

Pages 2 / 23 Lunaray Blockchain Security

Table of Contents

1. Overview .. 4

2. Background .. 5

2.1 Project Description .. 5

2.2 Audit Range ... 6

3. Project contract details .. 7

3.1 Contract Overview ... 7

3.2 Contract details ... 8

4. Audit details ... 9

4.1 Findings Summary ... 9

4.2 Risk distribution .. 10

4.3 Risk audit details ... 11

4.3.1 Logic Design Flaw ... 11

4.3.2 Reentry Attack .. 11

4.3.3 Variables are updated ... 12

4.3.4 Floating Point and Numeric Precision .. 12

4.3.5 Default Visibility .. 13

4.3.6 tx.origin authentication .. 13

4.3.7 Faulty constructor .. 14

4.3.8 Unverified return value .. 14

4.3.9 Insecure random numbers .. 15

4.3.10 Timestamp Dependency .. 15

4.3.11 Transaction order dependency .. 16

4.3.12 Delegatecall ... 16

4.3.13 Call .. 17

4.3.14 Denial of Service ... 17

4.3.15 Fake recharge vulnerability ... 18

4.3.16 Short Address Attack Vulnerability .. 18

4.3.17 Uninitialized storage pointer ... 19

4.3.18 Frozen Account bypass .. 19

Pages 3 / 23 Lunaray Blockchain Security

4.3.19 Uninitialized ... 19

4.3.20 Integer Overflow ... 20

5. Security Audit Tool ... 21

Pages 4 / 23 Lunaray Blockchain Security

1. Overview

On Apr 15, 2023, the security team of Lunaray Technology received the security audit

request of the ROLLUP.FINANCE project. The team completed the audit of the

ROLLUP.FINANCE smart contract on Apr 24, 2023. During the audit process, the security

audit experts of Lunaray Technology and the ROLLUP.FINANCE project interface

Personnel communicate and maintain symmetry of information, conduct security audits

under controllable operational risks, and avoid risks to project generation and

operations during the testing process.

Through communicat and feedback with ROLLUP.FINANCE project party, it is confirmed

that the loopholes and risks found in the audit process have been repaired or within the

acceptable range. The result of this ROLLUP.FINANCE smart contract security audit:

Passed

Audit Report Hash:

D08B0A0C5601A013BF5C4BB83E87C594E1A06F8A55D5ABAC26463FD262B3AFC5

Pages 5 / 23 Lunaray Blockchain Security

2. Background

2.1 Project Description

Project name Rollup.Finance

Contract type Spot and perpetual social trading

Code language Solidity

Public chain zkSync

Project website https://rollup.finance

Contract file Timelock.sol

Brief introduction Rollup.Finance is a decentralized perpetual contract protocol
based on zkSync. It offers trading in multiple derivative
contracts, promises high returns and provides a liquidity
solution for pledged notes . It aims to create the largest multi-
decentralized derivatives trading platform, supporting multiple
currencies, supporting zero slippage, and addressing capital
utilization efficiency and liquidity issues.

Pages 6 / 23 Lunaray Blockchain Security

2.2 Audit Range

Smart contract file name and corresponding SHA256：

Name SHA256

Timelock.sol
72BC51D13CEDCEC89F65E9BDE64F9D5C92730E712E58404
6245937E597320C0E

Pages 7 / 23 Lunaray Blockchain Security

3. Project contract details

3.1 Contract Overview

Timelock Contract

The contract is a time-locked contract whose main function is to delay a trade for a
period of time before it is executed. The contract contains functions to set delay
time, set custom delay time, queue transactions, cancel transactions and execute
transactions. The contract initialization requires passing in the administrator
address and delay time, and the administrator can set a new administrator address
and a new delay time. If the transaction to be executed (function signature) requires
a specific delay time, this can be achieved by setting a custom delay time. When
queuing a transaction, the target address, transaction value, function signature,
transaction data and execution time need to be passed in. If the transaction requires
a custom delay time, the custom delay time is used, otherwise the default delay time
is used. Transactions that are already in the queue can be cancelled, and
transactions that have exceeded the delay time can be executed. In addition, the
contract provides the ability to execute transactions directly, but requires the
corresponding transaction signature to be configured with a delay time of 0.

Pages 8 / 23 Lunaray Blockchain Security

3.2 Contract details

Timelock Contract

Name Parameter Attributes

setDelay uint _delay public

setCustomDelayOpera
tion

address _target string _signature uint256
_delay

external

acceptAdmin none public

setPendingAdmin address pending_admin public

queueTransaction
address target uint value string signature
bytes data uint eta

public

cancelTransaction
address target uint value string signature
bytes data uint eta

public

executeTransaction
address target uint value string signature
bytes data uint eta

public

executeTransactionDi
rectly

address target uint value string signature
bytes data

public

getBlockTimestamp none internal

Pages 9 / 23 Lunaray Blockchain Security

4. Audit details

4.1 Findings Summary

Severity Found Resolved Acknowledged

⚫ High 0 0 0

⚫ Medium 0 0 0

⚫ Low 0 0 0

⚫ Info 0 0 0

Pages 10 / 23 Lunaray Blockchain Security

4.2 Risk distribution

Name Risk level Repair status

Logical Design Flaw No normal

Reentry attack No normal

Variables are updated No normal

Floating Point and Numeric Precision No normal

Default visibility No normal

tx.origin authentication No normal

Faulty constructor No normal

Unverified return value No normal

Insecure random numbers No normal

Timestamp Dependent No normal

Transaction order dependency No normal

Delegatecall No normal

Call No normal

Denial of Service No normal

Fake recharge vulnerability No normal

Short address attack Vulnerability No normal

Uninitialized storage pointer No normal

Frozen account bypass No normal

Uninitialized No normal

Integer Overflow No normal

Pages 11 / 23 Lunaray Blockchain Security

4.3 Risk audit details

4.3.1 Logic Design Flaw

• Risk Description

In smart contracts, developers design special features for their contracts intended to

stabilize the market value of tokens or the life of the project and increase the highlight

of the project, however, the more complex the system, the more likely it is to have the

possibility of errors. It is in these logic and functions that a minor mistake can lead to

serious depasstions from the whole logic and expectations, leaving fatal hidden dangers,

such as errors in logic judgment, functional implementation and design and so on.

• Audit Results : Passed

4.3.2 Reentry Attack

• Risk Description

An attacker constructs a contract containing malicious code at an external address in the

Fallback function When the contract sends tokens to this address, it will call the

malicious code. The call.value() function in Solidity will consume all the gas he receives

when it is used to send tokens, so a re-entry attack will occur when the call to the

call.value() function to send tokens occurs before the actual reduction of the sender’s

account balance. The re-entry vulnerability led to the famous The DAO attack.

• Audit Results : Passed

https://solidity.readthedocs.io/en/latest/contracts.html?highlight=fallback#fallback-function

Pages 12 / 23 Lunaray Blockchain Security

4.3.3 Variables are updated

• Risk description

When there is a contract logic to obtain rewards or transfer funds, the coder mistakenly

updates the value of the variable that sends the funds, so that the user can use the

value of the variable that is not updated to obtain funds, thus affecting the normal

operation of the project.

• Audit Results : Passed

4.3.4 Floating Point and Numeric Precision

• Risk Description

In Solidity, the floating-point type is not supported, and the fixed-length floating-point

type is not fully supported. The result of the division operation will be rounded off, and

if there is a decimal number, the part after the decimal point will be discarded and only

the integer part will be taken, for example, dividing 5 pass 2 directly will result in 2. If

the result of the operation is less than 1 in the token operation, for example, 4.9 tokens

will be approximately equal to 4, bringing a certain degree of The tokens are not only

the tokens of the same size, but also the tokens of the same size. Due to the economic

properties of tokens, the loss of precision is equivalent to the loss of assets, so this is a

cumulative problem in tokens that are frequently traded.

• Audit Results : Passed

Pages 13 / 23 Lunaray Blockchain Security

4.3.5 Default Visibility

• Risk description

In Solidity, the visibility of contract functions is public pass default. therefore, functions

that do not specify any visibility can be called externally pass the user. This can lead to

serious vulnerabilities when developers incorrectly ignore visibility specifiers for

functions that should be private, or visibility specifiers that can only be called from

within the contract itself. One of the first hacks on Parity’s multi-signature wallet was

the failure to set the visibility of a function, which defaults to public, leading to the theft

of a large amount of money.

• Audit Results : Passed

4.3.6 tx.origin authentication

• Risk Description

tx.origin is a global variable in Solidity that traverses the entire call stack and returns the

address of the account that originally sent the call (or transaction). Using this variable

for authentication in a smart contract can make the contract vulnerable to phishing-like

attacks.

• Audit Results : Passed

Pages 14 / 23 Lunaray Blockchain Security

4.3.7 Faulty constructor

• Risk description

Prior to version 0.4.22 in solidity smart contracts, all contracts and constructors had the

same name. When writing a contract, if the constructor name and the contract name

are not the same, the contract will add a default constructor and the constructor you set

up will be treated as a normal function, resulting in your original contract settings not

being executed as expected, which can lead to terrible consequences, especially if the

constructor is performing a privileged operation.

• Audit Results : Passed

4.3.8 Unverified return value

• Risk description

Three methods exist in Solidity for sending tokens to an address: transfer(), send(),

call.value(). The difference between them is that the transfer function throws an

exception throw when sending fails, rolls back the transaction state, and costs 2300gas;

the send function returns false when sending fails and costs 2300gas; the call.value

method returns false when sending fails and costs all gas to call, which will lead to the

risk of reentrant attacks. If the send or call.value method is used in the contract code to

send tokens without checking the return value of the method, if an error occurs, the

contract will continue to execute the code later, which will lead to the thought result.

• Audit Results : Passed

Pages 15 / 23 Lunaray Blockchain Security

4.3.9 Insecure random numbers

• Risk Description

All transactions on the blockchain are deterministic state transition operations with no

uncertainty, which ultimately means that there is no source of entropy or randomness

within the blockchain ecosystem. Therefore, there is no random number function like

rand() in Solidity. Many developers use future block variables such as block hashes,

timestamps, block highs and lows or Gas caps to generate random numbers. These

quantities are controlled pass the miners who mine them and are therefore not truly

random, so using past or present block variables to generate random numbers could

lead to a destructive vulnerability.

• Audit Results : Passed

4.3.10 Timestamp Dependency

• Risk description

In blockchains, data block timestamps (block.timestamp) are used in a variety of

applications, such as functions for random numbers, locking funds for a period of time,

and conditional statements for various time-related state changes. Miners have the

ability to adjust the timestamp as needed, for example block.timestamp or the alias now

can be manipulated pass the miner. This can lead to serious vulnerabilities if the wrong

block timestamp is used in a smart contract. This may not be necessary if the contract is

not particularly concerned with miner manipulation of block timestamps, but care

should be taken when developing the contract.

• Audit Results : Passed

Pages 16 / 23 Lunaray Blockchain Security

4.3.11 Transaction order dependency

• Risk description

In a blockchain, the miner chooses which transactions from that pool will be included in

the block, which is usually determined pass the gasPrice transaction, and the miner will

choose the transaction with the highest transaction fee to pack into the block. Since the

information about the transactions in the block is publicly available, an attacker can

watch the transaction pool for transactions that may contain problematic solutions,

modify or revoke the attacker’s privileges or change the state of the contract to the

attacker’s detriment. The attacker can then take data from this transaction and create a

higher-level transaction gasPrice and include its transactions in a block before the

original, which will preempt the original transaction solution.

• Audit Results : Passed

4.3.12 Delegatecall

• Risk Description

In Solidity, the delegatecall function is the standard message call method, but the code

in the target address runs in the context of the calling contract, i.e., keeping msg.sender

and msg.value unchanged. This feature supports implementation libraries, where

developers can create reusable code for future contracts. The code in the library itself

can be secure and bug-free, but when run in another application’s environment, new

vulnerabilities may arise, so using the delegatecall function may lead to unexpected

code execution.

• Audit Results : Passed

Pages 17 / 23 Lunaray Blockchain Security

4.3.13 Call

• Risk Description

The call function is similar to the delegatecall function in that it is an underlying function

provided pass Solidity, a smart contract writing language, to interact with external

contracts or libraries, but when the call function method is used to handle an external

Standard Message Call to a contract, the code runs in the environment of the external

contract/function The call function is used to interact with an external contract or

library. The use of such functions requires a determination of the security of the call

parameters, and caution is recommended. An attacker could easily borrow the identity

of the current contract to perform other malicious operations, leading to serious

vulnerabilities.

• Audit Results : Passed

4.3.14 Denial of Service

• Risk Description

Denial of service attacks have a broad category of causes and are designed to keep the

user from making the contract work properly for a period of time or permanently in

certain situations, including malicious behavior while acting as the recipient of a

transaction, artificially increasing the gas required to compute a function causing gas

exhaustion (such as controlling the size of variables in a for loop), misuse of access

control to access the private component of the contract, in which the Owners with

privileges are modified, progress state based on external calls, use of obfuscation and

oversight, etc. can lead to denial of service attacks.

• Audit Results : Passed

Pages 18 / 23 Lunaray Blockchain Security

4.3.15 Fake recharge vulnerability

• Risk Description

The success or failure (true or false) status of a token transaction depends on whether

an exception is thrown during the execution of the transaction (e.g., using mechanisms

such as require/assert/revert/throw). When a user calls the transfer function of a token

contract to transfer funds, if the transfer function runs normally without throwing an

exception, the transaction will be successful or not, and the status of the transaction will

be true. When balances[msg.sender] < _value goes to the else logic and returns false, no

exception is thrown, but the transaction acknowledgement is successful, then we

believe that a mild if/else judgment is an undisciplined way of coding in sensitive

function scenarios like transfer, which will lead to Fake top-up vulnerability in

centralized exchanges, centralized wallets, and token contracts.

• Audit Results : Passed

4.3.16 Short Address Attack Vulnerability

• Risk Description

In Solidity smart contracts, when passing parameters to a smart contract, the

parameters are encoded according to the ABI specification. the EVM runs the attacker

to send encoded parameters that are shorter than the expected parameter length. For

example, when transferring money on an exchange or wallet, you need to send the

transfer address address and the transfer amount value. The attacker could send a 19-

passte address instead of the standard 20-passte address, in which case the EVM would

fill in the 0 at the end of the encoded parameter to make up the expected length, which

would result in an overflow of the final transfer amount parameter value, thus changing

the original transfer amount.

• Audit Results : Passed

Pages 19 / 23 Lunaray Blockchain Security

4.3.17 Uninitialized storage pointer

• Risk description

EVM uses both storage and memory to store variables. Local variables within functions

are stored in storage or memory pass default, depending on their type. uninitialized

local storage variables could point to other unexpected storage variables in the contract,

leading to intentional or unintentional vulnerabilities.

• Audit Results : Passed

4.3.18 Frozen Account bypass

• Risk Description

In the transfer operation code in the contract, detect the risk that the logical

functionality to check the freeze status of the transfer account exists in the contract

code and can be passpassed if the transfer account has been frozen.

• Audit Results : Passed

4.3.19 Uninitialized

• Risk description

The initialize function in the contract can be called pass another attacker before the

owner, thus initializing the administrator address.

• Audit Results : Passed

Pages 20 / 23 Lunaray Blockchain Security

4.3.20 Integer Overflow

• Risk Description

Integer overflows are generally classified as overflows and underflows. The types of

integer overflows that occur in smart contracts include three types: multiplicative

overflows, additive overflows, and subtractive overflows. In Solidity language, variables

support integer types in steps of 8, from uint8 to uint256, and int8 to int256, integers

specify fixed size data types and are unsigned, for example, a uint8 type , can only be

stored in the range 0 to 2^8-1, that is, [0,255] numbers, a uint256 type can only store

numbers in the range 0 to 2^256-1. This means that an integer variable can only have a

certain range of numbers represented, and cannot exceed this formulated range.

Exceeding the range of values expressed pass the variable type will result in an integer

overflow vulnerability.

• Audit Results : Passed

Pages 21 / 23 Lunaray Blockchain Security

5. Security Audit Tool

Tool name Tool Features

Oyente Can be used to detect common bugs in smart contracts

securify Common types of smart contracts that can be verified

MAIAN Multiple smart contract vulnerabilities can be found and classified

Lunaray Toolkit self-developed toolkit

Pages 22 / 23 Lunaray Blockchain Security

Disclaimer：

Lunaray Technology only issues a report and assumes corresponding responsibilities for

the facts that occurred or existed before the issuance of this report, Since the facts that

occurred after the issuance of the report cannot determine the security status of the

smart contract, it is not responsible for this.

Lunaray Technology conducts security audits on the security audit items in the project

agreement, and is not responsible for the project background and other circumstances,

The subsequent on-chain deployment and operation methods of the project party are

beyond the scope of this audit.

This report only conducts a security audit based on the information provided by the

information provider to Lunaray at the time the report is issued, If the information of

this project is concealed or the situation reflected is inconsistent with the actual

situation, Lunaray Technology shall not be liable for any losses and adverse effects

caused thereby.

There are risks in the market, and investment needs to be cautious. This report only

conducts security audits and results announcements on smart contract codes, and does

not make investment recommendations and basis.

