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1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the Reya-Labs/reya-network repository was done
by Pashov Audit Group, with a focus on the security aspects of the application's
smart contracts implementation.

4. About Reya Network
Reya Network is a trading-optimised modular L2 for perpetuals. The chain layer is
powered by Arbitrum Orbit and is gas-free, with transactions ordered on a FIFO
basis. The protocol layer directly tackles the vertical integration of DeFi
applications by breaking the chain into modular components to support trading,
such as PnL settlements, margin requirements, liquidations.
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5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.
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5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix
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6. Security Assessment Summary
review commit hash - fb521866f00eb2fd7021a763a12aaf7d727e83f0

fixes review commit hash - 634058385163d38f1da033daf941c6fbf94884c6

Scope

The following smart contracts were in scope of the audit:

IAccountModule

ICollateralPoolModule

AccountExposure

AccountModule

CollateralPoolModule

CollateralPool

Market

IDepositsModule

IWithdrawalsModule

Deposits

Withdrawals

DepositsModule

WithdrawalsModule

IAutoRebalanceModule

IConfigurationModule

ISharesModule

DataTypes

Errors

Events

FeatureFlagSupport

AutoRebalanceModule

ConfigurationModule

SharesModule

AllocationConfiguration

GlobalConfiguration

Pool

ShareBalances
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7. Executive Summary
Over the course of the security review, T1MOH, Dan, merlinboii, ZanyBonzy
engaged with Reya Network to review Reya Network. In this period of time a total
of 2 issues were uncovered.

Protocol Summary
Protocol Name Reya Network

Repository https://github.com/Reya-Labs/reya-network

Date October 25th - September 30th

Protocol Type Perpetuals Trading L2

Findings Count
Severity Amount

Critical 1

Medium 1

Total Findings 2
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Summary of Findings
ID Title Severity Status

[C-01] Pool.removeLiquidityV2() uses incorrect
token to send Critical Resolved

[M-01]
removeLiquidityBySigV2 does not
correctly hash its contents to comply with
EIP-712

Medium Resolved
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8. Findings

8.1. Critical Findings

[C-01] Pool.removeLiquidityV2()  uses
incorrect token to send

Severity
Impact: High

Likelihood: High

Description
Pool.sol  will contain rUSD as quoteToken and deUSD, sdeUSD as
supporting collaterals. The update introduces v2 versions of deposit and
withdraw functions. It allows the deposit/withdraw of any following tokens:
rUSD, deUSD, sdeUSD.

The problem is that by mistake Pool.removeLiquidityV2()  always transfers
quoteToken instead of withdrawing token. As a result, deUSD and sdeUSD
cannot be withdrawn.

Recommendations
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function removeLiquidityV2(
        Data storage self,
        address owner,
        RemoveLiquidityV2Input memory input
    )
        internal
        returns (uint256)
    {
        ...

        // withdraw from the core to the passive pool
        coreWithdrawal(self.accountId, input.token, tokenAmount);

-       // transfer quote token amount to the receiver
+       // transfer collateral token amount to the receiver
        // note, tokens are transferred to the receiver rather than the owner!
-       self.quoteToken.safeTransfer(input.receiver, tokenAmount);
+       input.token.safeTransfer(input.receiver, tokenAmount);

        return tokenAmount;
    }
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8.2. Medium Findings

[M-01] removeLiquidityBySigV2  does not
correctly hash its contents to comply with
EIP-712

Severity
Impact: Medium

Likelihood: Medium

Description
removeLiquidityBySigV2  hashes the signature as shown below but doesn't
fully hash it to comply with EIP-712.

Signature.validateRecoveredAddress(
            Signature.calculateDigest(
                keccak256(
                    abi.encode(
                        REMOVE_LIQUIDITY_V2_TYPEHASH,
                        block.chainid,
                        msg.sender,
                        owner,
                        poolId,
>>>                     abi.encode(
                            REMOVE_LIQUIDITY_V2_INPUT_TYPEHASH,
                            input.token,
                            input.sharesAmount,
                            input.receiver,
                            input.minOut
                        ),
                        Signature.incrementSigNonce(owner),
                        sig.deadline,
                        keccak256(extraSignatureData)
                    )
                )
            ),
            owner,
            sig
        );

The RemoveLiquidityV2Input  struct is only encoded, not hashed as required
by the standard.
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The struct values are encoded recursively as hashStruct(value).

As a result, EIP-compliant signers will have issues when attempting to use the
removeLiquidityBySigV2  function.

Recommendations
Hash the contents of the RemoveLiquidityV2Input  struct.

Signature.validateRecoveredAddress(
            Signature.calculateDigest(
                keccak256(
                    abi.encode(
                        REMOVE_LIQUIDITY_V2_TYPEHASH,
                        block.chainid,
                        msg.sender,
                        owner,
                        poolId,
+                       keccak256(
                           abi.encode(
                              REMOVE_LIQUIDITY_V2_INPUT_TYPEHASH,
                              input.token,
                              input.sharesAmount,
                              input.receiver,
                              input.minOut
                          )
+                       ),
                        Signature.incrementSigNonce(owner),
                        sig.deadline,
                        keccak256(extraSignatureData)
                    )
                )
            ),
            owner,
            sig
        );
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