
Main Memory/RAM (lower to higher memory addresses)

.text Program instructions

.data Initialized, static data (.rdata == "Read-Only Data")

.bss (block starting
symbol) Uninitialized static variables (zeroed out)

Heap Dynamically allocated (allocated at runtime) and grows toward higher
memory addresses ↓

Stack
Local variables, function parameters, return addresses, and grows
toward lower memory addresses ↑ 

0x00000000

0x7FFFFFFF

Central Processing Unit (CPU)

Control Unit 
(Fetches Instructions

from RAM)

Arithmetic Logic Unit 
(Executes instructions and sets

registers/flags)

Register Register Register Register

MyProgram.exe

MyProgram.c

Language Processing System

Pr
ep

ro
ce

ss
or

Processes macros and
substitutes text in the

program code accordingly

C
om

pi
le

r

Translates high-level code
to assembly code

A
ss

em
bl

er

Converts assembly code to
machine code

Li
nk

er

Merges code and data from
multiple files into

appropriate sections and
resolves any

references/symbols from
external modules

Loader

gcc -E MyProgram.c 
- 

Preprocessed MyProgram.c

gcc -S MyProgram.c 
- 

MyProgram.S

gcc -c MyProgram.c
- 

MyProgram.o

Common x86 Registers

RAX/EAX/AX/AH/AL Accumulator; Used for input/output, arithmetic,and return values from functions

RBX/EBX/BX/BH/BL Base; Used for indexed addressing (using one register as base and other as index)

RCX/ECX/CX/CH/CL Count; Stores loop count variables in iterative operations

RDX/EDX/DX/DH/DL Data; Input/output, sometimes extends RAX for multiply/divide

RSP/ESP/SP/SPL Stack Pointer; Stores current position within the stack

RBP/EBP/BP/BPL Base Pointer; Helps in referencing parameter and other stack variables as offsets from
the "base" of the stack

RSI/ESI/SI/SIL Used as a source index for string operations

RDI/EDI/DI/DIL Used as a destination index for string operations

RIP/EIP/IP Stores next instruction to be executed

R8-R15 x64 general purpose registers

CS/DS/SS/ES/FS/GS 16-bit segment registers for accessing specific areas of memory segments, including:
Code (.text)/Data (.data)/Stack/Extra/General/General

RFLAGS/EFLAGS Status register holding one-bit flags, e.g. ZF (zero-flag), CF (carry-flag), SF (sign-flag),
TF (trap-flag)

MOAR But wait, there's more! Check the video resource links for more information on registers -
there are a lot of them!

Common x86 Instructions

mov eax, ebx; mov eax, 0x13,
mov eax, [0x4000000] Copy a value (from register, from literal, or from address) to a register

lea eax, [ebx+esi*4] Load effective address; Similar to move, but loads the address "ebx + esi * 4" itself into a
register rather than the data at that address

add eax, 0x1; sub eax, 0x1;
inc eax; dec eax Add, subtract, increment, or decrement the value in a register

mul eax, 0x5; div eax, 0x5;
imul eax, 0x5; cdq; idiv eax,

0x5;

Multiply the value in EAX or Divide the value in EDX:EAX, and store results in EDX:EAX
(for division, result in EAX, remainder in EDX); imul and idiv are signed operations (cdq is
used prior to idiv to sign-extend EAX to EDX)

xor eax, eax; or eax, ebx; and
eax, ebx; not eax XOR, OR, AND, and NOT bitwise operations

shl bl, 0x4; shr bl, 0x4; rol bl,
0x4; ror bl, 0x4;

Bitwise shift and and rotate operations (bits shifted "fall off" vs bits rotated are cycled
back to the least significant bit) (NOTE: There are variations such as SAR/SAL which you
may see used instead of SHR/SHL to preserve sign bits - also note that SAL and SHL
perform exactly the same operations, whereas SHR and SAL do not).

nop No operation; Just do absolutely nothing and wait for the next thing to happen (relatable,
amirite?)

jz 0x4000000; jnz ...; je ...; jne
..; jg ...; jge ...; jl ...; jle ...; ja ...;
jb ...; jae ...; jbe ...; jo ...; js ...

Conditional jumps (zero, not zero, equal, not equal, greater than, greater than or equal to,
less than, less than or equal to, greater than (unsigned), greater than or equal
(unsigned); less than or equal to (unsigned), overflow bit set, sign bit set

test eax, eax; cmp eax, 0x4 Test is the same as AND and sets the zero flag (test eax, eax is the same as checking if
eax is 0); cmp is identical to SUB but only sets zero and carry flags

rep; repe; repz; repne; repnz;
Increments ESI and EDI offsets and decrements ECX; rep continues until ECX is 0,
repe/repz/repne/repnz continue until ECX is 0 or the zero flag is set (repe/repz stop if ZG
= 0; repne/repnz stop if ZF = 1)

repe cmpsb EDI and ESI are two buffers; ECX is buffer length; Compares both buffers until ECX = 0
or a difference is found in the buffer contents

rep stosb Initialize all values of the buffer at EDI to the value in AL

rep movsb ESI is source buffer; EDI is destination buffer; ECX is length of bytes to copy; Copies
these bytes from ESI to EDI until ECX is 0

repne scasb EDI is the address of a buffer; AL contains a search byte; ECX is the buffer length;
Searches the buffer for the search byte until it is found or ECX is 0

push eax; pop ebx; pusha;
pushad; popa; popad

Pushes the value in EAX onto the stack (ESP); Pops the value at the top of the stack into
EBX and adjusts ESP; Pushes 16-bit general purpose registers on the stack; Pushes the
32-bit general purpose registers on the stack; Pops 16-bit values from stack into general
purpose registers; Pops 32-bit values from stack to general purpose registers

call 0x41001000 Calls a function; Moves value of EIP to stack and sets EIP to the start of the function at
0x41001000

ret Pops the return address off of the stack into EIP

MOAR But wait, there's more! Check the video resource links for more information on registers -
there are a lot of them!

Common x86 Calling Conventions (decided by compiler or programmer)

cdecl Parameters pushed onto stack from right-to-left; Caller cleans up the stack
and return value stored in EAX

stdcall Same as cdecl, except called function cleans up the stack

fastcall First few arguments pushed to registers (commonly ECX and EDX),
additional parameters are pushed right-to-left, calling function cleans up

Stack Layout During Function Call

EB
P-

8

b (2)

EB
P-

4

a (1)

EB
P Saved EBP (start of 

MyFunc stack frame)

EB
P+

4

Return Address to main()

EB
P+

8 
(o

r E
C

X)

x (1)

EB
P+

12
 (o

r R
D

X)

y (2)

EB
P+

16
 (o

r R
8)

z (3)

int main() { 
 ... 
 int res = MyFunc(1, 2, 3); 
        ... 
}

int MyFunc(int x, int y, int z) { 
 int a = 1; 
        int b = 2; 
        return ((a * x) + (b - y * z));
}

ESP

EBP

Parentheses show how parameters are passed in fastcall/x64. 
 

Note that XMM0, XMM1, XMM2, etc. are used instead of
RCX/RDX/R8/etc. for parameter values that are floating-point and for

non-scalar return values.


