

Overview

Project Summary

● Name: Krav
● Platform: Base
● Language: Solidity
● Repository:

○ https://github.com/kravmaxx/krav-contracts-aduit
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Krav

Version v1

Type Solidity

Dates Mar 15 2024

Logs Mar 15 2024

Vulnerability Summary

Total High-Severity issues 1

Total Medium-Severity issues 3

Total Low-Severity issues 5

Total informational issues 4

Total 13

Contact
E-mail: support@salusec.io

1

https://github.com/kravmaxx/krav-contracts-aduit

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. User funds may be locked in the contract 6
2. Cooldown mechanism may be bypassed via token transfer 7
3. Chainlink’s latestRoundData() might return stale results 8
4. Setting maxOpenInterestDai to 0 will not pause trading on a specific pair 9
5. Lack of duplicate checks for nodes 10
6. Improper LINK fee for NFT order execution 11
7. Inaccurate funding/rollover fee calculation 13
8. Lack of input parameter checks in the setPairParams() function 15
9. Unimplemented functions 16

2.3 Informational Findings 17
10. Share price changes may cause the call to withdraw() to fail 17
11. Inconsistency between documentation and implementation 19
12. Redundant code 20
13. Gas optimization suggestions 21

Appendix 23
Appendix 1 - Files in Scope 23

3

Introduction
1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 User funds may be locked in the contract High Business Logic Pending

2 Cooldown mechanism may be bypassed via

token transfer

Medium Business Logic Pending

3 Chainlink’s latestRoundData() might return stale

results

Medium Data Validation Pending

4 Setting maxOpenInterestDai to 0 will not pause

trading on a specific pair

Medium Business Logic Pending

5 Lack of duplicate checks for nodes Low Data Validation Pending

6 Improper LINK fee for NFT order execution Low Business Logic Pending

7 Inaccurate funding/rollover fee calculation Low Numerics Pending

8 Lack of input parameter checks in the

setPairParams() function

Low Data Validation Pending

9 Unimplemented functions Low Business Logic Pending

10 Share price changes may cause the call to

withdraw() to fail

Informational Business Logic Pending

11 Inconsistency between documentation and

implementation

Informational Inconsistency Pending

12 Redundant code Informational Redundancy Pending

13 Gas optimization suggestions Informational Gas
Optimization

Pending

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. User funds may be locked in the contract

Severity: High Category: Business Logic

Target:
- contracts/KToken.sol

Description

Unlike the original ERC4626 contract, in the KToken contract, the share price is based on
the accRewardsPerToken and accPnlPerToken variables. The accRewardsPerToken
variable can only be updated through the distributeReward() function, in which users can
donate assets. The accPnlPerToken variable is related to the part of assets transferred in
and out. Simply transferring tokens to the contract can not update these two variables.

Thus, if a user deposits some assets through the deposit() function and the calculated
share amount is 0, his funds will be locked in the contract forever.

contracts/KToken.sol:L142-L146
function deposit(uint assets, address receiver) public override checks(assets) returns

(uint) {

uint shares = previewDeposit(assets);

_deposit(_msgSender(), receiver, assets, shares);

return shares;

}

Recommendation

Consider reverting the transaction if the calculated amount of share is 0.

6

2. Cooldown mechanism may be bypassed via token transfer

Severity: Medium Category: Business Logic

Target:
- contracts/KToken.sol

Description

Users can request a withdrawal through the makeWithdrawRequest() or
makeRedeemRequest() functions and settle the withdrawal after the cool period. However,
shares that have been requested to withdraw will not be recorded or locked. Thus, users
can make a request every epoch with the same shares.

contracts/KToken.sol:L154-L162
function makeWithdrawRequest(uint assets) public checks(assets) {

require(assets <= maxWithdraw(_msgSender()), "ERC4626: withdraw more than max");

(uint256 currentEpoch,) = this.updateEpoch();
uint shares = previewWithdraw(assets);
reqWithdrawals[_msgSender()][currentEpoch+coolPeriod] = shares;

emit WithdrawRequested(_msgSender(), assets);
}

contract/KToken.sol:L172-L180
function withdraw(uint assets, address receiver, address _owner) public override
checks(assets) returns (uint) {

uint shares = previewWithdraw(assets);
(uint256 currentEpoch,) = this.updateEpoch();
require(reqWithdrawals[_msgSender()][currentEpoch] == shares, "request first");
reqWithdrawals[_msgSender()][currentEpoch] = 0;

_withdraw(_msgSender(), receiver, _owner, assets, shares);
return shares;

}

Here is a possible scenario (the cool period lasts for 2 epochs):

1. Alice owns 1 share and makes withdrawal requests for 1 share at epoch 1 and 2;
2. Alice settles the withdrawal for 1 share at epoch 3;
3. Bob also wants to withdraw 1 share and transfer his share to Alice. Alice withdraws

Bob’s share at epoch 4. Thus, Bob’s cool period is bypassed.

Recommendation

Consider recording or locking shares that have been requested to withdraw.

7

3. Chainlink’s latestRoundData() might return stale results

Severity: Medium Category: Data Validation

Target:
- contracts/PriceAggregator.sol

Description

In the fulfill() function, the price provided by the node may be compared with the return
value of the Chainlink’s latestRoundData(). According to Chainlink’s documentation, the
answer will be updated when the value deviates beyond a specified threshold or when the
heartbeat idle time has passed. However, if answers are not updated in time, prices
provided by nodes may be compared with stale prices, affecting related trades.

contracts/PriceAggregator.sol:L149-L179
function fulfill(bytes32 _requestId, uint _price) external
recordChainlinkFulfillment(_requestId){

...
uint feedPrice = _price;

IPairsStorage.Feed memory f = pairsStorage.pairFeed(r.pairIndex);
if (f.feed1 != address(0)) {

(, int feedPrice1, , ,) = IChainlinkFeed(f.feed1).latestRoundData();

if(f.feedCalculation == IPairsStorage.FeedCalculation.DEFAULT){
feedPrice = uint(feedPrice1*int(PRECISION)/1e8);

}else if(f.feedCalculation == IPairsStorage.FeedCalculation.INVERT){
feedPrice = uint(int(PRECISION)*1e8/feedPrice1);

}else{
(, int feedPrice2, , ,) = IChainlinkFeed(f.feed2).latestRoundData();
feedPrice = uint(feedPrice1*int(PRECISION)/feedPrice2);

}
}

uint priceDiff = _price >= feedPrice ? (_price - feedPrice) : (feedPrice -
_price);

if(priceDiff * PRECISION * 100 / feedPrice <= f.maxDeviationP)

Recommendation

It is recommended to track the updatedAt value from the latestRoundData() function to
make sure that the answer is recent enough to be compared. If the reported answer is not
updated within the heartbeat or within the acceptable time limits, consider rejecting it.

8

https://docs.chain.link/data-feeds#check-the-timestamp-of-the-latest-answer

4. Setting maxOpenInterestDai to 0 will not pause trading on a
specific pair

Severity: Medium Category: Business Logic

Target:
- contracts/TradingStorage.sol
- contracts/TradingCallbacks.sol

Description

Setting maxOpenInterestDai to 0 for a specific pair is expected to pause trading on that
pair.

contracts/TradingStorage.sol:L207-L211
function setMaxOpenInterestDai(uint _pairIndex, uint _newMaxOpenInterest) external
onlyGov{

// Can set max open interest to 0 to pause trading on this pair only
openInterestDai[_pairIndex][2] = _newMaxOpenInterest;
...

}

While in the TradingCallbacks contract, the withinExposureLimits() function could return
true if maxOpenInterestDai is 0.

contracts/TradingCallbacks.sol:L445-L451
function withinExposureLimits(uint _pairIndex, bool _buy, uint _positionSizeDai, uint
_leverage) private view returns(bool){

...
uint256 maxOpenInterestDai = storageT.openInterestDai(_pairIndex, 2);
return (maxOpenInterestDai == 0 || storageT.openInterestDai(_pairIndex, _buy ? 0

: 1) + _positionSizeDai * _leverage <= maxOpenInterestDai)
&& pairsStored.groupCollateral(_pairIndex, _buy) + _positionSizeDai <=

pairsStored.groupMaxCollateral(_pairIndex);
}

Consider withinExposureLimits() function’s usage in the openTradeMarketCallback() and
executeNftOpenOrderCallback() functions, it should instead return false if
maxOpenInterestDai is 0 to pause the trading.

Recommendation

It is recommended to let the withinExposureLimits() function return false if
maxOpenInterestDai is 0.

9

5. Lack of duplicate checks for nodes

Severity: Low Category: Data Validation

Target:
- contracts/PriceAggregator.sol

Description

In the PriceAggregator contract, the addNode() function implements duplicate checks for
input nodes but there are no node duplicate checks in the initialize() and replaceNode()
functions.

contracts/PriceAggregator.sol:L61-L76
function initialize(

IStorage _storageT,
IPairsStorage _pairsStorage,
address[] memory _nodes,
address _linkAddress, address _triggerInfo

) external initializer {
require(_nodes.length > 0, "WRONG_PARAMS");
...
nodes = _nodes;
...

}

contracts/PriceAggregator.sol:L98-L105
function replaceNode(uint _index, address _a) external onlyGov{

require(_index < nodes.length, "WRONG_INDEX");
require(_a != address(0), "VALUE_0");

emit NodeReplaced(_index, nodes[_index], _a);

nodes[_index] = _a;
}

Recommendation

It is recommended to also implement duplicate checks for input nodes in the initialize() and
replaceNode() functions.

10

6. Improper LINK fee for NFT order execution

Severity: Low Category: Business Logic

Target:
- contracts/Trading.sol
- contracts/TradingStorage.sol

Description

Triggers need to pay LINK fees for every NFT order execution.

contracts/Trading.sol:L375-L382
function executeNftOrder(

IStorage.LimitOrder _orderType,

address _trader,

uint _pairIndex,

uint _index

) external notContract notDone{

...

// link transfer

storageT.transferLinkToAggregator(msg.sender);

uint orderId = aggregator.getPrice(

_pairIndex,

_orderType == IStorage.LimitOrder.OPEN ?

IAggregator.OrderType.LIMIT_OPEN :

IAggregator.OrderType.LIMIT_CLOSE

);

...

}

The actual LINK fee spent in a single price request is linkFee() * nodes.length.

contracts/PriceAggregator.sol:L132-L143
function getPrice(

uint _pairIndex,
OrderType _orderType

) external onlyTrading returns(uint){
...
uint linkFeePerNode = linkFee();
...
for(uint i = 0; i < nodes.length; i ++){

orderIdByRequest[sendChainlinkRequestTo(nodes[i], linkRequest, linkFeePerNode)] =
orderId;

}

However, triggers only pay linkFee() for one node.

contracts/TradingStorage.sol:L391-L393
function transferLinkToAggregator(address _from) external onlyTrading{

linkErc677.transferFrom(_from, address(priceAggregator),
priceAggregator.linkFee());
}

11

Recommendation

Consider updating the logic in the transferLinkToAggregator() function so that triggers pay
for enough LINK.

12

7. Inaccurate funding/rollover fee calculation

Severity: Low Category: Numerics

Target:
- contracts/TradingCallbacks.sol
- contracts/PairInfo.sol
- contracts/Trading.sol

Description

When users close trades, the contract will calculate related funding fees and rollover fees
based on positionSizeDai.

contracts/TradingCallbacks.sol:L364-L381
function unregisterTrade(

IStorage.Trade memory _trade,

int _percentProfit, // PRECISION

uint _lpFee, // 1e18

uint _triggerReward, // 1e18

address _trigger

) private returns(uint daiSentToTrader){

// 1. Calculate net PnL (before closing and holding fees)

daiSentToTrader = pairInfos.getTradeValue(

_trade.trader,

_trade.pairIndex,

_trade.index,

_trade.buy,

_trade.positionSizeDai,

_trade.leverage,

_percentProfit,

0

);

contracts/PairInfos.sol:L445-L463
function getTradeValue(

address trader,
uint pairIndex,
uint index,
bool long,
uint collateral, // 1e18 (DAI)
...

) external onlyCallbacks returns(uint amount){ // 1e18 (DAI)
storeAccFundingFees(pairIndex);

uint r = getTradeRolloverFee(trader, pairIndex, index, collateral);
int f = getTradeFundingFee(trader, pairIndex, index, long, collateral, leverage);

...
}

The positionSizeDai could be changed in the updateSl() function. If the positionSizeDai
becomes smaller, the rollover fee paid by users will decrease, and the funding fees will also
decrease or increase.

13

contracts/Trading.sol:L299-L307
function updateSl(uint _pairIndex, uint _index, uint _newSl) external notDone {

...

uint levPosDai = t.initialPosToken * t.leverage;

t.positionSizeDai -= storageT.handleDevGovFees(

t.pairIndex,

levPosDai / 2

);

storageT.updateTrade(t);

...

}

Recommendation

Consider calculating accumulated rollover fees and funding fees in a timely manner each
time positionSizeDai changes.

14

8. Lack of input parameter checks in the setPairParams() function

Severity: Low Category: Data Validation

Target:
- contracts/PairInfos.sol

Description

If setting through the setRolloverFeePerBlockP() and setFundingFeePerBlockP() functions,
there are checks to ensure that the input value does not exceed a cap value.

contracts/PairInfos.sol:L198-L206
function setFundingFeePerBlockP(uint pairIndex, uint value) public onlyManager{

require(value <= 10000000, "TOO_HIGH"); // ≈ 40% per day

storeAccFundingFees(pairIndex);

pairParams[pairIndex].fundingFeePerBlockP = value;

emit FundingFeePerBlockPUpdated(pairIndex, value);
}

contracts/PairInfos.sol:L177-L185
function setRolloverFeePerBlockP(uint pairIndex, uint value) public onlyManager{

require(value <= 25000000, "TOO_HIGH"); // ≈ 100% per day

storeAccRolloverFees(pairIndex);

pairParams[pairIndex].rolloverFeePerBlockP = value;

emit RolloverFeePerBlockPUpdated(pairIndex, value);
}

However, there is no such check for RolloverFeePerBlockP and FundingFeePerBlockP in
the setPairParams() function.

contracts/PairInfos.sol:L131-L138
function setPairParams(uint pairIndex, PairParams memory value) public onlyManager{

storeAccRolloverFees(pairIndex);
storeAccFundingFees(pairIndex);

pairParams[pairIndex] = value;

emit PairParamsUpdated(pairIndex, value);
}

Recommendation

It is recommended to implement similar checks for RolloverFeePerBlockP and
FundingFeePerBlockP in the setPairParams() function.

15

9. Unimplemented functions

Severity: Low Category: Business Logic

Target:
- contracts/Trading.sol
- contracts/TradingCallbacks.sol

Description

There are some functions called using interfaces, but no implemented functions can be
found in the relevant contracts of the current code base, e.g. IAggregator.triggerInfo().

contracts/TradingCallbacks.sol:L247-L248
IAggregator aggregator = storageT.priceAggregator();
ITriggerInfo triggerInfo = aggregator.triggerInfo();

Recommendation

It is recommended to inherit the corresponding interface when implementing the contract to
avoid omissions.

16

2.3 Informational Findings

10. Share price changes may cause the call to withdraw() to fail

Severity: Informational Category: Business Logic

Target:
- contracts/KToken.sol

Description

Users can request a withdrawal for a specific amount of assets through the
makeWithdrawRequest() function. The makeWithdrawRequest() will record the
corresponding share amounts. After the cool period epoch, the withdrawal request can be
settled through the withdraw() or redeem() functions.

contracts/KToken.sol:L154-L162
function makeWithdrawRequest(uint assets) public checks(assets) {

...
uint shares = previewWithdraw(assets);
reqWithdrawals[_msgSender()][currentEpoch+coolPeriod] = shares;
...

}

However, the share price may change during the cool period, causing the return value of
the previewWithdraw() function to be different between makeWithdrawRequest() and
withdraw(). Therefore, the calculated amount of shares may not match the recorded
amount, resulting in revert. In this case, users can only use the redeem() function to
withdraw.

contracts/KToken.sol:L172-L180
function withdraw(uint assets, address receiver, address _owner) public override
checks(assets) returns (uint) {

uint shares = previewWithdraw(assets);
(uint256 currentEpoch,) = this.updateEpoch();
require(reqWithdrawals[_msgSender()][currentEpoch] == shares, "request first");
reqWithdrawals[_msgSender()][currentEpoch] = 0;

_withdraw(_msgSender(), receiver, _owner, assets, shares);
return shares;

}

contracts/KToken.sol:L182-L190
function redeem(uint shares, address receiver, address _owner) public override
checks(shares) returns (uint) {

(uint256 currentEpoch,) = this.updateEpoch();
require(reqWithdrawals[_msgSender()][currentEpoch] == shares, "request first");
reqWithdrawals[_msgSender()][currentEpoch] = 0;

uint assets = previewRedeem(shares);
_withdraw(_msgSender(), receiver, _owner, assets, shares);
return assets;

}

17

Recommendation

It is recommended to inform users about the possibility of failure to withdraw using the
withdraw() function in the document.

18

11. Inconsistency between documentation and implementation

Severity: Informational Category: Inconsistency

Target:
- contracts/PairInfos.sol

Description

The document states that liquidation price distance is calculated according to the following
formula:

Liquidation Price Distance = Open Price * (Collateral * 0.9 - Funding Fee) / Collateral / Leverage.

However, the calculation of liquidation price distance in the code is different from what is
stated in the document.

contracts/PairInfos.sol:L432-L435
int liqPriceDistance = int(openPrice) * (

int(collateral * LIQ_THRESHOLD_P / 100)
- int(rolloverFee) - fundingFee

) / int(collateral) / int(leverage);

Recommendation

Consider fixing the mismatch between the documentation and implementation.

19

12. Redundant code

Severity: Informational Category: Redundancy

Target:
- contracts/Trading.sol
- contracts/TriggerInfo.sol
- contracts/PriceAggregator.sol
- contracts/TradingCallbacks.sol
- contracts/TradingStorage.sol

Description

The following events are defined but not used.

contracts/Trading.sol:L34,L39
event AddressUpdated(string name, address a);
event TriggerOrderSameBlock(address nftHolder, address trader, uint pairIndex);

contracts/TriggerInfo.sol:L36
event TokensClaimed(address bot, uint tokens);

contracts/PriceAggregator.sol:L40
event AddressUpdated(string name, address a);

contracts/TradingCallbacks.sol:L66-L67
event AddressUpdated(string name, address a);
event NumberUpdated(string name, uint value);

Since the storeOpenLimitOrder() function in the TradingStorage contract will also calls the
firstEmptyOpenLimitIndex() function, the index query in the Trading contract can be safely
removed.

contracts/TradingStorage.sol:L300-L301
function storeOpenLimitOrder(OpenLimitOrder memory o) external onlyTrading{

o.index = firstEmptyOpenLimitIndex(o.trader, o.pairIndex);

contracts/Trading.sol:L138-L156
uint index = storageT.firstEmptyOpenLimitIndex(msg.sender, t.pairIndex);

storageT.storeOpenLimitOrder(
IStorage.OpenLimitOrder(

msg.sender,
t.pairIndex,
index,
t.positionSizeDai,
...

)
);

Recommendation

Consider removing the redundant code.

20

13. Gas optimization suggestions

Severity: Informational Category: Gas Optimization

Target:
- contracts/KToken.sol
- contracts/TradingCallbacks.sol
- contracts/PriceAggregator.sol

Description

contracts/KToken.sol:L232-L240
function updateEpoch() external returns (uint256, uint256) {

epochDuration = 20 minutes;
...

}

Each time the updateEpoch() function is called, the epochDuration variable is set to 20
minutes. Since it is not used in other functions, consider declaring it as a constant.

contracts/TradingCallbacks.sol:L201-L203
if((t == ITriggerInfo.OpenLimitOrderType.LEGACY ? (a.price >= o.minPrice && a.price <=
o.maxPrice) :

t == ITriggerInfo.OpenLimitOrderType.REVERSAL ? (o.buy ? a.price <= o.maxPrice :
a.price >= o.minPrice) :

(o.buy ? a.price >= o.minPrice : a.price <= o.maxPrice))

If the order type is LEGACY, the setOpenLimitOrderType() function will not be called. Thus,
the TriggerInfo contract will not store LEGACY orders and the above code can be simplified
to:

if((t == ITriggerInfo.OpenLimitOrderType.REVERSAL ? (o.buy ? a.price <= o.maxPrice :
a.price >= o.minPrice) :
(o.buy ? a.price >= o.minPrice : a.price <= o.maxPrice))

contracts/PriceAggregator.sol:L149-L157
function fulfill(bytes32 _requestId, uint _price) external
recordChainlinkFulfillment(_requestId){

if (_price == 0) {
return;

}
uint orderId = orderIdByRequest[_requestId];
Order storage r = orders[orderId];
delete orderIdByRequest[_requestId];

If _price is equal to 0, it is recommended to delete orderIdByRequest[_requestId] to save
gas.

contracts/Trading.sol:L92-L191
function openTrade(

...
uint _spreadReductionId,
...

) external notDone {
...

21

uint spreadReductionP = _spreadReductionId > 0 ?
storageT.spreadReductionsP(_spreadReductionId-1) : 0;

...
// legacy
require(_spreadReductionId == 0, "NO_CORRESPONDING_NFT_SPREAD_REDUCTION");
...

}

In the openTrade() function, _spreadReductionId is required to be 0, so spreadReductionP
can be set to 0 directly or consider removing the _spreadReductionId parameter.

Recommendation

Consider making changes based on the above suggestions.

22

Appendix
Appendix 1 - Files in Scope
This audit covered the following files in commit 98ffa7c:

File SHA-1 hash

contracts/KToken.sol c83eb812643aecfba9da7f9a3507aa28c4dba32b

contracts/PairInfos.sol b1c72a489a7b2c92f6cc2b536cf6b99ba42dfb6a

contracts/PairStorage.sol 7d08796c7fc184f6ce3fbb3471165f40b0c48ec0

contracts/PriceAggregator.sol 2b7ab92c68f1a687cf8036238133573fb55a7af9

contracts/Trading.sol 73241095dc81e85d3901f1a5526c27ccb7198612

contracts/TradingCallbacks.sol d42ec6a11615ac9c90f06523886ee4f0e07fbebb

contracts/TradingStorage.sol 224c26adf40a3f834ad5562a20f9cf34808c85dd

contracts/TriggerInfo.sol 22e906f56da80d4c4cb9dc69bb5c98114a0222d7

23

https://github.com/kravmaxx/krav-contracts-aduit/commit/98ffa7cb105c82ff91e29436ae08030fe2675c7d

