

Mozaic.Fi Theseus Vault
13/01/2023

Trust
Security

Smart Contract Audit

Trust Security Mozaic.Fi Theseus Vault

Executive summary

Findings

Severity Total Fixed Acknowledged Open
High 5 5 0 0

Medium 9 8 1 0
Low 2 2 0 0

Centralization score

Centralized Decentralized

Signature

Category Staking

Audited file count 4

Lines of Code 1098
Auditor MiloTruck

Time period 11/12 – 20/12

5, High

9,

Medium

2, Low

FINDINGS

Trust Security Mozaic.Fi Theseus Vault

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 5

About Trust Security 5

About the Auditors 5

Disclaimer 6

Methodology 6

QUALITATIVE ANALYSIS 7

FINDINGS 8

High severity findings 8
TRST-H-1: Withdrawals in settleWithdrawRequest() can be permanently DOSed 8
TRST-H-2: Looping over withdrawal requests could lead to DOS 9
TRST-H-3: createGMO rder() shouldn’t transfer tokens for decrease orders 10
TRST-H-4: pnlFactorType is encoded wrongly in getMarketTokenPrice() 12
TRST-H-5: totalAssetInUsd() will be decreased while a GMX request is pending 12

Medium severity findings 15
TRST-M-1: convertAssetToLP() returns 0 if the vault has assets before the first deposit 15
TRST-M-2: Calculation in convertAssetToLP() is susceptible to inflation attacks 16
TRST-M-3: getCurrentLiquidityProviderRate() returns 0 when _totalAssets is small 17
TRST-M-4: Unsafe cast of GMX market token price 18
TRST-M-5: Missing slippage checks for GMX deposits and withdrawals 19
TRST-M-6: getMarketTokenPrice() will always revert for some markets 21
TRST-M-7: GMXPlugin.sol lacks functionality to handle frozen orders 22
TRST-M-8: Assets from cancelled GMX requests are not handled 23
TRST-M-9: TokenPriceConsumer.sol does not validate Chainlink feeds 24

Low severity findings 26
TRST-L-1: Unsafe ERC-20 transfers or approvals 26
TRST-L-2: stakeToSelectedPool() doesn’t handle duplicate tokens in allowedTokens 26

Additional recommendations 28
TRST-R-1: Use non-upgradeable ReentrancyGuard 28
TRST-R-2: Unnecessary “this.” in stakeToSelectedPool() 28

Trust Security Mozaic.Fi Theseus Vault

TRST-R-3: Deleting withdrawalRequests[i] is redundant in settleWithdrawRequest() 28
TRST-R-4: Code in settleWithdrawRequest() can be simplified 28
TRST-R-5: Typo in upateLiquidityProviderRate() 28
TRST-R-6: Only 256 plugins can be used 29
TRST-R-7: Master address is not used in GMXPlugin.sol 29
TRST-R-8: convertDecimals() can be used to simplify the code 29

Centralization risks 31
TRST-CR-1: Thesus Vault risks 31

Trust Security Mozaic.Fi Theseus Vault

Document properties

Versioning

Version Date Description

0.1 20/12/23 Client report

0.2 11/01/24 Mitigation review
0.3 13/01/24 Mitigation review #2

Contact

Trust

trust@trust-security.xyz

Trust Security Mozaic.Fi Theseus Vault

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• contracts/GmxPlugin.sol

• contracts/TokenPriceConsumer.sol

• contracts/Vault.sol

• contracts/GmxCallback.sol

Repository details

Thesus-vault:

• Repository URL: https://github.com/Mozaic-fi/Theseus-vault

• Commit hash: 2250955343202547af184a7f1c2ec1e80bafa69e

• Mitigation review commit hash: fcc2a22710d5d8cc3247417d53897dfc3b8685a4

• Mitigation review #2 commit hash: e5e287af5274bf2db9e943ea947272f9b33a40f5

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Since its inception it has safeguarded over 30 clients

through private services and over 30 additional projects through bug bounty submissions.

About the Auditors

MiloTruck is a blockchain security researcher who specializes in smart contract security. Since

March 2022, he has competed in over 25 auditing contests on Code4rena and won several of

them against the best auditors in the field. He has also found multiple critical bugs in live

protocols on Immunefi and is an active judge on Code4rena.

https://github.com/Mozaic-fi/Theseus-vault

Trust Security Mozaic.Fi Theseus Vault

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security Mozaic.Fi Theseus Vault

Qualitative analysis

Metric Rating Comments
Code complexity

Moderate Project is not complex, but

some code could have
been simplified.

Documentation

Mediocre Project currently has
limited documentation.

Best practices

Good

Project consistently

adheres to industry
standards.

Centralization risks

Moderate Project has some

centralization risks.

Trust Security Mozaic.Fi Theseus Vault

Findings

High severity findings

TRST-H-1: Withdrawals in settleWithdrawRequest() can be permanently DOSed

• Category: DOS attacks

• Source: Vault.sol

• Status: Fixed

Description

settleWithdrawRequest() loops through withdrawalRequests and transfers tokens to users:

Vault.sol#L476-L491

// Transfer withdrawal amount to the user.

if (tokenBalance < withdrawalAmount) {

// ...

 // Transfer remaining token balance to the user.

 IERC20(withdrawalRequests[i].tokenAddress).transfer(user, tokenBalance);

} else {

 // Transfer the full withdrawal amount to the user and burn the corresponding…

 IERC20(withdrawalRequests[i].tokenAddress).transfer(user, withdrawalAmount);

 _burn(address(this), lpAmount);

}

However, if the transfer of tokens to any user fails, the entire call to settleWithdrawRequest()

will revert. For example:

• Alice deposits USDC into the vault.

• Alice gets blacklisted by Circle; her address can no longer receive USDC.

• Alice calls addWithdrawRequest() to withdraw USDC to her address.

• When settleWithdrawRequest() is called, the function reverts when attempting to

transfer USDC to Alice.

Since there is no way to skip withdrawal requests in settleWithdrawRequest(), the function

will always revert when called, making it impossible for users to withdraw funds.

Recommended mitigation

In settleWithdrawRequest(), consider implementing a way to skip individual requests.

Team response

Fixed by removing the withdrawal queue. Withdrawals are now executed instantly.

Mitigation review

Verified, the bug is fixed as there is no withdrawal queue.

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L476-L491

Trust Security Mozaic.Fi Theseus Vault

TRST-H-2: Looping over withdrawal requests could lead to DOS

• Category: DOS attacks

• Source: Vault.sol

• Status: Fixed

Description

Users call addWithdrawRequest() to add their withdrawal request to either the

withdrawalRequests or pendingWithdrawalRequests array. When the master address calls

settleWithdrawRequest(), the function loops over both arrays:

Vault.sol#L463-L495

// Iterate through each withdrawal request.

for (uint256 i = 0; i < withdrawalRequests.length; ++i) {

 address user = withdrawalRequests[i].userAddress;

 uint256 lpAmount = withdrawalRequests[i].lpAmount;

// Readacted code that processes the withdrawal

}
\

Vault.sol#L517-L525

// Move pending withdrawal requests to the confirmed withdrawal requests array.

for (uint256 i = 0; i < pendingWithdrawalRequests.length; i++) {

 withdrawalRequests.push(pendingWithdrawalRequests[i]);

}

However, this is dangerous as both arrays are unbounded – users can call

addWithdrawRequest() repeatedly to keep adding withdrawal requests to either array.

If the array grows too large, the amount of gas needed to loop over and process each

individual request might exceed the block gas limit, causing settleWithdrawRequest() to

always revert when called. This will make it impossible for users to withdraw funds.

Recommended mitigation

Instead of using arrays to implement withdrawal queues, consider using a mapping with three

indexes instead:

uint256 start;

uint256 mid;

uint256 end;

mapping(uint256 => WithdrawalInfo) withdrawalRequests;

To add new withdrawal requests to the queue in addWithdrawRequest(), store the new

request at the end index and increment it by one:

withdrawalRequests[end++] = newWithdrawal;

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L463-L495
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L517-L525

Trust Security Mozaic.Fi Theseus Vault

When activatePendingStatus() is called, store the current end index in mid:

mid = end;

mid represents the index that settleWithdrawRequest() should iterate up to – all requests

from start to mid are in the withdrawal queue, and the remaining requests from mid to end

are in the pending withdrawal queue.

In settleWithdrawRequest(), remove requests from the front of the queue by incrementing

the start index:

// Iterate through each withdrawal request.

for (uint256 i = start; i < mid; ++i) {

 WithdrawalInfo memory withdrawal = withdrawalRequests[i];

 // ...

}

start = mid;

This approach achieves the same functionality as using two arrays, but the code only manages

one queue, which removes the need to copy the entire pendingWithdrawalRequests array

into withdrawalRequests.

To resolve the problem of DOS in settleWithdrawRequest(), add a parameter to specify the

number of requests to loop through:

function settleWithdrawRequest(uint256 noOfRequests) ... {

 uint256 queueLength = mid - start;

 noOfRequests = noOfRequests < queueLength ? noOfRequests : queueLength

 for (uint256 i = 0; i < noOfRequests; i++) {

 WithdrawalInfo memory withdrawal = withdrawalRequests[start + i];

 // ...

 }

 start += noOfRequests;

}

If the queue ever grows too large to be processed in one function call, the master address can

simply call settleWithdrawRequest() multiple times instead.

Team response

Fixed by removing the withdrawal queue. Withdrawals are now executed instantly.

Mitigation review

Verified, the bug is fixed as there is no withdrawal queue.

TRST-H-3: createGMOrder() shouldn’t transfer tokens for decrease orders

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Fixed

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol

Trust Security Mozaic.Fi Theseus Vault

Description

createGMOrder() sends initialCollateralToken to GMX’s order vault for all order types:

GmxPlugin.sol#L584-L591

// Send execution fee to orderVault

_exchangeRouter.sendWnt{value: executionFee}(routerConfig.orderVault, executionFee);

// Transfer initialCollateralToken to orderVault

_exchangeRouter.sendTokens(initialCollateralToken, routerConfig.orderVault,

 initialCollateralDeltaAmount);

// Create the order using the external exchange router

_exchangeRouter.createOrder(_params);

However, collateral only needs to be transferred for swap/increase position orders. According

to GMX’s documentation, initialCollateralDeltaAmount is the amount of tokens to withdraw

for MarketDecrease, LimitDecrease and StopLossDecrease orders.

As such, if createGMOrder() is ever used to execute a decrease order, tokens will be wrongly

transferred to GMX’s order vault, causing a loss of funds for users and the protocol.

Recommended mitigation

Check if the order is a swap/increase order before sending tokens to GMX’s order vault:

if (

 _params.orderType == IExchangeRouter.OrderType.MarketSwap ||

 _params.orderType == IExchangeRouter.OrderType.LimitSwap ||

 _params.orderType == IExchangeRouter.OrderType.MarketIncrease ||

 _params.orderType == IExchangeRouter.OrderType.LimitIncrease

) {

 // Approve initialCollateralToken transfer

 IERC20(initialCollateralToken).approve(routerConfig.router,

 initialCollateralDeltaAmount);

 // Transfer initialCollateralToken to orderVault

 _exchangeRouter.sendTokens(initialCollateralToken, routerConfig.orderVault,

 initialCollateralDeltaAmount);

}

Team response

Fixed as recommended.

Mitigation review

Verified, createGMOrder() only transfers initialCollateralToken to GMX’s order vault for swap

and increase orders.

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L584-L591
https://gmx-docs.io/docs/api/contracts-v2/#creating-an-order

Trust Security Mozaic.Fi Theseus Vault

TRST-H-4: pnlFactorType is encoded wrongly in getMarketTokenPrice()

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Fixed

Description

When calling the getMarketTokenPrice() function of GMX’s reader, pnlFactorType is encoded

with abi.encodePacked():

GmxPlugin.sol#L621

bytes32 pnlFactorType = keccak256(abi.encodePacked("MAX_PNL_FACTOR_FOR_TRADERS"));

However, it should be encoded with abi.encode() instead according to GMX’s code:

Keys.sol#L263-L264

// @dev key for max pnl factor

bytes32 public constant MAX_PNL_FACTOR_FOR_TRADERS =

 keccak256(abi.encode("MAX_PNL_FACTOR_FOR_TRADERS"));

Due to an invalid pnlFactorType, getMarketTokenPrice() will return an incorrect price for GM

tokens. More specifically, the price returned would not factor in the PnL of the market, causing

all accounting in the plugin to be incorrect.

Recommended mitigation

Modify the code to use abi.encode() instead:

- bytes32 pnlFactorType = keccak256(abi.encodePacked("MAX_PNL_FACTOR_FOR_TRADERS"));

+ bytes32 pnlFactorType = keccak256(abi.encode("MAX_PNL_FACTOR_FOR_TRADERS"));

Team response

Fixed as recommended.

Mitigation review

Verified, pnlFactorType is now encoded correctly.

TRST-H-5: totalAssetInUsd() will be decreased while a GMX request is pending

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Fixed

Description

When creating a GMX deposit, withdrawal or order request, long/short/market tokens are

sent to their respective vaults and temporarily held there. Afterwards, GMX’s keepers that

listen for request transactions will send a separate transaction to execute the request.

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L621
https://github.com/gmx-io/gmx-synthetics/blob/3021a56a1cae0a3f90fe5339e3426bfd8c080ebe/contracts/data/Keys.sol#L263-L264
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol

Trust Security Mozaic.Fi Theseus Vault

However, the issue is that GMXPlugin.getTotalLiquidity() and Vault.totalAssetInUsd() use the

current balance of tokens in their respective contracts to calculate the total value of assets in

the vault.

As such, during the period when a request is sent but hasn’t been executed by GMX’s keepers,

both functions will temporarily return values much smaller than expected.

For example:

• Transaction 1: Call sellGMToken() to withdraw assets from the GM pool

o This transfers GM tokens to GMX’s withdrawal vault.

o A withdrawal request is created in GMX.

• Transaction 2: A user calls addDepositRequest()

o The GM tokens sent in transaction 1 are still in GMX’s withdrawal vault.

o Therefore, the total value returned by totalAssetInUsd() is much smaller as it

excludes the value of GM tokens that are pending withdrawal.

• Transaction 3: GMX’s keeper executes the withdrawal request.

o This transfers long and short tokens to the Vault contract.

This is problematic as addDepositRequest() can be called by users at any time. If users manage

to deposit their assets between transaction 1 and transaction 3 as described above, they will

unfairly receive more shares as the total value of the vault is temporarily decreased.

Recommended mitigation

Consider preventing users from depositing when there is a pending GMX request. One way to

achieve this would be to disable addDepositRequest() when execute() is called, and re-enable

it when a callback in gmxParams.callbackContract is called.

Team response

Fixed by disabling deposits, withdrawals, and orders whenever there is a pending GMX

request. This is done using GMX’s callbacks in GmxCallback.sol.

Mitigation review

GmxCallback.sol resumes deposits, withdrawals, and orders whenever a pending order is

frozen by removing its key:

GmxCallback.sol#L186-L188

function afterOrderFrozen(bytes32 key, ...) external onlyHandler(State.Order) {

 removeKey(key, State.Order);

}

This is incorrect – the key should not be removed when an order is frozen.

Users should not be able to deposit/withdraw whenever an order is still pending as a portion

of the protocol’s assets are still held in GMX’s order vault. Functionality should only resume

after the frozen order is cancelled as the frozen assets will be returned to the GmxPlugin

contract.

Additionally, cancelling the frozen order will call removeKey() again, so the same key will be

removed twice.

https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/GmxCallback.sol#L186-L188

Trust Security Mozaic.Fi Theseus Vault

Team response

Fixed by not removing the order key in the afterOrderFrozen() callback.

Mitigation review

Verified, deposits and withdrawals will not resume when an order is frozen. They will only be

resumed after the order is cancelled.

Trust Security Mozaic.Fi Theseus Vault

Medium severity findings

TRST-M-1: convertAssetToLP() returns 0 if the vault has assets before the first deposit

• Category: Logical flaws

• Source: Vault.sol

• Status: Fixed

Description

convertAssetToLP() is used to determine how much vault tokens to mint to users when they

deposit funds:

Vault.sol#L809-L819

// Convert asset amount to LP tokens based on current total asset and LP token supply.

function convertAssetToLP(uint256 _amount) public view returns (uint256) {

 // If the total asset is zero, perform direct decimal conversion.

 uint256 _totalAssetInUsd = totalAssetInUsd() > protocolFeeInVault ?

 totalAssetInUsd() - protocolFeeInVault : 0;

 if (_totalAssetInUsd == 0) {

 return convertDecimals(_amount, ASSET_DECIMALS, MOZAIC_DECIMALS);

 }

 // Perform conversion based on proportion of the provided amount to total asset.

 return (_amount * totalSupply()) / _totalAssetInUsd;

}

The _totalAssetInUsd == 0 check exists as totalSupply() and _totalAssetInUsd are 0 on the

first deposit, which makes calculation based on proportions not possible.

However, an attacker can skip this check by donating assets to the vault (e.g. transfer 1 wei of

any accepted token directly to the contract), which would make _totalAssetInUsd non-zero.

If this occurs before the first deposit, since totalSupply() is still 0, convertAssetToLP() will

always return 0 for all future deposits. This will make it impossible for anyone to deposit into

the vault as addDepositRequest() reverts when convertAssetToLP() returns 0.

Recommended mitigation

Modify the check to also ensure that totalSupply() is non-zero:

- if (_totalAssetInUsd == 0) {

+ if (_totalAssetInUsd == 0 || totalSupply() == 0) {

 return convertDecimals(_amount, ASSET_DECIMALS, MOZAIC_DECIMALS);

 }

Team response

Fixed as recommended.

Mitigation review

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L809-L819

Trust Security Mozaic.Fi Theseus Vault

Verified, convertAssetToLP() now converts assets to shares at a 1:1 ratio if totalSupply() is zero,

preventing the exploit described above.

TRST-M-2: Calculation in convertAssetToLP() is susceptible to inflation attacks

• Category: Logical flaws

• Source: Vault.sol

• Status: Fixed

Description

convertAssetToLP() is used to determine how much vault tokens to mint to users when they

deposit funds:

Vault.sol#L809-L819

// Convert asset amount to LP tokens based on current total asset and LP token supply.

function convertAssetToLP(uint256 _amount) public view returns (uint256) {

 // If the total asset is zero, perform direct decimal conversion.

 uint256 _totalAssetInUsd = totalAssetInUsd() > protocolFeeInVault ?

 totalAssetInUsd() - protocolFeeInVault : 0;

 if (_totalAssetInUsd == 0) {

 return convertDecimals(_amount, ASSET_DECIMALS, MOZAIC_DECIMALS);

 }

 // Perform conversion based on proportion of the provided amount to total asset.

 return (_amount * totalSupply()) / _totalAssetInUsd;

}

This is vulnerable to inflation attacks, where an attacker donates assets directly to the vault

to inflate _totalAssetInUsd while totalSupply() is small. For example:

• Alice, the first depositor, deposits tokens worth only 0.000001 USD.

• In convertAssetToLP(), _amount is 1e30, thus only 1 share is minted to Alice.

• Alice transfers 1000 USD worth of tokens to the vault to inflate _totalAssetInUsd.

• Bob deposits 500 USD worth of tokens into the vault.

• Since totalSupply() is 1 and _amount is less than _totalAssetInUsd,

convertAssetToLP() rounds down to 0, causing addDepositRequest() to revert.

A first depositor can abuse this to prevent other users from depositing into the vault.

Recommended mitigation

On the first deposit, mint a small amount of vault tokens to a dead address:

 if (_totalAssetInUsd == 0) {

+ _mint(address(0), 10 ** MOZAIC_DECIMALS);

 return convertDecimals(_amount, ASSET_DECIMALS, MOZAIC_DECIMALS);

 }

Team response

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L809-L819

Trust Security Mozaic.Fi Theseus Vault

Fixed by adding a minimum deposit check in addDepositRequest() at Vault.sol#L357.

Mitigation review

The current fix does not work – an attacker can bypass the check by depositing the minimum

amount and withdrawing all LP tokens except 1 to make totalSupply() extremely small. This is

possible as addWithdrawalRequest() now processes withdrawals instantly, instead of having

a withdrawal queue.

Consider implementing the recommended fix above.

Team response

Fixed by adding virtual shares and assets in totalSupply() and totalAssetInUsd() respectively.

Mitigation review

Verified, totalSupply() will never go below 1e6 so the inflation attack described above is no

longer possible.

TRST-M-3: getCurrentLiquidityProviderRate() returns 0 when _totalAssets is small

• Category: Rounding issues

• Source: Vault.sol

• Status: Fixed

Description

getCurrentLiquidityProviderRate() calculates lpRate, which is the USD value of each vault

token (note that ASSET_DECIMALS is 36 and MOZAIC_DECIMALS is 6):

Vault.sol#L670-L674

// Convert total assets to the desired decimals

uint256 adjustedAssets = convertDecimals(_totalAssets, ASSET_DECIMALS,

 MOZAIC_DECIMALS);

// Calculate the current rate

currentRate = adjustedAssets * 1e18 / totalSupply();

To convert _totalAssets from 36 to 6 decimals, _totalAssets is divided by 1e30. However, if

_totalAssets is smaller than 1e30, adjustedAssets will round down to 0, causing

getCurrentLiquidityProviderRate() to return 0 as the new rate.

This is problematic in upateLiquidityProviderRate() as it will update lpRate to 0, causing

deposits to wrongly accrue to the protocol fee:

• Assume the first depositor deposits less than 0.000001 USD worth of tokens.

• The master address calls upateLiquidityProviderRate(), which updates lpRate to 0 as

mentioned above since _totalAssets is less than 1e30.

• Another user deposits some tokens.

https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/Vault.sol#L357
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L670-L674

Trust Security Mozaic.Fi Theseus Vault

• When upateLiquidityProviderRate() is called afterwards, the new lpRate will be 1e18.

This causes part of the user’s deposit to accrue to the protocol fee, even though the

vault hasn’t generated any profit.

Recommended mitigation

In getCurrentLiquidityProviderRate(), check that _totalAssets is sufficiently large:

Vault.sol#L666-L669

 // Check if total supply or total assets is zero

- if (totalSupply() == 0 || _totalAssets == 0) {

+ if (totalSupply() == 0 || _totalAssets < 10 ** (ASSET_DECIMALS – MOZAIC_DECIMALS)) {

 currentRate = 1e18;

 } else {

Team response

Fixed as recommended.

Mitigation review

Verified, getCurrentLiquidityProviderRate() now returns currentRate as 1e18 when

_totalAssets is small, preventing the exploit described above.

TRST-M-4: Unsafe cast of GMX market token price

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Fixed

Description

In getTotalLiquidity(), the GMX market token price returned by getMarketTokenPrice() is cast

to uint256 directly:

GmxPlugin.sol#L289

uint256 marketTokenPrice = uint256(getMarketTokenPrice(pools[i].poolId, true));

According to GMX’s documentation, although unlikely, it is possible for a market’s token to

have a negative price:

It is rare but possible for a pool's value to become negative, this can happen since the

impactPoolAmount and pending PnL is subtracted from the worth of the tokens in the

pool

As such, casting directly to uint256 is dangerous as marketTokenPrice will become an

extremely large value when getMarketTokenPrice() returns a negative price. Should this

occur, it would inflate the plugin’s total liquidity by a huge amount, causing all accounting

in the protocol to malfunction.

Recommended mitigation

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L666-L669
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L289
https://github.com/gmx-io/gmx-synthetics/tree/3d0177520b6e9c48facec679a23c8ccc53e46108?tab=readme-ov-file#market-token-price-1
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L679-L695
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L679-L695

Trust Security Mozaic.Fi Theseus Vault

If a market’s token price happens to be negative, consider skipping this market and not adding

its value to the plugin’s total liquidity:

int256 marketTokenPrice = getMarketTokenPrice(pools[i].poolId, true)

if (marketTokenPrice <= 0) continue;

uint256 amount = marketTokenBalance * uint256(marketTokenPrice);

Team response

Fixed as recommended.

Mitigation review

Due to changes in Vault.sol, the recommended fix is no longer comprehensive.

getPoolTokenPrice() in Vault.sol calls getMarketTokenPrice(), which is now named

getPoolTokenPrice(), and performs an unsafe cast:

Vault.sol#L432

return uint256(IPlugin(plugin).getPoolTokenPrice(_poolId, true));

As getPoolTokenPrice() is used in addWithdrawalRequest(), if the GM token happens to have

a negative price, users will end up creating withdrawal requests with 0 GM tokens. This will

revert in GMX’s execution, and the request will be cancelled.

To prevent users from creating unfulfillable withdrawal requests, consider reverting when the

GM token price is negative:

Vault.sol#L432

int256 price = IPlugin(plugin).getPoolTokenPrice(_poolId, true));

if (price < 0) revert("Vault: GM token price is negative.");

return uint256 price;

Team response

Fixed by adding a require statement that ensures price is greater than 0.

Mitigation review

Verified, getPoolTokenPrice() will revert if the GM token’s price is negative or 0.

TRST-M-5: Missing slippage checks for GMX deposits and withdrawals

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Fixed

Description

minMarketToken, which is the minimum output amount of GM token, is specified as 0 in

buyGMToken():

https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/Vault.sol#L432
https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/Vault.sol#L432
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol

Trust Security Mozaic.Fi Theseus Vault

GmxPlugin.sol#L479-L492

IExchangeRouter.CreateDepositParams memory params =

IExchangeRouter.CreateDepositParams(

 address(this), // receiver

 gmxParams.callbackContract, // callbackContract

 gmxParams.uiFeeReceiver, // uiFeeReceiver

 marketAddress,

 longToken,

 shortToken,

 longTokenSwapPath,

 shortTokenSwapPath,

 0, // minMarketTokens

 gmxParams.shouldUnwrapNativeToken, // shouldUnwrapNativeToken

 executionFee,

 gmxParams.callbackGasLimit // callbackGasLimit

);

Likewise, in sellGMToken(), minLongTokens and minShortTokens, which is the minimum

output amount of long and short tokens, is also 0:

GmxPlugin.sol#L537-L549

IExchangeRouter.CreateWithdrawalParams memory params =

IExchangeRouter.CreateWithdrawalParams(

 localVault, // receiver

 gmxParams.callbackContract, // callbackContract

 gmxParams.uiFeeReceiver, // uiFeeReceiver

 marketAddress,

 longTokenSwapPath,

 shortTokenSwapPath,

 0, // minLongTokens

 0, // minShortTokens

 gmxParams.shouldUnwrapNativeToken, // shouldUnwrapNativeToken

 executionFee,

 gmxParams.callbackGasLimit // callbackGasLimit

);

This leaves deposits and withdrawals vulnerable to slippage, especially since

deposit/withdrawal requests are not executed instantly, but reliant on GMX’s keepers to

execute the request.

The amount of GM token or short/long token received after the request is executed could be

much smaller than the expected amount when the request was sent by the plugin, potentially

causing a loss of funds.

Recommended mitigation

Consider not leaving minMarketTokens, minLongTokens and minShortTokens as 0 in

deposit/withdrawal requests.

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L479-L492
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L537-L549
https://github.com/gmx-io/gmx-synthetics?tab=readme-ov-file#oracle-system
https://github.com/gmx-io/gmx-synthetics?tab=readme-ov-file#oracle-system

Trust Security Mozaic.Fi Theseus Vault

Either add parameters to buyGMToken() and sellGMToken() for the caller to specify their own

slippage values, or calculate their values based on the current state of the GMX market.

Team response

Fixed by adding slippage parameters in buyGMToken() and sellGMToken(). These slippage

parameters can be specified by users when they deposit/withdraw.

Mitigation review

addDepositRequest() in Vault.sol is missing the slippage parameter. This can be seen from the

encoding of payload in stakeToSelectedPool():

Vault.sol#L391-L392

// Encode the payload for the 'Stake' action using the selected plugin and pool.

bytes memory payload = abi.encode(uint8(selectedPoolId), allowedTokens, _amounts);

The minGmAmount parameter, which is supposed to be the fourth argument, is missing.

Team Response

Fixed by adding the missing minGmAmount parameter to stakeToSelectedPool().

Mitigation review

Verified, it is now possible to specify slippage for GMX deposits when calling

addDepositRequest().

TRST-M-6: getMarketTokenPrice() will always revert for some markets

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Acknowledged

Description

getMarketTokenPrice() uses getTokenPriceInfo() to fetch the prices of tokens, including a

market’s index token:

GmxPlugin.sol#L615-L616

// Fetch token prices for indexToken, longToken, and shortToken

IPrice.Props memory indexTokenPrice = getTokenPriceInfo(_pool.indexToken);
\

getTokenPriceInfo() attempts to retrieve the index token’s decimals as such:

GmxPlugin.sol#L644

uint256 tokenDecimal = IERC20Metadata(token).decimals();

However, for some markets, the address stored at _pool.indexToken is not a contract. These

markets are:

https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/Vault.sol#L391-L392
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L615-L616
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L644

Trust Security Mozaic.Fi Theseus Vault

• Synthetic markets:
o BTC / USD
o DOGE / USD
o LTC / USD
o XRP / USD

• Stablecoin markets, where _pool.indexToken is the zero address:
o USDC / USDC.e
o USDC / USDT
o USDC / DAI

For these markets, attempting to fetch the decimals of the index token as shown above will
revert. As such, the current implementation of GMXPlugin.sol is incompatible with these
markets since getMarketTokenPrice() will always revert.

Recommended mitigation

The decimals for all index tokens can be found here. For synthetic markets, consider storing
these decimals in a mapping and using it in getTokenPriceInfo(), instead of calling
IERC20Metadata.decimals().

For stablecoin markets where index token is the zero address, set indexTokenPrice to 0. This
is what GMX does internally.

Team response

Acknowledged.

TRST-M-7: GMXPlugin.sol lacks functionality to handle frozen orders

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Fixed

Description

According to GMX’s documentation, keepers can choose to freeze orders during execution if:

• The price impact is too high, and the acceptable price is not met.

• There is insufficient liquidity to fulfil the order.

Frozen orders will only be executed by GMX’s keepers once the acceptable price can be met,

which might take an extremely long period of time. While the order is frozen, funds for the

order will be held in GMX.

Orders can be unfrozen in two ways:

• Calling ExchangeRouter.updateOrder() to update the order’s parameters, as

described here.

• Calling ExchangeRouter.cancelOrder() to cancel the order.

However, GMXPlugin.sol does not have functionality to call either of the two functions.

https://arbiscan.io/address/0x47c031236e19d024b42f8ae6780e44a573170703
https://arbiscan.io/address/0x6853ea96ff216fab11d2d930ce3c508556a4bdc4
https://arbiscan.io/address/0xd9535bb5f58a1a75032416f2dfe7880c30575a41
https://arbiscan.io/address/0x0ccb4faa6f1f1b30911619f1184082ab4e25813c
https://arbiscan.io/address/0x9c2433dfd71096c435be9465220bb2b189375ea7
https://arbiscan.io/address/0xb686bcb112660343e6d15bdb65297e110c8311c4
https://arbiscan.io/address/0xe2fedb9e6139a182b98e7c2688ccfa3e9a53c665
https://arbitrum-api.gmxinfra.io/tokens
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol
https://gmx-docs.io/docs/trading/v2#order-execution
https://github.com/gmx-io/gmx-synthetics/blob/3021a56a1cae0a3f90fe5339e3426bfd8c080ebe/contracts/router/ExchangeRouter.sol#L189-L222
https://github.com/gmx-io/gmx-synthetics/blob/3021a56a1cae0a3f90fe5339e3426bfd8c080ebe/contracts/router/ExchangeRouter.sol#L224-L244

Trust Security Mozaic.Fi Theseus Vault

Therefore, if an order from the plugin is ever frozen, the assets for that order might be stuck

in GMX for an extended duration, and possibly stuck forever if the order never becomes

executable.

Recommended mitigation

Consider adding the ability to update or cancel an order in execute().

Team response

Fixed by giving the master address the ability to cancel orders.

Mitigation review

Verified, frozen orders can now be cancelled with cancelOrder() in GmxPlugin.sol.

TRST-M-8: Assets from cancelled GMX requests are not handled

• Category: Logical flaws

• Source: GmxPlugin.sol

• Status: Fixed

Description

When a pending GMX request is cancelled – either by GMX or calling cancelAction(), assets for

that request are refunded to the address that created the request. For this protocol, it would

be the GmxPlugin contract as it calls createDeposit(), createWithdrawal() and createOrder().

When stake() or createOrder() is called, it pulls assets from the Vault contract and transfers

them to GMX.

However, when the deposit/order request is cancelled, assets that are refunded from GMX

are not sent back to the Vault contract. Calling stake() or createOrder() again would also not

work as it will pull in new assets from the vault.

As such, the refunded assets will be stuck in the GmxPlugin contract.

Recommended mitigation

When deposit or order requests are cancelled, consider sending the refunded assets back to

the vault. This can be done using the afterDepositCancellation() and afterOrderCancellation()

callbacks in GmxCallback.sol.

Team response

Fixed by adding a transferAllTokensToVault() function that transfers long and short tokens

from the GmxPlugin contract to the vault, and calling it all callbacks.

Mitigation review

Verified, refunded assets from request cancellations will now be sent back to the vault in their

respective callbacks.

https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/GmxPlugin.sol

Trust Security Mozaic.Fi Theseus Vault

TRST-M-9: TokenPriceConsumer.sol does not validate Chainlink feeds

• Category: Logical flaws

• Source: TokenPriceConsumer.sol

• Status: Fixed

Description

TokenPriceConsumer.getTokenPrice() uses Chainlink’s latestRoundData() to fetch the price of

an asset:

TokenPriceConsumer.sol#L33-L35

(, int256 answer, , ,) = priceFeed.latestRoundData();

// Token price might need additional scaling based on decimals

return uint256(answer);

However, it does not have any checks to ensure that the price returned is updated or

acceptable. Chainlink’s price feed might return incorrect prices if:

• The price feed is stale.

• Arbitrum’s sequencer is down, so prices cannot be updated.

Recommended mitigation

Consider adding the relevant checks to getTokenPrice():

• Chainlink's documentation on the sequencer uptime check

• GMX’s implementation

For example:

https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/TokenPriceConsumer.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/fcc2a22710d5d8cc3247417d53897dfc3b8685a4/contracts/TokenPriceConsumer.sol#L33-L35
https://docs.chain.link/data-feeds/l2-sequencer-feeds#example-code
https://github.com/gmx-io/gmx-synthetics/blob/e81e5c29194132582a1f47df490ce95481c4ea93/contracts/oracle/Oracle.sol#L693-L726

Trust Security Mozaic.Fi Theseus Vault

function getTokenPrice(address tokenAddress) public view returns (uint256) {

 AggregatorV3Interface priceFeed = tokenPriceFeeds[tokenAddress];

 require(address(priceFeed) != address(0), "Price feed not found");

 // Check if the sequencer is up

 (int256 answer, uint256 startedAt , ,) = sequencerUptimeFeed.latestRoundData();

 require(

 answer == 0 && block.timestamp - startedAt >= GRACE_PERIOD_TIME,

 "PriceFeed: Sequencer is down"

);

 (

 uint80 roundId,

 int256 answer, ,

 uint256 updatedAt,

) = priceFeed.latestRoundData();

 // Sanity check

 require(roundId != 0 && answer >= 0 && updatedAt != 0, "PriceFeed: Sanity check");

 // Stale price check

 uint256 heartbeatDuration = tokenHeartbeatDurations[tokenAddress];

 require(block.timestamp - updatedAt <= heartbeatDuration, "Price feed is stale");

 // Token price might need additional scaling based on decimals

 return uint256(answer);

}

The heartbeat duration of each price feed can be checked in their respective pages by

hovering over “Trigger parameters”. For example, BTC / USD has a heartbeat duration of 3600

seconds.

Team response

Fixed by adding the sanity and stale price check.

Mitigation review

Verified. Note that since the sequencer uptime check was not added, if Arbitrum’s sequencer

was to go down, the price returned by Chainlink’s feeds would be stale but users can still

interact with the vault through L1 -> L2 transactions.

https://data.chain.link/ethereum/mainnet/crypto-usd/btc-usd

Trust Security Mozaic.Fi Theseus Vault

Low severity findings

TRST-L-1: Unsafe ERC-20 transfers or approvals

• Category: ERC20 compatibility issues

• Source: Vault.sol, GmxPlugin.sol

• Status: Fixed

Description

ERC-20’s transfer(), transferFrom() and approve() are used throughout the code:

• transfer():

o Vault.sol#L486

o Vault.sol#L489

• transferFrom():

o GmxPlugin.sol#L576

• approve():

o Vault.sol#L552

o Vault.sol#L578

o GmxPlugin.sol#L496

o GmxPlugin.sol#L500

o GmxPlugin.sol#L552

o GmxPlugin.sol#L579

These functions will not work for tokens that are not ERC-20 compliant. This currently is not a

problem as there is no GMX market with a non-compliant token, but could become a problem

in the future.

Recommended mitigation

Use safeTransfer(), safeTransferFrom() and safeIncreaseAllowance() from OpenZeppelin’s

SafeERC20 instead.

Team response

Fixed as recommended.

Mitigation review

Verified, there are no more unsafe ERC-20 approvals/transfers.

TRST-L-2: stakeToSelectedPool() doesn’t handle duplicate tokens in al lowedTokens

• Category: Logical flaws

• Source: Vault.sol

• Status: Fixed

Description

stakeToSelectedPool() loops over allowedTokens and calls execute() to stake tokens:

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L486
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L489
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L576
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L552
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L578
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L496
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L500
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L552
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L579
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol

Trust Security Mozaic.Fi Theseus Vault

Vault.sol#L396-L408

for (uint256 i = 0; i < allowedTokens.length; i++) {

 if (allowedTokens[i] == _token) {

 // ...

 // Execute the 'Stake' action on the selected plugin with the encoded payload.

 this.execute(uint8(selectedPluginId), IPlugin.ActionType.Stake, payload);

 }

}

Since the function does not return after calling execute(), if allowedTokens contains duplicate

tokens, the function will wrongly stake twice. Additionally, if allowedTokens does not contain

_token, stakeToSelectedPool() also does not revert.

Recommended mitigation

Modify stakeToSelectedPool() to handle the cases mentioned above:

 function stakeToSelectedPool(address _token, uint256 _tokenAmount) internal {

 // Redacted code...

 // Iterate through the allowed tokens to find the matching token.

 for (uint256 i = 0; i < allowedTokens.length; i++) {

 if (allowedTokens[i] == _token) {

 // Redacted code...

+ return;

 }

 }

+ revert("Vault: deposit token not in allowedTokens");

 }

Team response

Fixed by adding the recommended return statement.

Mitigation review

Verified, stakeToSelectedPool() will only stake for the first occurrence of _token in

_allowedTokens.

Note that the recommended revert statement was not added, as such, if _token is not in

_allowedTokens, users can deposit without staking into any plugin.

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L396-L408

Trust Security Mozaic.Fi Theseus Vault

Additional recommendations

TRST-R-1: Use non-upgradeable ReentrancyGuard

Both Vault and GMXPlugin contracts inherit ReentrancyGuardUpgradeable. However, since

both contracts are not meant to be upgradeable, consider using the non-upgradeable

version of OpenZeppelin’s ReentrancyGuard instead.

TRST-R-2: Unnecessary “this.” in stakeToSelectedPool()

Since execute() is declared public, there is no need to call this.execute():

Vault.sol#L406

- this.execute(uint8(selectedPluginId), IPlugin.ActionType.Stake, payload);

+ execute(uint8(selectedPluginId), IPlugin.ActionType.Stake, payload);

TRST-R-3: Deleting withdrawalRequests[i] is redundant in settleWithdrawRequest()

Since the entire withdrawalRequests array is cleared later in the function, deleting individual

elements in the for-loop is redundant. The following lines can be removed:

Vault.sol#L492-L494

- // Clear the processed withdrawal request.

- delete withdrawalRequests[i];

TRST-R-4: Code in settleWithdrawRequest() can be simplified

Use the delete keyword to clear the withdrawalRequests array instead:

Vault.sol#L497-L500

 // Clear the entire withdrawal requests array.

- while (withdrawalRequests.length > 0) {

- withdrawalRequests.pop();

- }

+ delete withdrawRequests;

TRST-R-5: Typo in upateLiquidityProviderRate()

“upate” should be “update”:

Vault.sol#L583

- function upateLiquidityProviderRate() external onlyMaster nonReentrant {

+ function updateLiquidityProviderRate() external onlyMaster nonReentrant {

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L406
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L492-L494
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L497-L500
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L583

Trust Security Mozaic.Fi Theseus Vault

TRST-R-6: Only 256 plugins can be used

In Vault.sol, addPlugin() does not have a maximum number of plugins that can be added.

However, totalAssetInUsd() iterates over plugins with a uint8 index. This implicitly limits the

maximum number of plugins that can be added to 256, since totalAssetInUsd() would revert

if there are more plugins.

To remove this implicit limit, consider using uint256 for the index instead:

Vault.sol#L683

- for (uint8 i; i < plugins.length; ++i) {

+ for (uint256 i; i < plugins.length; ++i) {

TRST-R-7: Master address is not used in GMXPlugin.sol

In GMXPlugin.sol, the onlyMaster() modifier is not used anywhere in the code, which makes

storing the master address redundant as it cannot call any function in the contract.

Consider removing all master-related functionality, such as onlyMaster(), setMaster() and the

master state variable from the contract altogether.

TRST-R-8: convertDecimals() can be used to simplify the code

In calculateTokenValueInUsd():

Vault.sol#L770-L777, GmxPlugin.sol#L319-L328

 // Adjust the token amount based on the difference in decimals.

- if (tokenDecimals + priceConsumerDecimals >= ASSET_DECIMALS) {

- decimalsDiff = tokenDecimals + priceConsumerDecimals - ASSET_DECIMALS;

- return (_tokenAmount * tokenPrice) / (10 ** decimalsDiff);

- } else {

- decimalsDiff = ASSET_DECIMALS - tokenDecimals - priceConsumerDecimals;

- return (_tokenAmount * tokenPrice * (10 ** decimalsDiff));

- }

+ return convertDecimals(

+ _tokenAmount * tokenPrice,

+ tokenDecimals + priceConsumerDecimals,

+ ASSET_DECIMALS

+);

In getTotalLiquidity():

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L683
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/Vault.sol#L770-L777
https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L319-L328

Trust Security Mozaic.Fi Theseus Vault

GmxPlugin.sol#L292-L307

 // Use IERC20Metadata only once to get decimals.

 uint256 decimals = IERC20Metadata(marketTokenAddress).decimals()

 + MARKET_TOKEN_PRICE_DECIMALS;

- // Refactor decimalsDiff calculation to improve readability.

- uint256 decimalsDiff = abs(int256(decimals) - int256(ASSET_DECIMALS));

- uint256 adjustedAmount;

-

- // Adjust amount based on decimalsDiff.

- if (decimals >= ASSET_DECIMALS) {

- adjustedAmount = amount / 10**decimalsDiff;

- } else {

- adjustedAmount = amount * 10**decimalsDiff;

- }

-

- // Accumulate adjustedAmount to totalAsset.

- totalAsset += adjustedAmount;

+ totalAsset += convertDecimals(amount, decimals, ASSET_DECIMALS);

https://github.com/Mozaic-fi/Theseus-vault/blob/2250955343202547af184a7f1c2ec1e80bafa69e/contracts/GmxPlugin.sol#L292-L307

Trust Security Mozaic.Fi Theseus Vault

Centralization risks

TRST-CR-1: Thesus Vault risks

Vault.sol, and by extension, GMXPlugin.sol, should be considered fully centralized.

The owner address can:

• Set tokenPriceConsumer, which is a contract that returns prices for tokens. This

allows a malicious owner to manipulate the prices of tokens in the vault.

• Add/remove tokens from acceptedTokens. By removing tokens from

acceptedTokens, the owner can control the value of the vault and use this to drain

the vault’s balance.

• Add/remove plugins. The owner can add a malicious plugin and approve it to

transfer all tokens in the vault out using approveTokens().

The master address is responsible for:

• Managing the vault’s funds through GMX, which could result in a loss of funds if they

are not managed properly.

		2024-01-13T12:44:42+0200
	Trust

