
Public

SMART CONTRACT AUDIT REPORT

for

Horizon Protocol

Prepared By: Xiaomi Huang

PeckShield
July 23, 2023

1/22 PeckShield Audit Report #: 2023-161

contact@peckshield.com

Public

Document Properties

Client Horizon Protocol
Title Smart Contract Audit Report
Target Horizon
Version 1.0
Author Xuxian Jiang
Auditors Stephen Bie, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 July 23, 2023 Xuxian Jiang Final Release
1.0-rc July 18, 2023 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/22 PeckShield Audit Report #: 2023-161

Public

Contents

1 Introduction 4
1.1 About Horizon . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Inconsistent Transfer Logic in Synth::transfer()/transferFrom() 11
3.2 Improved SignedSafeMath::mul() Logic . 12
3.3 Improper Logic of Exchanger::calculateAmountAfterSettlement() 13
3.4 Explicit collateralKey Enforcement in CollateralShort 15
3.5 Redundant State/Code Removal . 16
3.6 Trust Issue of Admin Keys . 18
3.7 Improved Logic of BaseRewardEscrowV2::accountMergingIsOpen() 19

4 Conclusion 20

References 21

3/22 PeckShield Audit Report #: 2023-161

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Horizon protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Horizon

Horizon Protocol is a DeFi platform that facilitates the on-chain creation and derivatives trading of
synthetic assets that represent the real economy. Horizon Protocol seeks to provide exposure to
real-world asset risk/return profiles via smart contracts on the blockchain. The basic information of
the audited protocol is as follows:

Table 1.1: Basic Information of Horizon

Item Description
Target Horizon
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report July 23, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/Horizon-Protocol/testnet-contracts.git (299917f)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

4/22 PeckShield Audit Report #: 2023-161

Public

• https://github.com/Horizon-Protocol/testnet-contracts.git (c345eea)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/22 PeckShield Audit Report #: 2023-161

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/22 PeckShield Audit Report #: 2023-161

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/22 PeckShield Audit Report #: 2023-161

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/22 PeckShield Audit Report #: 2023-161

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Horizon protocol. During the first phase of our
audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 4

Informational 1

Total 7

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/22 PeckShield Audit Report #: 2023-161

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 4 low-severity vulnerabilities, and and 1 informational recommendation.

Table 2.1: Key Horizon Audit Findings

ID Severity Title Category Status
PVE-001 Low Inconsistent Transfer Logic in

Synth::transfer()/transferFrom()
Business Logic Resolved

PVE-002 Low Improved SignedSafeMath::mul()
Logic

Coding Practices Resolved

PVE-003 Medium Improper Logic of Ex-
changer::calculateAmountAfterSettlement()

Business Logic Resolved

PVE-004 Low Explicit collateralKey Enforcement in
CollateralShort

Business Logic Confirmed

PVE-005 Informational Redundant Data/Code Removal Coding Practices Confirmed
PVE-006 Medium Trust Issue of Admin Keys Security Features Mitigated
PVE-007 Low Improved Logic of BaseRewardE-

scrowV2::accountMergingIsOpen()
Business Logic Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/22 PeckShield Audit Report #: 2023-161

Public

3 | Detailed Results

3.1 Inconsistent Transfer Logic in
Synth::transfer()/transferFrom()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Synth

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Horizon protocol allows for the creation of synthetic assets, which are collateralized by stakers
with HZN. Specifically, the locking of HZN in a staking contract enables the issuance of synthetic assets
(Synths). This pooled collateral model allows users to perform conversions between Synths directly
with the smart contract, avoiding the need for counterparties. In the process of analyzing the logic
behind each synthetic asset, we notice the current ERC20-compliant token-transferring feature has an
inconsistent implementation between transfer() and transferFrom(). To elaborate the inconsistency,
we show their implementation below.

By design, these two routines simply transfers the intended amount of the Synths to the recipient.
We notice the transfer() routine adds customized logic when the recipient is FEE_ADDRESS or address
(0). However, the same customization does not exist in the transferFrom() routine. The same
inconsistency is also present in other token-transferring variants, including transferAndSettle() and
transferFromAndSettle().

63 function transfer(address to , uint value) public onlyProxyOrInternal returns (bool)
{

64 _ensureCanTransfer(messageSender , value);
65
66 // transfers to FEE_ADDRESS will be exchanged into zUSD and recorded as fee
67 if (to == FEE_ADDRESS) {
68 return _transferToFeeAddress(to , value);

11/22 PeckShield Audit Report #: 2023-161

Public

69 }
70
71 // transfers to 0x address will be burned
72 if (to == address (0)) {
73 return _internalBurn(messageSender , value);
74 }
75
76 return super._internalTransfer(messageSender , to, value);
77 }
78
79 function transferFrom(
80 address from ,
81 address to ,
82 uint value
83) public onlyProxyOrInternal returns (bool) {
84 _ensureCanTransfer(from , value);
85
86 return _internalTransferFrom(from , to, value);
87 }

Listing 3.1: Synth::transfer()/transferFrom()

Recommendation Revisit the above token-transferring logic for consistency.

Status The issue has been addressed by the following commit: c345eea.

3.2 Improved SignedSafeMath::mul() Logic

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: SignedSafeMath

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, we notice the variant for the signed integer
operation can be improved.

To elaborate, we show below the mul() function from the SignedSafeMath contract. This function
is designed to return the multiplication of two signed integers, reverting on overflow. Since it operates
on signed integers, it reverts the cases when the given signed integers are -1 and _INT256_MIN. The
reason is that the result needs to be smaller than 2**255. However, the current implementation only

12/22 PeckShield Audit Report #: 2023-161

https://github.com/Horizon-Protocol/testnet-contracts/commit/c345eea

Public

checks one occasion when a == -1 && b == _INT256_MIN. It might encounter an input with b == -1

&& a == _INT256_MIN as well.

49 function mul(int256 a, int256 b) internal pure returns (int256) {
50 // Gas optimization: this is cheaper than requiring ’a’ not being zero , but the
51 // benefit is lost if ’b’ is also tested.
52 // See: https :// github.com/OpenZeppelin/openzeppelin -contracts/pull /522
53 if (a == 0) {
54 return 0;
55 }

57 require (!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow
");

59 int256 c = a * b;
60 require(c / a == b, "SignedSafeMath: multiplication overflow");

62 return c;
63 }

Listing 3.2: SignedSafeMath::mul()

Recommendation Revise the above routine to ensure it reverts all overflowing cases.

Status The issue has been resolved as the incorrect input will still be caught in the second
requirement.

3.3 Improper Logic of
Exchanger::calculateAmountAfterSettlement()

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Exchanger

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Horizon protocol has a key Exchanger contract that makes use of the pooled collateral model and
allows users to perform conversions between synths directly, avoiding the need for counterparties.
As a result, this mechanism solves the liquidity and slippage issues experienced by DEXs. While
examining one helper routine calculateAmountAfterSettlement(), we notice its logic can be improved.

To elaborate, we show below the related calculateAmountAfterSettlement() implementation. As
the name indicates, this routine calculates the balance of a synth after the settlement. Note the

13/22 PeckShield Audit Report #: 2023-161

Public

settlement may result in extra funds being reclaimed or refunded. And the reclaimed or refunded
amount will be reflected in the token balance of the give from account. With that, the addition of
possible refunded needs to be added to amountAfterSettlement before the resulting sum is compared
with the current balance in balanceOfSourceAfterSettlement.

277 function calculateAmountAfterSettlement(
278 address from ,
279 bytes32 currencyKey ,
280 uint amount ,
281 uint refunded
282) public view returns (uint amountAfterSettlement) {
283 amountAfterSettlement = amount;

285 // balance of a synth will show an amount after settlement
286 uint balanceOfSourceAfterSettlement = IERC20(address(issuer ().synths(currencyKey

))).balanceOf(from);

288 // when there isn’t enough supply (either due to reclamation settlement or
because the number is too high)

289 if (amountAfterSettlement > balanceOfSourceAfterSettlement) {
290 // then the amount to exchange is reduced to their remaining supply
291 amountAfterSettlement = balanceOfSourceAfterSettlement;
292 }

294 if (refunded > 0) {
295 amountAfterSettlement = amountAfterSettlement.add(refunded);
296 }
297 }

Listing 3.3: Exchanger::calculateAmountAfterSettlement()

Recommendation Revisit the above logic to properly calculate the synth mount after the
settlement to properly account for possible synth reclamation and refund.

Status The issue has been confirmed. Meanwhile, the team clarifies that the change is relatively
inconsequential as this would prevent a function revert in a niche case where the user tries to burn
his entire zUSD balance in addition to the exact settlement refund amount (if refunded >0) and if
this burn value is less than his debt balance.

14/22 PeckShield Audit Report #: 2023-161

Public

3.4 Explicit collateralKey Enforcement in CollateralShort

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: CollateralShort

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

The Horizon protocol support shorts, which are fixed debt, over-collateralized loans. To open a short,
the user must deposit sUSD collateral and then choose the synth they wish to short and the size of the
position, subject to collateralization requirements. However, instead of issuing the shorted currency,
the contract converts the value to sUSD and issues that to the user, which represents the act of
selling the asset short.

The short support is mainly implemented in the CollateralShort inherited from the common
Collateral contract. However, our analysis shows the use of sUSD as collateral is not explicitly
enforced and this enforcement is strongly suggested.

8 contract CollateralShort is Collateral {
9 constructor(

10 address _owner ,
11 ICollateralManager _manager ,
12 address _resolver ,
13 bytes32 _collateralKey ,
14 uint _minCratio ,
15 uint _minCollateral
16) public Collateral(_owner , _manager , _resolver , _collateralKey , _minCratio ,

_minCollateral) {}

18 function open(
19 uint collateral ,
20 uint amount ,
21 bytes32 currency
22) external returns (uint id) {
23 // Transfer from will throw if they didn’t set the allowance
24 IERC20(address(_synthzUSD ())).transferFrom(msg.sender , address(this), collateral

);

26 id = _open(collateral , amount , currency , true);
27 }
28 ...
29 }

Listing 3.4: The CollateralShort Contract

15/22 PeckShield Audit Report #: 2023-161

Public

Recommendation Enforce the use of sUSD as collateral when the CollateralShort contract is
instantiated.

Status The issue has been confirmed.

3.5 Redundant State/Code Removal

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [3]

Description

The Horizon protocol makes good use of a number of reference contracts, such as ERC20, Owned,
SafeDecimalMath, and Pausable, to facilitate its code implementation and organization. For example,
the Exchanger smart contract has so far imported at least five reference contracts. However, we
observe the inclusion of certain unused code or the presence of unnecessary redundancies that can
be safely removed.

For example, if we examine closely the Exchanger contract, there is a routine to calculate the
dynamic fee for the given currency. It comes to our attention that it contains the early exit condition
for the special case of no dynamic fee. However, the same early exit condition is checked twice, one
at lines 774-776 and another at lines 792-794. With that, we can safely drop the first one as the
second one is validated in a common helper routine.

769 function _dynamicFeeRateForCurrency(
770 bytes32 currencyKey ,
771 DynamicFeeConfig memory config
772) internal view returns (uint dynamicFee , bool tooVolatile) {
773 // no dynamic dynamicFee for zUSD or too few rounds
774 if (currencyKey == zUSD config.rounds <= 1) {
775 return (0, false);
776 }
777 uint roundId = exchangeRates ().getCurrentRoundId(currencyKey);
778 return _dynamicFeeRateForCurrencyRound(currencyKey , roundId , config);
779 }
780
781 /// @notice Get dynamicFee for a given currency key (SIP -184)
782 /// @param currencyKey The given currency key
783 /// @param roundId The round id
784 /// @param config dynamic fee calculation configuration params
785 /// @return The dynamic fee and if it exceeds max dynamic fee set in config
786 function _dynamicFeeRateForCurrencyRound(

16/22 PeckShield Audit Report #: 2023-161

Public

787 bytes32 currencyKey ,
788 uint roundId ,
789 DynamicFeeConfig memory config
790) internal view returns (uint dynamicFee , bool tooVolatile) {
791 // no dynamic dynamicFee for zUSD or too few rounds
792 if (currencyKey == zUSD config.rounds <= 1) {
793 return (0, false);
794 }
795 uint[] memory prices;
796 (prices ,) = exchangeRates ().ratesAndUpdatedTimeForCurrencyLastNRounds(

currencyKey , config.rounds , roundId);
797 dynamicFee = _dynamicFeeCalculation(prices , config.threshold , config.weightDecay

);
798 // cap to maxFee
799 bool overMax = dynamicFee > config.maxFee;
800 dynamicFee = overMax ? config.maxFee : dynamicFee;
801 return (dynamicFee , overMax);
802 }

Listing 3.5: Exchanger::_dynamicFeeRateForCurrency()

In addition, there is another redundancy in the following removeFromArray routine. Specifically,
once the to-be-removed entry is located, the current approach deletes the located array element and
next overwrites with the last element. Note the first deletion is redundant and can be safely skipped.

389 function removeFromArray(bytes32 entry , bytes32 [] storage array) internal returns (
bool) {

390 for (uint i = 0; i < array.length; i++) {
391 if (array[i] == entry) {
392 delete array[i];
393
394 // Copy the last key into the place of the one we just deleted
395 // If there’s only one key , this is array [0] = array [0].
396 // If we’re deleting the last one , it’s also a NOOP in the same way.
397 array[i] = array[array.length - 1];
398
399 // Decrease the size of the array by one.
400 array.length --;
401
402 return true;
403 }
404 }
405 return false;
406 }

Listing 3.6: ExchangeRates::removeFromArray()

Recommendation Consider the removal of the redundant state (or code) with a simplified,
consistent implementation.

Status This issue has been confirmed.

17/22 PeckShield Audit Report #: 2023-161

Public

3.6 Trust Issue of Admin Keys

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Horizon protocol, there is a privileged owner account that plays a critical role in governing and
regulating the protocol-wide operations (e.g., configure various parameters, set protocol rates, and
pause/unpause protocol). In the following, we show the representative functions potentially affected
by the privilege of the owner account.

276 function setIssuanceRatio(uint ratio) external onlyOwner {
277 flexibleStorage ().setIssuanceRatio(SETTING_ISSUANCE_RATIO , ratio);
278 emit IssuanceRatioUpdated(ratio);
279 }
280
281 function setTradingRewardsEnabled(bool _tradingRewardsEnabled) external onlyOwner {
282 flexibleStorage ().setTradingRewardsEnabled(SETTING_TRADING_REWARDS_ENABLED ,

_tradingRewardsEnabled);
283 emit TradingRewardsEnabled(_tradingRewardsEnabled);
284 }
285
286 function setWaitingPeriodSecs(uint _waitingPeriodSecs) external onlyOwner {
287 flexibleStorage ().setWaitingPeriodSecs(SETTING_WAITING_PERIOD_SECS ,

_waitingPeriodSecs);
288 emit WaitingPeriodSecsUpdated(_waitingPeriodSecs);
289 }
290
291 function setPriceDeviationThresholdFactor(uint _priceDeviationThresholdFactor)

external onlyOwner {
292 flexibleStorage ().setPriceDeviationThresholdFactor(
293 SETTING_PRICE_DEVIATION_THRESHOLD_FACTOR ,
294 _priceDeviationThresholdFactor
295);
296 emit PriceDeviationThresholdUpdated(_priceDeviationThresholdFactor);
297 }

Listing 3.7: Example Privileged Operations in SystemSettings

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the owner is not governed by a DAO-like structure. Note that a
compromised account would allow the attacker to modify a number of sensitive system parameters,
which directly undermines the assumption of the protocol design.

18/22 PeckShield Audit Report #: 2023-161

Public

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed by the team. The team intends to introduce multi-sig

to mitigate this issue.

3.7 Improved Logic of
BaseRewardEscrowV2::accountMergingIsOpen()

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BaseRewardEscrowV2

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Horizon protocol has a RewardEscrowV2 contract to keep track of user rewards. To facilitate
the user account management, this contract allows the merge of two different user accounts. Our
analysis on the account merging logic shows the helper routine of accountMergingIsOpen() can be
improved.

In the following, we show the implementation of the accountMergingIsOpen() routine, which
has a simple logic in checking whether accountMergingStartTime.add(accountMergingDuration)> block.

timestamp. However, it comes with one implicit assumption, i.e., block.timestamp>=accountMergingStartTime
. With that, we also suggest to enforce this implicit assumption as well.

378 function accountMergingIsOpen () public view returns (bool) {
379 return accountMergingStartTime.add(accountMergingDuration) > block.timestamp;
380 }

Listing 3.8: BaseRewardEscrowV2::accountMergingIsOpen()

Recommendation Revisit the above accountMergingIsOpen() routine to make the implicit as-
sumption explicit.

Status The issue has been addressed by the following commit: c345eea.

19/22 PeckShield Audit Report #: 2023-161

https://github.com/Horizon-Protocol/testnet-contracts/commit/c345eea

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Horizon protocol, which is a
DeFi platform that facilitates the on-chain creation and derivatives trading of synthetic assets that
represent the real economy. Horizon Protocol seeks to provide exposure to real-world asset risk/return
profiles via smart contracts on the blockchain. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

20/22 PeckShield Audit Report #: 2023-161

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

21/22 PeckShield Audit Report #: 2023-161

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Public

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

22/22 PeckShield Audit Report #: 2023-161

https://www.peckshield.com

	Introduction
	About Horizon
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Inconsistent Transfer Logic in Synth::transfer()/transferFrom()
	Improved SignedSafeMath::mul() Logic
	Improper Logic of Exchanger::calculateAmountAfterSettlement()
	Explicit collateralKey Enforcement in CollateralShort
	Redundant State/Code Removal
	Trust Issue of Admin Keys
	Improved Logic of BaseRewardEscrowV2::accountMergingIsOpen()

	Conclusion
	References

