as the fact that AgentPolice controlled by the GLIF team, means that there are
several ways in which the GLIF team could hijack the users funds. This applies to both borrowers and depositors.

4 System Overview

- InfinityPool 0

TN I I I S S S S S S O O S

- ~
’ “

GLIF Controlled

i,
-

& _ constr__
& _ constr
__constr

-4 getAgentBorrowed

f-—‘\' -4 COCalAsgsets
ﬁ AgentPolice J PoolRegistry

-4 totalBorrowableAssets

<4, getAbsMinLiguidity
-4 getliguidisascs %
-4 getRate

Lenders

__Eenstr_

-+ allFoolslength

attachFool

4, isApprovad

A J

upgradsFanl

__constr__ 4 isFool

4 poolIDs gatTreasuryFeakatse

-4 agentApproved setFeeThreshold

setAgenthDefaunlted \ J

putAgentonAdminisctration

mAgentEFromfhdministration _ constr

withdraw

AgentFactory

prepareMinerforLiguidation -4 borrowedFoolsCount

redeem
liguidatedagent 4 liguidassers
__econstr 4 convertToSharas

4 beneficiary

distributelLiquidactedfunds

create -4 CONVEITTOASSETS

4 isvalidCredential & _ econstr
upgradehgent 4, previewDeposit

registerCredentiallUseBlock & __constr
- lsAgent 4 previewMint

addFPoolToList addMiner

-4 previewWithdraw
removeFoolFromLisc removeMiner

-4 PreviewRedeem

isBeneficlaryactive decommissionagentc
¥)

-4 maxDeposit

migrateMinar
4, maxMint
_—
prepareMinarFarLiquidation
-4 maxWithdraw

Swrage Provider changeMinerworker

- agentBanaficiary

v

changeAgentBeneficiary

approveAgentBeneficiary

\ ’ -4, maxRedssm
reneficiaryWithdrawable w changeBenaficiary
harvestToRamp
-4 confirmPmEquity setInbefault
harvestFeas

sethefaultWindow setAdministration

refreshRoutes

setMaxFoolsFerAgentc

setMaxDTE withdraw

pause Oracle

rasuma

recoverfFIL
pullFunds
recoverERCZ0
pushFunds
GLIF controlled server that
simulates and signs the state of
the protocol post-interraction that
the borrowers would like to
perform.

jumpsStarctTotalBorrowed

jumpStarchAccountc

-
y
o
U]

jumpStarcAccount

L v
l setMinimumLiquidicy
~, # Account

- e o o e O O O O e O e e e mw ghutDown

P

setRateModule
Miners

transferfromFresitaks

vy

* PoolRegistry - A contract that keeps track of all the leasing pools. At launch there will be only one pool called InfinityPool. We
operated under assumption that given code base will only work with one leasing pool.

 InfinityPool - Main contract where most of the borrowing and leasing logic is contained.
e PoolToken:Share - Contract that will represent the share of the depositor in a particular pool.

e PoolToken:iou - Token that represents the debt of the pool in front of the depositor. You can also think of this as a ticket in a
withdraw queue.

https://consensys.net/diligence/audits/private/8319l5xpmai41q/structure.png

e Agent - A contract that will control the storage providers miners or any funds that can not be withdrawn. All the actions that
the storage providers would like to perform will be done via the Agent contract.

e Account - A new struct that is created every time a lessor’s Agent opens a borrow position in a new pool.
e AgentPolice - Contract controlled by the GLIF team that allows them to take control over agents and perform liquidations.

e Centralized Oracle - A server that reports the signed on chain data to the Agent. This information is required to make sure
that Agent can not enter bad state such as over-collateralized state for example.

5 Findings
Each issue has an assigned severity:

e ([issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e mMedium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 InfinityPool contract authorization bypass attack ¢ Fixed

Resolution

Addressed by not allowing the vc.subject to be zero.

Description

An attacker could create their own credential and set the Agent ID to e, which would bypass the subjectisagentcalier modifier.
The attacker could use this attack to borrow funds from the pool, draining any available liquidity. For example, only an agent
should be able to borrow funds from the pool and call the borrow function:

code/src/Pool/InfinityPool.sol:L302-L325

function borrow(VerifiableCredential memory vc) external isOpen subjectIsAgentCaller(vc) {
if (vc.value < WAD) revert InvalidParams();

if (totalBorrowableAssets() < vc.value) revert InsufficientlLiquidity();
Account memory account = _getAccount(vc.subject);

if (account.principal == 0) {
uint256 currentEpoch = block.number;
account.startEpoch = currentEpoch;
account.epochsPaid currentEpoch;
GetRoute.agentPolice(router).addPoolToList(vc.subject, id);

account.principal += vc.value;
account.save(router, vc.subject, id);

totalBorrowed += vc.value;

emit Borrow(vc.subject, vc.value);

asset.transfer(msg.sender, vc.value);

The following modifier checks that the caller is an agent :

code/src/Pool/InfinityPool.sol:L96-L101

modifier subjectIsAgentCaller(VerifiableCredential memory vc) {
if (
GetRoute.agentFactory(router).agents(msg.sender) != vc.subject
) revert Unauthorized();

But if the caller is not an agent , the GetRoute.agentFactory(router).agents(msg.sender) Will return e . And if the vc.subject is also zero, the
check will be successful with any msg.sender . The attacker can also pass an arbitrary vc.value as the parameter and steal all the
funds from the pool.

Recommendation

Ensure only an agent can call borrow and pass the subjectisagentcaller modifier.

5.2 Agent Data Oracle signed credential front-running attack ¢zm v

Resolution

https://github.com/glif-confidential/pools/pull/445

Mitigated by allowing only the agent to request credentials.

Description

For almost every action as an agent , the owner of the agent is supposed to request signedcredential data that contains all the
relevant current info about the “off-chain” state of the agent . New credentials can only be requested when the old one for this
agent is used or expired. Anyone can request these credentials, containing all the data about the call. So if the attacker
consistently requests the credentials with the function and parameters that the actual agent wouldn’t want to call, the agent
won’t be able to generate the credentials that are needed.

Recommendation

Ensure an agent can always have new credentials that are needed. One solution would be to allow only an Agent’s owner to
request the credentials. The problem is that the beneficiary is also supposed to do that, but the beneficiary may also be a
contract.

5.3 Wrong accounting for totalBorrowed inthe InfinityPool.writeOff function czm vk

Resolution

Fixed.

Description
Here is a part of the 1nfinityPool.writeoff function:

code/src/Pool/InfinityPool.sol:L271-L287

uint256 lostAmt = principalOwed > recoveredFunds ? principalOwed - recoveredFunds : O;
uint256 totalOwed = interestPaid + principalOwed;
asset.transferFrom(

msg.sender,

address(this),
totalOwed > recoveredFunds ? recoveredFunds : totalOwed

)
totalBorrowed -= lostAmt;

account.principal = lostAmt;

account.save(router, agentID, id);

The totalBorrowed is decreased by the 1ostamt value. Instead, it should be decreased by the original account.principal value to
acknowledge the loss.

5.4 Wrong accounting for totalBorrowed inthe InfinityPool.pay function gm (Ve

Resolution

Addressed as recommended in two pull rquests: 1, 2.

Description

If the Agent pays more than the current interest debt, the remaining payment will be accounted as repayment of the principal
debt:

code/src/Pool/InfinityPool.sol:L382-L401

principalPaid = vc.value - interestOwed;

feeBasis = interestOwed;

totalBorrowed -= (principalPaid > totalBorrowed) ? @ : principalPaid;

if (principalPaid >= account.principal) {
GetRoute.agentPolice(router).removePoolFromList(vc.subject, id);
refund = principalPaid - account.principal;

account.reset();
} else {

account.principal -= principalPaid;

account.epochsPaid = block.number;

https://github.com/glif-confidential/pools/pull/464
https://github.com/glif-confidential/pools/pull/440/files
https://github.com/glif-confidential/pools/pull/441/files
https://github.com/glif-confidential/pools/pull/496/files

Let’s focus on the totalBorrowed changes:

code/src/Pool/InfinityPool.sol:L387

totalBorrowed -= (principalPaid > totalBorrowed) ? @ : principalPaid;

This value is supposed to be decreased by the principal that is repaid. So there are 2 mistakes in the calculation:

e Should be totalBorrowed instead of o .

e The principalPaid cannot be larger than the account.principal in that calculation.

5.5 The beneficiaryWithdrawable function can be called by anyone m e

Resolution

Fixed by removing beneficiary logic completely.

Description
The beneficiaryWithdrawable function is supposed to be called by the Agent when a beneficiary is trying to withdraw funds:

code/src/Agent/AgentPolice.sol:L320-L341

function beneficiaryWithdrawable(
address recipient,
address sender,
uint256 agentID,
uint256 proposedAmount
) external returns (
uint256 amount

) A
AgentBeneficiary memory beneficiary = _agentBeneficiaries[agentID];
address benneficiaryAddress = beneficiary.active.beneficiary;

if(
I (benneficiaryAddress == sender || (IAuth(msg.sender).owner() == sender && recipient == benneficiaryAddress))) {
revert Unauthorized();

}
(

beneficiary,

amount
) = beneficiary.withdraw(proposedAmount);
_agentBeneficiaries[agentID] = beneficiary;

}

This function reduces the quota that is supposed to be transferred during the withdraw call:

code/src/Agent/Agent.sol:L343-L352

sendAmount = agentPolice.beneficiaryWithdrawable(receiver, msg.sender, id, sendAmount);

}

else if (msg.sender !'= owner()) {
revert Unauthorized();

}

_poolFundsInFIL (sendAmount);

payable(receiver).sendValue(sendAmount);

The issue is that anyone can call this function directly, and the quota will be reduced without funds being transferred.

Recommendation

Ensure only the Agent can call this function.

5.6 An Agent can borrow even with existing debt in interest payments wedum [VFe

Resolution

Mitigated by adding a limit to the remaining interest debt when borrowing. So an agent should have an interest debt that is
no larger than 1 day.

Description
To borrow funds, an agent has to call the borrow function of the pool:

code/src/Pool/InfinityPool.sol:L302-L325

https://github.com/glif-confidential/pools/pull/468/files
https://github.com/glif-confidential/pools/pull/482

function borrow(VerifiableCredential memory vc) external isOpen subjectIsAgentCaller(vc) {
// 1e18 => 1 FIL, can't borrow less than 1 FIL
if (vc.value < WAD) revert InvalidParams();
// can't borrow more than the pool has
if (totalBorrowableAssets() < vc.value) revert InsufficientlLiquidity();

Account memory account = _getAccount(vc.subject);
// fresh account, set start epoch and epochsPaid to beginning of current window
if (account.principal == 0) {

uint256 currentEpoch = block.number;

account.startEpoch = currentEpoch;

account.epochsPaid = currentEpoch;
GetRoute.agentPolice(router).addPoolTolList(vc.subject, id);

account.principal += vc.value;
account.save(router, vc.subject, id);
totalBorrowed += vc.value;

emit Borrow(vc.subject, vc.value);

// interact - here ‘msg.sender’ must be the Agent bc of the “subjectIsAgentCaller modifier
asset.transfer(msg.sender, vc.value);

Let’s assume that the agent already had some funds borrowed. During this function execution, the current debt status is not
checked. The principal debt increases after borrowing, but account.epochspaid remains the same. So the pending debt will instantly
increase as if the borrowing happened on account.epochsPaid .

Recommendation

Ensure the debt is paid when borrowing more funds.

5.7 The AgentPolice.distributeliquidatedFunds() function can have undistributed residual
fundS Medium v Fixed

Resolution

Mitigated by returning the excess funds in wri1 to the agent 's owner. The only trick here is that the agent ‘s owner should be
able to manage these funds.

Description

When an Agent is liquidated, the liquidator (owner of the protocol) is supposed to try to redeem as many funds as possible and
re-distribute them to the pools:

code/src/Agent/AgentPolice.sol:L185-L191

function distributelLiquidatedFunds(uint256 agentID, uint256 amount) external {
if (!liquidated[agentID]) revert Unauthorized();

// transfer the assets into the pool
GetRoute.wFIL(router).transferFrom(msg.sender, address(this), amount);
_writeOffPools(agentID, amount);

}

The problem is that in the pool, it's accounted that the amount of funds can be larger than the debt. In that case, the pool won't
transfer more funds than the pool needs:

code/src/Pool/InfinityPool.sol:L275-L289

uint256 totalOwed = interestPaid + principalOwed;

asset.transferFrom(
msg.sender,
address(this),
totalOwed > recoveredFunds ? recoveredFunds : totalOwed

IE

// write off only what we lost

totalBorrowed -= lostAmt;

// set the account with the funds the pool lost
account.principal = lostAmt;

account.save(router, agentID, id);

emit WriteOff(agentID, recoveredFunds, lostAmt, interestPaid);

If that happens, the remaining funds will be stuck in the agentPolice contract.

Recommendation

Return the residual funds to the Agent’s owner or process them in some way so they are not lost.

5.8 An Agent can be upgraded even if there is no new implementation wedum W

Resolution

https://github.com/glif-confidential/pools/pull/444/files

Mitigated by introducing a new version control mechanism. This solution also adds centralized power. The owner can create
a new deployer with an arbitrary (even lower) version number, while agents can only upgrade to a higher version. Also,
agents are forced to upgrade to a new version in another pull request.

Description
Agents can be upgraded to a new implementation, and only the Agent’s owner can call the upgrade function:

code/src/Agent/AgentFactory.sol:L51-L72

function upgradeAgent(
address agent
) external returns (address newAgent) {
IAgent oldAgent = IAgent(agent);
address owner = TAuth(address(oldAgent)).owner();
uint256 agentId = agents[agent];
// only the Agent's owner can upgrade, and only a registered agent can be upgraded
if (owner != msg.sender || agentId == @) revert Unauthorized();
// deploy a new instance of Agent with the same ID and auth
newAgent = GetRoute.agentDeployer(router).deploy(
router,
agentId,
owner,
TAuth(address(oldAgent)).operator()
Ik
// Register the new agent and unregister the old agent
agents[newAgent] = agentld;
// transfer funds from old agent to new agent and mark old agent as decommissioning
oldAgent.decommissionAgent(newAgent) ;
// delete the old agent from the registry
agents[agent] = 0;

The issue is that the owner can trigger the upgrade even if no new implementation exists. Multiple possible problems derive from

e Upgrading to the current implementation of the Agent will break the logic because the current version is not calling the
migrateMiner function, so all the miners will stay with the old Agent, and their funds will be lost.

e The owner can accidentally trigger multiple upgrades simultaneously, leading to a loss of funds
(https://github.com/ConsenSysDiligence/glif-audit-2023-04/issues/2).

The owner also has no control over the new version of the Agent. To increase decentralization, it’s better to pass the deployer’s
address as a parameter additionally.

Recommendation

Ensure the upgrades can only happen when there is a new version of an Agent, and the owner controls this version.

5.9 Potential re-entrancy issues when upgrading the contracts g Ve

Resolution

The issue is mitigated by removing the old agent before the potential re-entrancy.

Description

The protocol doesn’t have any built-in re-entrancy protection mechanisms. That mainly explains by using the wriL token, which is
not supposed to give that opportunity. And also by carefully using r1L transfers.

However, there are some places in the code where things may go wrong in the future. For example, when upgrading an agent :

code/src/Agent/AgentFactory.sol:L51-L72

function upgradeAgent(
address agent
) external returns (address newAgent) {
IAgent oldAgent = IAgent(agent);
address owner = IAuth(address(oldAgent)).owner();
uint256 agentId = agents[agent];
// only the Agent's owner can upgrade, and only a registered agent can be upgraded
if (owner != msg.sender || agentId == @) revert Unauthorized();
// deploy a new instance of Agent with the same ID and auth
newAgent = GetRoute.agentDeployer(router).deploy(
router,
agentId,
owner,
TAuth(address(oldAgent)) .operator()
ik
// Register the new agent and unregister the old agent
agents[newAgent] = agentld;
// transfer funds from old agent to new agent and mark old agent as decommissioning
oldAgent.decommissionAgent(newAgent) ;
// delete the old agent from the registry
agents[agent] = 0;

Here, we see the oldAgent.decommissionAgent(newaAgent); call happens before the oidagent is deleted. Inside this function, we see:

https://github.com/glif-confidential/pools/pull/484/files
https://github.com/glif-confidential/pools/pull/485/files.
https://github.com/ConsenSysDiligence/glif-audit-2023-04/issues/2)
https://github.com/glif-confidential/pools/pull/469

code/src/Agent/Agent.sol:L200-L212

function decommissionAgent(address _newAgent) external {
AuthController.onlyAgentFactory(router, msg.sender);
if(IAgent(_newAgent).id() != id) revert Unauthorized();

newAgent = _newAgent;
uint256 _liquidAssets = liquidAssets();

_poolFundsInFIL(_liquidAssets);

payable(_newAgent).sendValue(_liquidAssets);

Here, the FIL is transferred to a new contract which is currently unimplemented and unknown. Potentially, the fallback function of
this contract could trigger a re-entrancy attack. If that’s the case, during the execution of this function, there will be two
contracts that are active agents with the same ID, and the attacker can try to use that maliciously.

Recommendation

Be very cautious with further implementations of agents and pools. Also, consider using reentrancy protection in public
functions.

5.10 InfinityPool is subject to a donation with inflation attack if emtied. grm (Ve

Resolution

this issue will not be fixed in the current version of the contracts since some of the shares were already minted. The next
iteration of the pool will have a more generic fix to this issue.

Description

Since 1InfinityPool is an implementation of the ERC4626 vault, it is too susceptible to inflation attacks. An attacker could front-run
the first deposit and inflate the share price to an extent where the following deposit will be less than the value of 1 wei of share
resulting in O shares minted. The attacker could conduct the inflation by means of self-destructing of another contract. In the
case of GLIF this attack is less likely on the first pool since GLIF team accepts predeposits so some amount of shares was already
minted. We do suggest fixing this issue before the next pool is deployed and no pre-stake is generated.

Examples

code/src/Pool/InfinityPool.sol:L491-L516

function convertToShares(uint256 assets) public view returns (uint256) {
uint256 supply = liquidStakingToken.totalSupply();

return supply == @ ? assets : assets * supply / totalAssets();

function convertToAssets(uint256 shares) public view returns (uint256) {
uint256 supply = liquidStakingToken.totalSupply();

return supply == @ ? shares : shares * totalAssets() / supply;

Recommendation

Since the pool does not need to accept donations, the easiest way to handle this case is to use virtual price, where the balance of

the contract is duplicated in a separate variable.

511 MaxWithdraw should potentially account for the funds available in the ramp. crm (v

Resolution

Partially fixed in https://github.com/glif-confidential/pools/issues/462 but the ramp balance is still not accounted for.

Description

Since 1nfinityPool is ERC4626 it should also support the maxwithdraw method. According to the EIP it should include any
withdrawal limitation that the participant could encounter. At the moment the wmaxwithdraw function returns the maximum amount

https://github.com/glif-confidential/pools/issues/462

of 10U tokens rather than WFIL. Since IOU token is not the asset token of the vault, this behavior is not ideal.

Examples

code/src/Pool/InfinityPool.sol:L569-L571

function maxWithdraw(address owner) public view returns (uint256) {
return convertToAssets(liquidStakingToken.balanceOf (owner));

}

Recommendation

We suggest considering returning the maximum amount of WFIL withdrawal which should account for Ramp balance.

5.12 The upgradeability of MinerRegistry, AgentPolice, and Agent is overcomplicated and has a
hight chance of errors. ™ acknowtedged

Description

During the engagement, we have identified a few places that signify that the agent , MinerRegistry and agentPolice can be
upgraded, for example:

e Ability to migrate the miner from one version of the Agent to another inside the migrateMiner .
e Ability to refreshroutes that would update the agentPolice and minerregistry addresses for a given Agent.

e Ability to decommission pool. We believe that this functionality is present it is not very well thought through. For example, both
MinerRegistry and AgentPolice are not upgradable but have mappings inside of them.

code/src/Agent/AgentPolice.sol:L51-L60

mapping(uint256 => bool) public liquidated;
mapping(uint256 => uint256([]) private _poolIDs;
mapping(bytes32 => uint256) private _credentialUseBlock;

mapping(uint256 => AgentBeneficiary) private _agentBeneficiaries;

code/src/Agent/MinerRegistry.sol:L18-L20

mapping(bytes32 => bool) private _minerRegistered;

mapping(uint256 => uint64[]) private _minersByAgent;
That means that any time these contracts would need to be upgraded, the contents of those mappings will need to be somehow

recreated in the new contract. That is not trivial since it is not easy to obtain all values of a mapping. This will also require an
additional protocol-controlled setter ala kickstart mapping functions that are not ideal.

In the case of agent if the contract was upgradable there would be no need for a process of migrating miners that can be tedious
and opens possibilities for errors. Since protocol has a lot of centralization and trust assumptions already, having upgradability
will not contribute to it a lot.

We also believe that during the upgrade of the pool, the PoolToken will stay the same in the new pool. That means that the
minting and burning permissions of the share tokens have to be carefully updated or checked in a manner that does not require
the address of the pool to be constant. Since we did not have access to this file, we can not check if that is done correctly.

Recommendation

Consider using upgradable contracts or have a solid upgrade plan that is well-tested before an emergency situation occurs.

5.13 Mint function in the Infinity pool will emit the incorrect value. crm Vrie

Resolution

Fixed by emitting the right value.

Description

In the 1nifinityrool file the mint function recomputes the amount of the assets before emitting the event. While this is fine in a lot
of cases, that will not always be true. The result of previewmint and converttoassets Will only be equal while the totalassets and
totalsupply are equal. For example, this assumption will break after the first liquidation.

Examples

code/src/Pool/InfinityPool.sol:L449-L457

https://github.com/glif-confidential/pools/pull/459/files

function mint(uint256 shares, address receiver) public isOpen returns (uint256 assets) {
if(shares == @) revert InvalidParams();

assets = previewMint(shares);
asset.transferFrom(msg.sender, address(this), assets);
liquidStakingToken.mint(receiver, shares);

assets = convertToAssets(shares);
emit Deposit(msg.sender, receiver, assets, shares);

Recommendation

Use the assets value computed by the previewmint wWhen emitting the event.

5.14 Incorrect Operator Used ¢ v

Resolution

Fixed.

Description

Minor typo in the 1nfinitypool Where the -= should be replaced with - .

Examples

code/src/Pool/InfinityPool.sol:L200

return balance -= feesCollected;

5.15 Potential overpayment due to rounding imprecision gz wonrix

Resolution

The issue is acknowledged and the potential loss is considered tolerable.

Description

Inside the 1nifintyPool the pay function might accept unaccounted files. Imagine a situation where an Agent is trying to repay
only the fees portion of the debt. In that case, the following branch will be executed:

code/src/Pool/InfinityPool.sol:L373-L381

if (vc.value <= interestOwed) {

uint256 epochsForward = vc.value.divWadDown(interestPerEpoch);
account.epochsPaid += epochsForward;

feeBasis = vc.value;
} else {

The issue is if the value does not divide by the interestrerepoch exactly, any remainder will remain in the InfinityPool.

code/src/Pool/InfinityPool.sol:L376

uint256 epochsForward = vc.value.divWadDown(interestPerEpoch);

Recommendation

Since the remainder will most likely not be too large this is not critical, but ideally, those remaining funds would be included in
the refund variable.

516 jumpStartAccount should be subject to the same approval checks as regular borrow. ¢zm

v Fixed

Resolution

Will not be fixed due to the complexity of the fix which will require passing verified credentials to be executed.

Description
InfinityPool contract has the ability to kick start an account that will have a debt position in this pool.
Examples

code/src/Pool/InfinityPool.sol:L673-L689

https://github.com/glif-confidential/pools/pull/470/files

function jumpStartAccount(address receiver, uint256 agentID, uint256 accountPrincipal) external onlyOwner {

Account memory account = _getAccount(agentID);
// if the account is already initialized, revert
if (account.principal != @) revert InvalidState();

// create the account

account.principal = accountPrincipal;

account.startEpoch block.number;

account.epochsPaid block.number;

// save the account

account.save(router, agentID, id);

// add the pool to the agent's list of borrowed pools
GetRoute.agentPolice(router).addPoolTolList(agentID, id);

// mint the iFIL to the receiver, using principal as the deposit amount
liquidStakingToken.mint(receiver, convertToShares(accountPrincipal));
// account for the new principal in the total borrowed of the pool
totalBorrowed += accountPrincipal;

Recommendation

We suggest that this action is subject to the same rules as the standard borrow action. Thus checks on DTE, LTV and DTI should
be done if possible.

517 No Miner migration is happening in the current implementation of the Agent = acnowiedged

Description

All miners should be transferred from the old Agent to a new one when upgrading an Agent. To do so, the new Agent is supposed
to call the migrateminer function for every miner:

code/src/Agent/Agent.sol:L219-L235

function migrateMiner (uint64 miner) external {

if (newAgent !'= msg.sender) revert Unauthorized();

uint256 newId = IAgent(newAgent).id();

if (
// first check to make sure the agentFactory knows about this "agent"”
GetRoute.agentFactory(router).agents(newAgent) != newld ||
// then make sure this is the same agent, just upgraded
newId != id ||
// check to ensure this miner was registered to the original agent
IminerRegistry.minerRegistered(id, miner)

) revert Unauthorized();

// propose an ownership change (must be accepted in v2 agent)
miner.changeOwnerAddress(newAgent) ;

emit MigrateMiner(msg.sender, newAgent, miner);

The problem is that this function is not called in the current Agent implementation. Since it’s just the first version of an Agent
contract, it’s not a big issue. There is only one edge case where this may be a vulnerability. That may happen if the owner of an
Agent decides to upgrade the contract to the same version. It is possible to do, and in that case, the miners’ funds will be lost.

Recommendation

It's important to remember to call migrateminer in a new version and not allow upgrading to the same implementation.

Appendix 1 - Files in Scope

This audit covered the following files:

File

code/src/Router/GetRoute.sol
code/src/Router/Router.sol
code/src/Credentials/CredParser.sol
code/src/Pool/RateModule.sol
code/src/Pool/InfinityPool.sol
code/src/Pool/Account.sol
code/src/Pool/PoolRegistry.sol
code/src/OffRamp/OffRamp.sol
code/src/Ping.sol
code/src/Agent/AgentDeployer.sol
code/src/Agent/AgentFactory.sol
code/src/Agent/AgentPolice.sol
code/src/Agent/MinerRegistry.sol
code/src/Agent/Agent.sol
code/src/Constants/Epochs.sol

code/src/Constants/Routes.sol

SHA-1 hash

6daec127e02969538f425c58e6ca9ecef9bc4dbb
0685f3bf844c53bb0e659d97863776cd93232ab8
b2a63105b1e9d661191e0c66c9edca7571bbeb88
9b1440a9a162e83a2842592d6396d27c14c03f5d
5b0774d40a66d267cd61a4c37c66039c7b7d0f5b
51dceec029f4cff019324a24af2e601754aclade
cdddeadd14f0a06789574834866b1f9fee98c3d3
762ffaf1e056971cd6ec28e20034f9d26ada7d14
722e3a96f7bd2c95a5222c6d71a1e3e1805849a2
5955c1bafld4a4a4033af6f6aef4d7d9e8aac22a
3f6409e8539aea04a3470892d8e6ebe565¢c9cfd8
d97389ef65f7454b2f07f55977b97a127ea9ceOb
2694498172c5bf7437b15639¢c6a8¢117¢5721795
60615e447a530d7¢75e00ed6555b49a1cc2d8067
18a0ec65da645d7d05815d53e8aace210b4131a0

8048a5a27d3c15¢c7¢c900a460ae7679df1blclefe

File
code/src/Auth/Operatable.sol
code/src/VCVerifier/VCVerifier.sol
code/src/Auth/AuthController.sol
code/src/Auth/Ownable.sol
code/src/Types/Interfaces/IRouter.sol
code/src/Types/Interfaces/IPoolDeployer.sol
code/src/Types/Interfaces/IERC4626.sol
code/src/Types/Interfaces/IPoolToken.sol
code/src/Types/Interfaces/IWFIL.sol
code/src/Types/Interfaces/IPool.sol
code/src/Types/Interfaces/IOffRamp.sol
code/src/Types/Interfaces/IRateModule.sol
code/src/Types/Interfaces/IMinerRegistry.sol
code/src/Types/Interfaces/IAuth.sol
code/src/Types/Interfaces/IAgentFactory.sol
code/src/Types/Interfaces/IVCVerifier.sol
code/src/Types/Interfaces/lInfinityPool.sol
code/src/Types/Interfaces/IPoolTokenPlus.sol
code/src/Types/Interfaces/IAgent.sol
code/src/Types/Interfaces/IPoolRegistry.sol
code/src/Types/Interfaces/IAgentPolice.sol
code/src/Types/Interfaces/IAgentDeployer.sol
code/src/Types/Interfaces/IERC20.sol
code/src/Types/Interfaces/ICredentials.sol
code/src/Types/Structs/Credentials.sol
code/src/Types/Structs/Account.sol

code/src/Types/Structs/Beneficiary.sol

SHA-1 hash
bc7dd5¢c1e38d44a00edeabeecd03d6782681dcc9
779b4b371db9eaea011fdfc76c372e3f4b119a39
16832e4269494bf27e76f3378ed600554a042ea0
5d19f86e7d61d2ef5372000a39bcabec3c4cfebfe
4b7f9c9c3ba75a492826e4bdd3892c4d706e93ad
621e6fbc2784b5c62b415b953d9a7cde7b983462
d0e4c0bd84830bebebfb5edfc80e7c986063a850
7947c77739d58e18d3951b91489ee990f20770ab
5f1126c9c67d9b37911e87¢89f1960b55e35e81b
a3a134716825a01c6b7a763096cb6c7f0484d763
8dcfeef23ec2e18bda2cb493a2977b3c6f63afb2
fb9b4c66c875c857€a8463df57f1db8b0df4ac55
fb68f01e13eefb983ce11f563346347ca227fbal
eO1deelcbc4b6f06138cb7b0cbea8863304eb82f
4f1043dad394f463d83f677dfd8bb1f7fc18407d
e0cal19720aba9706ba1b34838d09424c5bd4ead4
edab51ffald28a1a74385919e812f78510b574b56
95bf761a0193943f86c4039¢1833c096064cd52¢c
d490fa07cb644d88dbb6df9538a42f0256360e6d
bc9507b8cac85e1b092e1a98e755942b5f5280ab
7¢cf78393300ccef96c3bbb74dcd22aab5b3a62314
0e01ccb2420db5f934870d36900c101f666c9cd1
3f8f9d66083281998547ead9e2a599f5e3d049f8
bdda5c48fcbe34ba8d4ab64e87bfaf51873d726e
bdfaldcec12d187719fe4b02bc4ad2e713f2ef6d
2bef81b3f52d6f91ef02a8373ea015ca4d33249a

36635042594c7b8b73a80dbabaecd63c7bf423d7

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

rowereo v Y CONSENSYS

https://consensys.net/

