
Horizon Protocol

Security Audit Report

May 20, 2024

Contents

1 Introduction 3
1.1 About Horizon Protocol . 3
1.2 Source Code . 3

2 Overall Assessment 4

3 Vulnerability Summary 5
3.1 Overview . 5
3.2 Security Level Reference . 6
3.3 Vulnerability Details . 7

4 Appendix 11
4.1 About AstraSec . 11
4.2 Disclaimer . 11
4.3 Contact . 11

2

1 | Introduction

1.1 About Horizon Protocol

Horizon Protocol is a DeFi platform that facilitates the on-chain trading of synthetic assets that rep-
resent the real economy. Horizon Protocol seeks to provide exposure to real-world assets risk/return
profiles via smart contracts on the blockchain. Forked from Synthetix, Horizon Protocol will leverage
the time-tested derivative liquidity protocol and bring interoperability, scalability and a whole new
array of tradable, real-world derivative products to the DeFi ecosystem.

1.2 Source Code

In the following, we show the Git repository of reviewed files and the commit hash value used in this
audit. Note this audit only covers the Account.sol, AccountProxy.sol, Events.sol, Factory.sol, and
Settings.sol contracts.

• https://github.com/Horizon-Protocol/horizon-perps-margin

• CommitID: 6f7d8b0

And this is the final version representing all fixes implemented for the issues identified in the audit:

• https://github.com/Horizon-Protocol/horizon-perps-margin

• CommitID: 16353b5

3

2 | Overall Assessment

This report has been compiled to identify issues and vulnerabilities within the Horizon protocol.
Throughout this audit, we identified a total of 3 issues spanning various severity levels. By employing
auxiliary tool techniques to supplement our thorough manual code review, we have discovered the
following findings.

Severity Count Acknowledged Won’t Do Addressed
Critical - - - -
High - - - -
Medium 1 - - 1
Low 2 - - 2
Informational - - - -
Undetermined - - - -

4

3 | Vulnerability Summary

3.1 Overview

Click on an issue to jump to it, or scroll down to see them all.

M-1 Revisit Fee Charge Logic in Account::executeConditionalOrder()

L-1 Integration of Non-Standard ERC20 Tokens

L-2 Potential Risks Associated with Centralization

5

3.2 Security Level Reference

In web3 smart contract audits, vulnerabilities are typically classified into different severity levels based
on the potential impact they can have on the security and functionality of the contract. Here are
the definitions for critical-severity, high-severity, medium-severity, and low-severity vulnerabilities:

Severity Description
C-X (Critical) A severe security flaw with immediate and significant negative conse-

quences. It poses high risks, such as unauthorized access, financial losses,
or complete disruption of functionality. Requires immediate attention and
remediation.

H-X (High) Significant security issues that can lead to substantial risks. Although
not as severe as critical vulnerabilities, they can still result in unautho-
rized access, manipulation of contract state, or financial losses. Prompt
remediation is necessary.

M-X (Medium) Moderately impactful security weaknesses that require attention and re-
mediation. They may lead to limited unauthorized access, minor financial
losses, or potential disruptions to functionality.

L-X (Low) Minor security issues with limited impact. While they may not pose
significant risks, it is still recommended to address them to maintain a
robust and secure smart contract.

I-X (Informational) Warnings and things to keep in mind when operating the protocol. No
immediate action required.

U-X (Undetermined) Identified security flaw requiring further investigation. Severity and im-
pact need to be determined. Additional assessment and analysis are
necessary.

6

3.3 Vulnerability Details

[M-1] Revisit Fee Charge Logic in Account::executeConditionalOrder()

Target Category IMPACT LIKELIHOOD STATUS
Account.sol Business Logic Medium Medium �Addressed

In the Account contract, the executeConditionalOrder() function allows the function caller to
execute conditional order for a given _conditionalOrderId. While examining its logic,we notice the
current fee distribution logic is not correct.

To elaborate, we show below the related code snippet. When executing a conditional order, a
certain amount of fees will be charged and the fees will be different depending on the executor.
Specifically, the calling of _getFeeDetails() will always return a non-zero fee and non-zero feeToken

when called by a Gelato executor. But the returned values for fee and feeToken will be zero if being
called by a non-Gelato executor. This will cause those calls initiated by non-Gelato executor to fail,
as executing SafeERC20.safeTransfer(IERC20(address(0)), feeCollector, _fee) will always revert.

Account::executeConditionalOrder()

679 function executeConditionalOrder(uint256 _conditionalOrderId)
680 external
681 override
682 nonReentrant
683 isAccountExecutionEnabled
684 {
685 ...
686 // remove gelato task from their accounting
687 /// @dev will revert if task id does not exist {Automate.cancelTask:

Task not found}
688 /// @dev if executor is not Gelato , the task will still be cancelled
689 automate.cancelTask ({ taskId: conditionalOrder.gelatoTaskId });

691 // impose and record fee paid to executor
692 uint256 fee = _payExecutorFee ();

694 // define Horizon Protocol PerpsV2 market
695 IPerpsV2MarketConsolidated market =
696 _getPerpsV2Market(conditionalOrder.marketKey);
697 ...
698 }

700 /// @notice pay fee for conditional order execution
701 /// @dev fee will be different depending on executor
702 /// @return fee amount paid
703 function _payExecutorFee () internal returns (uint256 fee) {

7

https://github.com/Horizon-Protocol/horizon-perps-margin/commit/e33bcc6be42e7a243741911ad7fd3d056a244ac1

704 address feeToken;
705 (fee , feeToken) = _getFeeDetails ();
706 _transfer(fee , feeToken);
707 }

Remediation When charging the execution fees, the non-Gelato executor should be considered.

[L-1] Integration of Non-Standard ERC20 Tokens

Target Category IMPACT LIKELIHOOD STATUS
Account.sol Business Logic Low Low �Addressed

Inside the Account::_modifyAccountMargin() function, the statements of MARGIN_ASSET.transferFrom
(msg.sender, address(this), _abs(_amount)) (line 464) and MARGIN_ASSET.transfer(msg.sender, _abs

(_amount)) (line 472) are employed to transfer the user’s asset into the Account contract or transfer
the asset to user from the Account contract. However, in the case of USDT-like token whose trans-
fer()/transferFrom() lack a return value, it would lead to a revert. Given this, we recommend
employing the widely-used SafeERC20 library (which serves as a wrapper for ERC20 operations while
accommodating a diverse range of non-standard ERC20 tokens) to address this case.

Account::_modifyAccountMargin()

458 /// @notice deposit/withdraw margin to/from this margin account
459 /// @param _amount: amount of margin to deposit/withdraw
460 function _modifyAccountMargin(int256 _amount) internal {
461 // if amount is positive , deposit
462 if (_amount > 0) {
463 /// @dev failed Horizon Protocol asset transfer will revert and not

return false if unsuccessful
464 MARGIN_ASSET.transferFrom(msg.sender , address(this), _abs(_amount));

466 EVENTS.emitDeposit ({user: msg.sender , amount: _abs(_amount)});
467 } else if (_amount < 0) {
468 // if amount is negative , withdraw
469 _sufficientMargin(_amount);

471 /// @dev failed Horizon Protocol asset transfer will revert and not
return false if unsuccessful

472 MARGIN_ASSET.transfer(msg.sender , _abs(_amount));

474 EVENTS.emitWithdraw ({user: msg.sender , amount: _abs(_amount)});
475 }
476 }

8

https://github.com/Horizon-Protocol/horizon-perps-margin/commit/e33bcc6be42e7a243741911ad7fd3d056a244ac1

Remediation Replace transfer()/transferFrom() with safeTransfer()/safeTransferFrom().

[L-2] Potential Risks Associated with Centralization

Target Category IMPACT LIKELIHOOD STATUS
Multiple Contracts Security Low Low Addressed

In the Horizon protocol, the existence of a privileged owner account introduces centralization risks,
as it holds significant control and authority over critical operations governing the protocol. In the
following, we show the representative functions potentially affected by the privileges associated with
the privileged account.

Example Privileged Operations in Horizon Protocol

143 /// @inheritdoc IFactory
144 function upgradeAccountImplementation(address _implementation)
145 external
146 override
147 onlyOwner
148 {
149 if (! canUpgrade) revert CannotUpgrade ();
150 implementation = _implementation;
151 emit AccountImplementationUpgraded ({ implementation: _implementation });
152 }

154 /// @inheritdoc IFactory
155 function removeUpgradability () external override onlyOwner {
156 canUpgrade = false;
157 }

159 /// @inheritdoc ISettings
160 function setAccountExecutionEnabled(bool _enabled)
161 external
162 override
163 onlyOwner
164 {
165 accountExecutionEnabled = _enabled;

167 emit AccountExecutionEnabledSet(_enabled);
168 }

170 /// @inheritdoc ISettings
171 function setExecutorFee(uint256 _executorFee) external override onlyOwner {
172 executorFee = _executorFee;

174 emit ExecutorFeeSet(_executorFee);
175 }

9

177 /// @inheritdoc ISettings
178 function setTokenWhitelistStatus(address _token , bool _isWhitelisted)
179 external
180 override
181 onlyOwner
182 {
183 _whitelistedTokens[_token] = _isWhitelisted;

185 emit TokenWhitelistStatusUpdated(_token , _isWhitelisted);
186 }

Remediation To mitigate the identified issue, it is recommended to introduce multi-sig mecha-
nism to undertake the role of the privileged account. Moreover, it is advisable to implement timelocks
to govern all modifications to the privileged operations.

Response By Team This issue has been resolved as the team confirms that the owner will be
behind the protocol DAO multi-sig wallet.

10

4 | Appendix

4.1 About AstraSec

AstraSec is a blockchain security company that serves to provide high-quality auditing services for
blockchain-based protocols. With a team of blockchain specialists, AstraSec maintains a strong
commitment to excellence and client satisfaction. The audit team members have extensive audit
experience for various famous DeFi projects. AstraSec’s comprehensive approach and deep blockchain
understanding make it a trusted partner for the clients.

4.2 Disclaimer

The information provided in this audit report is for reference only and does not constitute any legal,
financial, or investment advice. Any views, suggestions, or conclusions in the audit report are based
on the limited information and conditions obtained during the audit process and may be subject to
unknown risks and uncertainties. While we make every effort to ensure the accuracy and completeness
of the audit report, we are not responsible for any errors or omissions in the report.

We recommend users to carefully consider the information in the audit report based on their own
independent judgment and professional advice before making any decisions. We are not responsible
for the consequences of the use of the audit report, including but not limited to any losses or damages
resulting from reliance on the audit report.

This audit report is for reference only and should not be considered a substitute for legal docu-
ments or contracts.

4.3 Contact

Phone +86 176 2267 4194
Email contact@astrasec.ai
Twitter https://twitter.com/AstraSecAI

11

	Introduction
	About Horizon Protocol
	Source Code

	Overall Assessment
	Vulnerability Summary
	Overview
	Security Level Reference
	Vulnerability Details

	Appendix
	About AstraSec
	Disclaimer
	Contact

