
Reya Network Security Review
Pashov Audit Group

Conducted by: T1MOH, Dan, merlinboii, ZanyBonzy
October 25th - September 30th

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Reya Network
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Critical Findings
[C-01] Pool.removeLiquidityV2() uses incorrect token to
send

8.2. Medium Findings
[M-01] removeLiquidityBySigV2 does not correctly
hash its contents to comply with EIP-712

1

2

2

2

2

3

3
3
4

5

6

8

8

8

10

10

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the Reya-Labs/reya-network repository was done
by Pashov Audit Group, with a focus on the security aspects of the application's
smart contracts implementation.

4. About Reya Network
Reya Network is a trading-optimised modular L2 for perpetuals. The chain layer is
powered by Arbitrum Orbit and is gas-free, with transactions ordered on a FIFO
basis. The protocol layer directly tackles the vertical integration of DeFi
applications by breaking the chain into modular components to support trading,
such as PnL settlements, margin requirements, liquidations.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

4

6. Security Assessment Summary
review commit hash - fb521866f00eb2fd7021a763a12aaf7d727e83f0

fixes review commit hash - 634058385163d38f1da033daf941c6fbf94884c6

Scope

The following smart contracts were in scope of the audit:

IAccountModule

ICollateralPoolModule

AccountExposure

AccountModule

CollateralPoolModule

CollateralPool

Market

IDepositsModule

IWithdrawalsModule

Deposits

Withdrawals

DepositsModule

WithdrawalsModule

IAutoRebalanceModule

IConfigurationModule

ISharesModule

DataTypes

Errors

Events

FeatureFlagSupport

AutoRebalanceModule

ConfigurationModule

SharesModule

AllocationConfiguration

GlobalConfiguration

Pool

ShareBalances

5

https://github.com/Reya-Labs/reya-network/tree/fb521866f00eb2fd7021a763a12aaf7d727e83f0
https://github.com/Reya-Labs/reya-network/tree/634058385163d38f1da033daf941c6fbf94884c6

7. Executive Summary
Over the course of the security review, T1MOH, Dan, merlinboii, ZanyBonzy
engaged with Reya Network to review Reya Network. In this period of time a total
of 2 issues were uncovered.

Protocol Summary
Protocol Name Reya Network

Repository https://github.com/Reya-Labs/reya-network

Date October 25th - September 30th

Protocol Type Perpetuals Trading L2

Findings Count
Severity Amount

Critical 1

Medium 1

Total Findings 2

6

Summary of Findings
ID Title Severity Status

[C-01] Pool.removeLiquidityV2() uses incorrect
token to send Critical Resolved

[M-01]
removeLiquidityBySigV2 does not
correctly hash its contents to comply with
EIP-712

Medium Resolved

7

8. Findings

8.1. Critical Findings

[C-01] Pool.removeLiquidityV2() uses
incorrect token to send

Severity
Impact: High

Likelihood: High

Description
Pool.sol will contain rUSD as quoteToken and deUSD, sdeUSD as
supporting collaterals. The update introduces v2 versions of deposit and
withdraw functions. It allows the deposit/withdraw of any following tokens:
rUSD, deUSD, sdeUSD.

The problem is that by mistake Pool.removeLiquidityV2() always transfers
quoteToken instead of withdrawing token. As a result, deUSD and sdeUSD
cannot be withdrawn.

Recommendations

8

function removeLiquidityV2(
 Data storage self,
 address owner,
 RemoveLiquidityV2Input memory input
)
 internal
 returns (uint256)
 {
 ...

 // withdraw from the core to the passive pool
 coreWithdrawal(self.accountId, input.token, tokenAmount);

- // transfer quote token amount to the receiver
+ // transfer collateral token amount to the receiver
 // note, tokens are transferred to the receiver rather than the owner!
- self.quoteToken.safeTransfer(input.receiver, tokenAmount);
+ input.token.safeTransfer(input.receiver, tokenAmount);

 return tokenAmount;
 }

9

8.2. Medium Findings

[M-01] removeLiquidityBySigV2 does not
correctly hash its contents to comply with
EIP-712

Severity
Impact: Medium

Likelihood: Medium

Description
removeLiquidityBySigV2 hashes the signature as shown below but doesn't
fully hash it to comply with EIP-712.

Signature.validateRecoveredAddress(
 Signature.calculateDigest(
 keccak256(
 abi.encode(
 REMOVE_LIQUIDITY_V2_TYPEHASH,
 block.chainid,
 msg.sender,
 owner,
 poolId,
>>> abi.encode(
 REMOVE_LIQUIDITY_V2_INPUT_TYPEHASH,
 input.token,
 input.sharesAmount,
 input.receiver,
 input.minOut
),
 Signature.incrementSigNonce(owner),
 sig.deadline,
 keccak256(extraSignatureData)
)
)
),
 owner,
 sig
);

The RemoveLiquidityV2Input struct is only encoded, not hashed as required
by the standard.

10

https://eips.ethereum.org/EIPS/eip-712#definition-of-encodedata

The struct values are encoded recursively as hashStruct(value).

As a result, EIP-compliant signers will have issues when attempting to use the
removeLiquidityBySigV2 function.

Recommendations
Hash the contents of the RemoveLiquidityV2Input struct.

Signature.validateRecoveredAddress(
 Signature.calculateDigest(
 keccak256(
 abi.encode(
 REMOVE_LIQUIDITY_V2_TYPEHASH,
 block.chainid,
 msg.sender,
 owner,
 poolId,
+ keccak256(
 abi.encode(
 REMOVE_LIQUIDITY_V2_INPUT_TYPEHASH,
 input.token,
 input.sharesAmount,
 input.receiver,
 input.minOut
)
+),
 Signature.incrementSigNonce(owner),
 sig.deadline,
 keccak256(extraSignatureData)
)
)
),
 owner,
 sig
);

11

