


Overview

Project Summary

● Name: Krav
● Platform: EVM-compatible chains
● Language: Solidity
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Krav

Version v1

Type Solidity

Dates May 29 2024

Logs May 29 2024

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 3

Total Low-Severity issues 2

Total informational issues 2

Total 7

Contact
E-mail: support@salusec.io

1



Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Chainlink’s feed might return stale or incorrect results 6
2. User will have to wait for the cold period again if the user misses the time to withdraw 7
3. CoolPeriod might be bypassed 8
4. Missing duplicate value check 9
5. Improper LINK fee for NFT order execution 10

2.3 Informational Findings 12
6. Redundant code 12
7. Use safeTransfer()/safeTransferFrom() instead of transfer()/transferFrom() 14

Appendix 15
Appendix 1 - Files in Scope 15

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4



Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Chainlink’s feed might return stale or incorrect
results

Medium Business Logic Pending

2 User will have to wait for the cold period again if
the user misses the time to withdraw

Medium Business Logic Pending

3 CoolPeriod might be bypassed Medium Business Logic Pending

4 Missing duplicate value check Low Data Validation Pending

5 Improper LINK fee for NFT order execution Low Business Logic Pending

6 Redundant code Informational Redundancy Pending

7 Use safeTransfer()/safeTransferFrom() instead of
transfer()/transferFrom()

Informational Risky External
Calls

Pending

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Chainlink’s feed might return stale or incorrect results

Severity: Medium Category: Business Logic

Target:
- contracts/PriceAggregator.sol

Description

The ChainlinkAdapter calls out to a Chainlink oracle receiving the latestRoundData(). If
there is a problem with Chainlink starting a new round and finding consensus on the new
value for the oracle (e.g. Chainlink nodes abandon the oracle, chain congestion,
vulnerability/attacks on the chainlink system) consumers of this contract may continue using
outdated stale or incorrect data (if oracles are unable to submit no new round is started).

contracts/PriceAggregator.sol:L151-L213
function fulfill(bytes32 _requestId, uint _price) external
recordChainlinkFulfillment(_requestId){

...
uint feedPrice = _price;

IPairsStorage.Feed memory f = pairsStorage.pairFeed(r.pairIndex);
if (f.feed1 != address(0)) {

(, int feedPrice1, , , ) = IChainlinkFeed(f.feed1).latestRoundData();

if(f.feedCalculation == IPairsStorage.FeedCalculation.DEFAULT){
feedPrice = uint(feedPrice1*int(PRECISION)/1e8);

}else if(f.feedCalculation == IPairsStorage.FeedCalculation.INVERT){
feedPrice = uint(int(PRECISION)*1e8/feedPrice1);

}else{
(, int feedPrice2, , , ) = IChainlinkFeed(f.feed2).latestRoundData();
feedPrice = uint(feedPrice1*int(PRECISION)/feedPrice2);

}
}

uint priceDiff = _price >= feedPrice ? (_price - feedPrice) : (feedPrice -
_price);

if(priceDiff * PRECISION * 100 / feedPrice <= f.maxDeviationP)

Recommendation

(uint80 roundId, int feedPrice1, , uint updateTime, uint80 answeredInRound ) =
AggregatorV3Interface(XXXXX).latestRoundData();
require(updateTime != 0, "Incomplete round");
require(answeredInRound >= roundId, "Stale price");

Consider adding checks of other returned variables from chainlink. This will help you
understand the state of the chainlink and decide whether to accept the resulting price value
or not.

6



2. User will have to wait for the cold period again if the user
misses the time to withdraw

Severity: Medium Category: Business Logic

Target:
- contracts/KToken.sol

Description

When a user creates a request for withdrawal of funds, the contract records the epoch (with
cooldown period) in which the user can receive his funds. An epoch is 20 minutes. The
problem is that if the user misses 20 minutes (or the attacker clogs the block with other
transactions so that the user's transaction is not included in the block), then in the next
epoch the user will no longer be able to receive his funds, but is forced to make a request
again and wait cooldown period again.

contracts/KToken.sol:L155-L164
function makeWithdrawRequest(uint assets) public checks(assets) {

require(assets <= maxWithdraw(_msgSender()), "ERC4626: withdraw more than max");

(uint256 currentEpoch,) = this.updateEpoch();
uint shares = previewWithdraw(assets);
reqWithdrawals[_msgSender()][currentEpoch+coolPeriod] = shares;

emit WithdrawRequested(_msgSender(), assets);
}

contract/KToken.sol:L175-L183
function withdraw(uint assets, address receiver, address _owner) public override
checks(assets) returns (uint) {

uint shares = previewWithdraw(assets);
(uint256 currentEpoch,) = this.updateEpoch();
require(reqWithdrawals[_msgSender()][currentEpoch] == shares, "request first");
reqWithdrawals[_msgSender()][currentEpoch] = 0;

_withdraw(_msgSender(), receiver, _owner, assets, shares);
return shares;

}

Recommendation

Consider allowing the user to receive their funds at any time, after passing the cold period.

7



3. CoolPeriod might be bypassed

Severity: Medium Category: Business Logic

Target:
- contracts/KToken.sol

Description

Users can request a withdrawal through the makeWithdrawRequest() or
makeRedeemRequest() functions and settle the withdrawal after the cool period. However,
shares that have been requested to withdraw will not be recorded or locked. Thus, users
can make a request every epoch with the same shares.

contracts/KToken.sol:L155-L164
function makeWithdrawRequest(uint assets) public checks(assets) {

require(assets <= maxWithdraw(_msgSender()), "ERC4626: withdraw more than max");

(uint256 currentEpoch,) = this.updateEpoch();
uint shares = previewWithdraw(assets);
reqWithdrawals[_msgSender()][currentEpoch+coolPeriod] = shares;

emit WithdrawRequested(_msgSender(), assets);
}

contract/KToken.sol:L175-L183
function withdraw(uint assets, address receiver, address _owner) public override
checks(assets) returns (uint) {

uint shares = previewWithdraw(assets);
(uint256 currentEpoch,) = this.updateEpoch();
require(reqWithdrawals[_msgSender()][currentEpoch] == shares, "request first");
reqWithdrawals[_msgSender()][currentEpoch] = 0;

_withdraw(_msgSender(), receiver, _owner, assets, shares);
return shares;

}

Here is a possible scenario (the cool period lasts for 2 epochs):

1. Alice owns 1 share and makes withdrawal requests for 1 share at epoch 1 and 2;
2. Alice settles the withdrawal for 1 share at epoch 3;
3. Bob also wants to withdraw 1 share and transfer his share to Alice. Alice withdraws

Bob’s share at epoch 4. Thus, Bob’s cool period is bypassed.

Recommendation

Consider recording or locking shares that have been requested to withdraw.

8



4. Missing duplicate value check

Severity: Low Category: Data Validation

Target:
- contracts/PriceAggregator.sol

Description

The addNode function will check if the node exists, But the replaceNode function does not
check, which conflicts with the mechanism of the addNode function.

contracts/PriceAggregator.sol:L91-L107
function addNode(address _a) external onlyGov{

require(_a != address(0), "VALUE_0");

require(nodes.length < MAX_ORACLE_NODES, "MAX_ORACLE_NODES");

for(uint i = 0; i < nodes.length; i++){ require(nodes[i] != _a, "ALREADY_LISTED"); }

nodes.push(_a);

emit NodeAdded(nodes.length-1, _a);

}

function replaceNode(uint _index, address _a) external onlyGov{

require(_index < nodes.length, "WRONG_INDEX");

require(_a != address(0), "VALUE_0");

emit NodeReplaced(_index, nodes[_index], _a);

nodes[_index] = _a;

}

Recommendation

Consider adding duplicate value detection.

9



5. Improper LINK fee for NFT order execution

Severity: Low Category: Business Logic

Target:
- contracts/Trading.sol
- contracts/TradingStorage.sol

Description

Triggers need to pay LINK fees for every NFT order execution.

contracts/Trading.sol:L333-L406
function executeNftOrder(

IStorage.LimitOrder _orderType,

address _trader,

uint _pairIndex,

uint _index

) external notContract notDone{

...

// link transfer

storageT.transferLinkToAggregator(msg.sender);

uint orderId = aggregator.getPrice(

_pairIndex,

_orderType == IStorage.LimitOrder.OPEN ?

IAggregator.OrderType.LIMIT_OPEN :

IAggregator.OrderType.LIMIT_CLOSE

);

...

}

The actual LINK fee spent in a single price request is linkFee() * nodes.length.

contracts/PriceAggregator.sol:L118-L148
function getPrice(

uint _pairIndex,
OrderType _orderType

) external onlyTrading returns(uint){
...
uint linkFeePerNode = linkFee();
...
for(uint i = 0; i < nodes.length; i ++){

orderIdByRequest[sendChainlinkRequestTo(nodes[i], linkRequest, linkFeePerNode)] =
orderId;

}

However, triggers only pay linkFee() for one node.

contracts/TradingStorage.sol:L391-L393
function transferLinkToAggregator(address _from) external onlyTrading{

linkErc677.transferFrom(_from, address(priceAggregator),
priceAggregator.linkFee());
}

10



Recommendation

Consider updating the logic in the transferLinkToAggregator() function so that triggers pay
for enough LINK.

11



2.3 Informational Findings

6. Redundant code

Severity: Informational Category: Redundancy

Target:
- contracts/PairInfos.sol
- contracts/PriceAggregator.sol
- contracts/Trading.sol
- contracts/TradingCallbacks.sol
- contracts/TriggerInfo.sol

Description

The following events are defined but not used.

contracts/PriceAggregator.sol:L42
event AddressUpdated(string name, address a);

contracts/TradingCallbacks.sol:L66-L67
event AddressUpdated(string name, address a);

event NumberUpdated(string name, uint value);

contracts/TriggerInfo.sol:L36
event TokensClaimed(address bot, uint tokens);

contracts/Trading.sol:L34, L39,
event AddressUpdated(string name, address a);

event TriggerOrderSameBlock(address nftHolder, address trader, uint pairIndex);

Since the storeOpenLimitOrder() function in the TradingStorage contract will also call the
firstEmptyOpenLimitIndex() function, the index query in the Trading contract can be safely
removed.

contracts/Trading.sol:L147
function openTrade(

IStorage.Trade memory t,

ITriggerInfo.OpenLimitOrderType _type,

uint _spreadReductionId,

uint _slippageP // for market orders

) external notDone {

...

if(_type != ITriggerInfo.OpenLimitOrderType.LEGACY) {

uint index = storageT.firstEmptyOpenLimitIndex(msg.sender, t.pairIndex);

storageT.storeOpenLimitOrder(

IStorage.OpenLimitOrder(

msg.sender,

t.pairIndex,

index,

t.positionSizeDai,

...

12



)

...

}

Unused file.
contracts/PairInfos.sol:L6
import "hardhat/console.sol";

Recommendation

Consider removing the redundant code.

13



7. Use safeTransfer()/safeTransferFrom() instead of
transfer()/transferFrom()

Severity: Low Category: Risky External Calls

Target:
- contracts/TradingStorage.sol

Description

Tokens not compliant with the ERC20 specification could return false from the transfer
function call to indicate the transfer fails, while the calling contract would not notice the
failure if the return value is not checked. Checking the return value is a requirement, as
written in the EIP-20 specification:

Callers MUST handle false from returns (bool success). Callers MUST NOT assume that
false is never returned!

Recommendation

Consider using the SafeERC20 library implementation from OpenZeppelin and call
safeTransfer or safeTransferFrom when transferring ERC20 tokens.

14

https://eips.ethereum.org/EIPS/eip-20


Appendix
Appendix 1 - Files in Scope
This audit covered the following files:

File SHA-1 hash

contracts/KToken.sol b76f303c5e72e101fa941fc743a67a8b0319a69a

contracts/PairInfos.sol e820e2c88ed8ab4cbc9f08b5482fa6b8dfa1b41e

contracts/PairStorage.sol 517a949cdc77b636131a3b11dc5d2cc97888ab3f

contracts/PriceAggregator.sol 464ff09475689e533b98df7fea5d7016f937d5fb

contracts/Trading.sol 86c33d2d0967123aa3d121170268eec0c57cea15

contracts/TradingCallbacks.sol 6b73de2aa638d33c183661cd38af24ec65f17bfc

contracts/TradingStorage.sol 224c26adf40a3f834ad5562a20f9cf34808c85dd

contracts/TriggerInfo.sol 22e906f56da80d4c4cb9dc69bb5c98114a0222d7

15


