
Prepared for
Scallop Team
Scallop Labs

Prepared by
Junghoon Cho
Daniel Lu
Zellic

March 27, 2024

Scallop
Smart Contract Security Assessment



Scallop Smart Contract Security Assessment March 27, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Scallop 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Obligation-keymanagement allows admin to block liquidations 11

3.2. Whitelist functionality creates protocol risk 13

3.3. Insufficient controls on parameter changes 14

3.4. Ticket issuing is broken 16

3.5. Missing bounds on parameter-update delays 18

4. Discussion 18

4.1. Riskmanagement 19

Zellic © 2024 ← Back to Contents Page 2 of 22



Scallop Smart Contract Security Assessment March 27, 2024

4.2. Prevention of depositing borrowed coins is fragile 19

4.3. Limitations of the limiter 19

4.4. Code quality andmodule design 20

4.5. Test coverage 21

5. Assessment Results 21

5.1. Disclaimer 22

Zellic © 2024 ← Back to Contents Page 3 of 22



Scallop Smart Contract Security Assessment March 27, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 22

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


Scallop Smart Contract Security Assessment March 27, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Scallop Labs fromMarch 27th toApril 19th, 2024. During
this engagement, Zellic reviewed Scallop's code for security vulnerabilities, design issues, and
general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are there issues in protocol math or logic that lead to loss of funds?
• Do the changesmade after previous audits properly address the raised issues?
• Does the project have any centralization risks?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide. In particular, the unfinished nature of the flash-loan discount
tickets prevented us from fully assessing its impact on the project.

1.4. Results

During our assessment on the scoped Scallop modules, we discovered five findings. No critical
issueswere found. Twofindingswereofmedium impact, twowereof low impact, and the remaining
finding was informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Scallop Labs's
benefit in the Discussion section (4. ↗) at the end of the document.

Zellic © 2024 ← Back to Contents Page 5 of 22



Scallop Smart Contract Security Assessment March 27, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 2

■ Low 2

■ Informational 1

Zellic © 2024 ← Back to Contents Page 6 of 22



Scallop Smart Contract Security Assessment March 27, 2024

2. Introduction 2.1. About Scallop

Scallop Labs contributed the following description of Scallop:

Scallop is the pioneering Next Generation peer-to-peerMoneyMarket for the Sui ecosystem.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with themodules.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and

Zellic © 2024 ← Back to Contents Page 7 of 22



Scallop Smart Contract Security Assessment March 27, 2024

Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped modules itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 22



Scallop Smart Contract Security Assessment March 27, 2024

2.3. Scope

The engagement involved a review of the following targets:

ScallopModules

Repository https://github.com/scallop-io/sui-lending-protocol ↗

Version sui-lending-protocol: a0c2ffc9eadeae086df2da311ac358db92c22c1f

Programs • libs/coin_decimals_registry/sources/*.move
• libs/whitelist/sources/*.move
• libs/x/sources/*.move
• protocol/sources/*.move
• sui_x_oracle/pyth_rule/*.move
• sui_x_oracle/supra_rule/*.move
• sui_x_oracle/switchboard_rule/sources/*.move
• sui_x_oracle/x_oracle/sources/*.move

Type Move

Platform Sui

2.4. Project Overview

Zellic was contracted to perform a security assessment with two consultants for a total of 5.5
person-weeks. The assessment was conducted over the course of 3.5 calendar weeks.

Zellic © 2024 ← Back to Contents Page 9 of 22

https://github.com/scallop-io/sui-lending-protocol


Scallop Smart Contract Security Assessment March 27, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Junghoon Cho
Engineer
junghoon@zellic.io ↗

Daniel Lu
Engineer
daniel@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

March 27, 2024 Start of primary review period

April 19, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 22

mailto:chad@zellic.io
mailto:junghoon@zellic.io
mailto:daniel@zellic.io


Scallop Smart Contract Security Assessment March 27, 2024

3. Detailed Findings 3.1. Obligation-keymanagement allows admin to block liquidations

Target protocol::lock_obligation

Category Protocol Risks Severity High

Likelihood Low Impact Medium

Description

The protocol admin has the ability to manage obligation keys. With a key of a valid type, the owner
of an obligation can lock specific functionality, including liquidations. When this happens, the key is
dropped and its type name is saved in the obligation.

Since lockedandundercollateralizedobligationswouldotherwisebean issue, theprotocol provides
a force_unlock_unhealthy function that allows anyone—not just the obligation owner— to unlock
obligations when they are not sufficiently collateralized.

public fun force_unlock_unhealthy<T: drop>(
obligation: &mut Obligation,
market: &mut Market,
coin_decimals_registry: &CoinDecimalsRegistry,
x_oracle: &XOracle,
clock: &Clock,
key: T

)

This function checks that key is of the same typeas thewitnessoriginally used to lock theobligation.
It is dropped.

Impact

The locking mechanics pose some centralization risk because the protocol admin is able to create
obligations that cannot be unlocked — even when unhealthy. One way to accomplish this would be
to add a lock key (an admin ability) that only they can create. Then, if they lock obligations that they
create, those obligations have noway of being liquidated.

By creating unhealthy obligations, the adminmay be able to drain the protocol.

Recommendations

We recommend ensuring that unhealthy positions can always be liquidated.

Zellic © 2024 ← Back to Contents Page 11 of 22



Scallop Smart Contract Security Assessment March 27, 2024

Remediation

Scallop Labs acknowledged this risk, explaining that issuing allowlisted witnesses is the responsi-
bility of extensions under the protocol's own control.

Zellic © 2024 ← Back to Contents Page 12 of 22



Scallop Smart Contract Security Assessment March 27, 2024

3.2. Whitelist functionality creates protocol risk

Target user/

Category Protocol Risks Severity High

Likelihood Low Impact Medium

Description

The protocol admin has the ability to arbitrarily add and remove addresses from the whitelist. This
whitelist controls nearly all user interactions with the market; this includes deposits, withdrawals,
flash loans, minting, redeeming, liquidating, and so forth.

This means that users can be blocked from any action, including exiting the protocol.

Impact

First, this allows amalicious admin to prevent liquidations and possibly drain the protocol with their
own bad obligations — as described in the previous finding, this poses some centralization risk and
requires extra trust from the user.

Additionally, the protocol contains optional functionality for putting important parameter updates
behind time locks. This breaks that mitigation because it would allow a malicious admin to prevent
users from actually reacting to such changes during the time-lock period.

Recommendations

We recommend only checking the whitelist on select functionality, such as taking flash loans, bor-
rowing, andminting.

Remediation

Scallop Labs acknowledged this risk, explaining that it is no longer in use and should be limited.
Whether the feature will be entirely removed or retained for specific actions is under disussion.

Zellic © 2024 ← Back to Contents Page 13 of 22



Scallop Smart Contract Security Assessment March 27, 2024

3.3. Insufficient controls on parameter changes

Target protocol::app, proto-
col::interest_model, proto-
col::limiter, protocol::risk_model

Category Protocol Risks Severity Medium

Likelihood Low Impact Low

Description

The admin has the ability to update a number of protocol parameters. For example, each asset that
can be borrowed has an interest model. Each asset that can be used as collateral has a risk model.
Other parameters include fees for borrowing, fees for taking flash loans, and so on.

If the admin were able to arbitrarily change many of these parameters, it would both require un-
necessary trust from users and create additional risk in the case of key compromise. Hence, the
protocol does include some functionality for mitigating this issue; namely, many parameters have a
two-step update process that can enforce delays on updates. These delays can be lengthened (but
not decreased) by some admin functions, like extend_interest_model_change_delay.

One problem is that some essential parameters do not have proper bounds checks. For example,
the interest model of assets includes a revenue_factor parameter that decides what proportion of
interest accrued is taken out of the protocol as fees. But there are no checks that this parameter is
belowone. Although this parameter couldbegatedby the time locksmentionedabove, the required
delay for updates begins at zero.

Impact

Depending on the current protocol state — such as whether the parameter change delay has been
set — the admin may be able to drain protocol funds without warning. Even when these delays are
in place, the lack of bounds can result in accidental changes to protocol parameters that result in
economic issues.

Recommendations

We recommend adding a nonzero lower limit for parameter change delays tomake sure users have
time to react to changes. Additionally, we recommend adding assertions to constrain parameter
ranges when necessary.

Zellic © 2024 ← Back to Contents Page 14 of 22



Scallop Smart Contract Security Assessment March 27, 2024

Remediation

Scallop Labs acknowledged that assertions should be added, and explained that the time lock delay
is currently set to zero in case of urgent situations. They plan to incorporate the delay when they
havemore confidence in the stability of the protocol.

Zellic © 2024 ← Back to Contents Page 15 of 22



Scallop Smart Contract Security Assessment March 27, 2024

3.4. Ticket issuing is broken

Target protocol::ticket_issuer_policy

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

Theproject allowsusers toexercise tickets that providediscountsonflash-loanandborrowing fees.
However, the functionality in its current state does not work.

For example, tickets issued need to be in accord with the ticket-issuer policy, which dictates per-
missions for creating these discounts. But the object that holds this data is never created or shared,
and the functionality has not been integrated into the protocol.

Additionally, the logic for adding awitness type in protocol::ticket_issuer_policy is as follows.

public(friend) fun add_witness_type<Ticket, Witness: drop>(
ticket_issuer_policy: &mut TicketIssuerPolicy,

) {
let ticket_type = type_name::get<Ticket>();
let witness_type = type_name::get<Witness>();

if (table::contains(&ticket_issuer_policy.witness_types, ticket_type)) {
table::add(&mut ticket_issuer_policy.witness_types, ticket_type,

vec_set::singleton(witness_type));
} else {

let sets = table::borrow_mut(&mut ticket_issuer_policy.witness_types,
ticket_type);

vec_set::insert(sets, witness_type);
};

}

The branch on table::contains is flipped.

Impact

The ticketing functionality does not work.

Zellic © 2024 ← Back to Contents Page 16 of 22



Scallop Smart Contract Security Assessment March 27, 2024

Recommendations

We recommend adding the necessary functionality and flipping the branch in add_witness_type.

Remediation

Scallop Labs explained that this feature is still under development, and has not been deployed. It
has been replaced by a simpler referral system for borrowing fee discounts.

Zellic © 2024 ← Back to Contents Page 17 of 22



Scallop Smart Contract Security Assessment March 27, 2024

3.5. Missing bounds on parameter-update delays

Target protocol::app

Category Business Logic Severity Informational

Likelihood Low Impact Informational

Description

The protocol includes functionality to require delays for updating some important parameters. For
example, the following increases the delay for interest-model updates.

public fun extend_interest_model_change_delay(
admin_cap: &mut AdminCap,

delay: u64,
) {

admin_cap.interest_model_change_delay =
admin_cap.interest_model_change_delay + delay;

}

However, the protocol does not provide a way to decrease these delays.

Impact

This is risky because there are no upper bounds on these delays. If these are accidentally set too
high — or if intentional delay increases turn out to be too high — it could brick this functionality or
prevent the protocol admin from reacting to important changes.

Recommendations

We recommend adding an upper bound to these delays or a way to safely decrease them.

Remediation

Scallop Labs acknowledged this risk and plans to add an upper bound of 24 hours.

Zellic © 2024 ← Back to Contents Page 18 of 22



Scallop Smart Contract Security Assessment March 27, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Riskmanagement

The current version of the protocol supports a single shared market, allowing users to deposit col-
lateral and borrow any asset type. This structure allows a problem with one asset to jeopardize all
the funds in the protocol. Tomitigate this risk, wewould recommend supportingmultiple pools that
accept different collections of assets to be borrowed and used as collateral.

Scallop Labs explained that this change is already planned. We commend Scallop Labs for their
proactive approach to riskmanagement.

4.2. Prevention of depositing borrowed coins is fragile

In user/deposit_collateral.move, the deposit_collateral function includes a check that the
obligation does not have the coin borrowed. Symmetrically, it includes a checkwhile borrowing that
the coin is not deposited as collateral.

It is worth noting that this check is somewhat weak because it does not prevent users from effec-
tively taking the same position across different obligations.

4.3. Limitations of the limiter

The protocol::limiter module functions to mitigate security or economic issues by limiting the
amount of funds that can exit the protocol in a given period. The limiter for each asset type is pa-
rameterized by

1. the total duration of an outflow cycle (currently documented as 24 hours);

2. the duration of a segment within that cycle; and

3. the amount of the asset that can be borrowedwithin the cycle.

Then, theprotocolmaintainsa rollingwindowofsegments. Borrowing increases theoutflowwithina
segment, while liquidations and repayments decrease the outflowwithin a segment. If the previous
cycle containsmore than the permitted outflow, then borrowing is blocked.

Zellic © 2024 ← Back to Contents Page 19 of 22



Scallop Smart Contract Security Assessment March 27, 2024

Although this systemmaymitigate some attacks, there areways to reduce its effectiveness. For ex-
ample, anattackercouldgraduallyborrowfunds fromtheprotocolaheadof time. Then, if theyhavea
bug to exploit, they could perform the bad borrows in a single segmentwhile gradually repaying the
previously borrowed funds to keep their outflow low. This brings the debt in their previously opened
positions back down, so they can exit them normally at a later date.

Scallop Labs explained that deducting outflow after repayment is somewhat necessary to prevent
denial-of-service attacks by repeated borrowing and repaying. They acknowledged that the above
approach could circumvent the limiter to some degree.

4.4. Code quality andmodule design

Although the protocol code is good quality, there are somemoduleswritten in away that introduces
more maintenance risk. For example, the ac_table and wit_table libraries are used in a number
of modules to handle access control for some stored data. These include optional functionality for
maintaining a set of keys. In the casewhere the consumer opts out of that functionality, the keysAPI
(that no longermakes sense) fails silently.

public fun keys<T: drop, K: copy + drop + store, V: store>(
self: &AcTable<T, K, V>,

): vector<K> {
if (self.with_keys) {
let keys = option::borrow(&self.keys);
vec_set::into_keys(*keys)

} else {
vector::empty()

}
}

We recommend structuring thesemodules in away thatmakes failuresmore apparent. This can be
done bywrapping themodules with a new one that manages keys, which would let incorrect usage
be caught statically. Alternatively, this keys function could revert when called on a table that does
not track keys. It is not unreasonable to expect some mistakes with the with_keys parameter; for
example, the asset_active_statemodule enables the functionality but never uses it.

Additionally, some modules in evaluator/ have quite a bit of duplication. Namely, proto-
col::collateral_value and protocol::debt_value each have two functions that at a high level reuse the
same overall logic: iterating over collateral types and performing some accounting on their values.
Abstracting this behavior out couldmake the protocol easier tomaintain.

Zellic © 2024 ← Back to Contents Page 20 of 22



Scallop Smart Contract Security Assessment March 27, 2024

4.5. Test coverage

Overall, the quality of the code is good, but the codebase would benefit from increased test cover-
age. Currently, only a few of the libraries have unit tests. There are also some test cases for specific
protocol use cases and scenarios.

These end-to-end tests are good to see, and wewould strongly encourage Scallop to includemore
unit tests for important protocolmechanics. Another good target for improving test coveragewould
be the utility modules used throughout different protocol components, such as x::supply_bag.

Scallop Labs explained that they are in the process of adding more unit tests and end-to-end tests,
with the goal of covering every part of the protocol mechanics.

Zellic © 2024 ← Back to Contents Page 21 of 22



Scallop Smart Contract Security Assessment March 27, 2024

5. Assessment Results At the time of our assessment, the reviewed codewas deployed to the Sui mainnet.

During our assessment on the scoped Scallop modules, we discovered five findings. No critical is-
sues were found. Two findings were of medium impact, two were of low impact, and the remaining
finding was informational in nature.

5.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 22 of 22


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Scallop
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Obligation-key management allows admin to block liquidations
	Whitelist functionality creates protocol risk
	Insufficient controls on parameter changes
	Ticket issuing is broken
	Missing bounds on parameter-update delays

	Discussion
	Risk management
	Prevention of depositing borrowed coins is fragile
	Limitations of the limiter
	Code quality and module design
	Test coverage

	Assessment Results
	Disclaimer


