
Reya Network Security Review
Pashov Audit Group

Conducted by: Peakbolt, 0xbepresent, pontifex
April 30th 2024 - May 3rd 2024

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Reya Network
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. High Findings
[H-01] Lack of withdrawal limits check
[H-02] Ignoring withdrawal limits during accounts
merging

8.2. Medium Findings
[M-01] LPs can withdraw immediately even with
withdrawal cooldown
[M-02] New MarketConfigurationData causes existing
orders to fail
[M-03] Bypassing collateral cap check
[M-04] matchOrders affected if withdrawals exceed the
global limit

8.3. Low Findings
[L-01] Missing validation of non-zero value
[L-02] Command execution could fail
[L-03] Missing maxExposureFactor in
Errors.ExceededMaxExposure

1

2

2

2

2

3

3
3
4

4

5

7

7

7

8

10

10

11

13

14

16

16

18

19

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the reya-network repository was done by Pashov
Audit Group, with a focus on the security aspects of the application's smart
contracts implementation.

4. About Reya Network
Reya Network is a trading-optimised modular L2 for perpetuals. The chain layer is
powered by Arbitrum Orbit and is gas-free, with transactions ordered on a FIFO
basis. The protocol layer directly tackles the vertical integration of DeFi
applications by breaking the chain into modular components to support trading,
such as PnL settlements, margin requirements, liquidations.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

3

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - 5ef6ed67b5478b734485f04ebc6167630812092c

fixes review commit hash - 95671a3dd756d33a8cdce40dd728e388e23d2bce

Scope

The following smart contracts were in scope of the audit:

TransferCollateral

ExecutionModule

AccountCollateral

BackstopLPConfiguration

CollateralConfiguration

CollateralPool

Market

ConfigurationModule

PassivePerpInstrumentModule

ExecutionModule

OrderModule

Configuration

PrbMathHelper

Timer

Events

Errors

DataTypes

4

https://github.com/Reya-Labs/reya-network/tree/5ef6ed67b5478b734485f04ebc6167630812092c
https://github.com/Reya-Labs/reya-network/tree/95671a3dd756d33a8cdce40dd728e388e23d2bce

7. Executive Summary
Over the course of the security review, Peakbolt, 0xbepresent, pontifex engaged
with Reya Labs to review Reya Network. In this period of time a total of 9 issues
were uncovered.

Protocol Summary
Protocol Name Reya Network

Repository https://github.com/Reya-Labs/reya-network

Date April 30th 2024 - May 3rd 2024

Protocol Type Perpetuals Trading L2

Findings Count
Severity Amount

High 2

Medium 4

Low 3

Total Findings 9

5

Summary of Findings
ID Title Severity Status

[H-01] Lack of withdrawal limits check High Resolved

[H-02] Ignoring withdrawal limits during
accounts merging High Resolved

[M-01] LPs can withdraw immediately even
with withdrawal cooldown Medium Resolved

[M-02] New MarketConfigurationData
causes existing orders to fail Medium Acknowledged

[M-03] Bypassing collateral cap check Medium Resolved

[M-04] matchOrders affected if withdrawals
exceed the global limit Medium Resolved

[L-01] Missing validation of non-zero value Low Resolved

[L-02] Command execution could fail Low Acknowledged

[L-03] Missing maxExposureFactor in
Errors.ExceededMaxExposure Low Resolved

6

8. Findings

8.1. High Findings

[H-01] Lack of withdrawal limits check

Severity
Impact: Medium

Likelihood: High

Description
The provided update fully excludes withdrawal limits checks from the
CollateralConfiguration.checkWithdrawLimits function and puts them into
the AccountCollateral.updateBalance function. So
AccountCollateral.transferFunds and
ExposedModule.updateCollateralShares functions have neither
GlobalCollateralConfiguration.checkWithdrawLimits nor
CollateralConfiguration.checkWithdrawLimits check since they bypass the
updateBalance function.

7

function transferFunds
 (uint128 fromAccountId, uint128 toAccountId) internal {
 if (fromAccountId == toAccountId) {
 return;
 }

 Data storage fromAccountCollateral = load(fromAccountId);
 address[] storage collaterals = GlobalCollateralConfiguration.load
 ().collaterals;
 for (uint256 i = 0; i < collaterals.length; i++) {
 address activeCollateral = collaterals[i];
 int256 amount = fromAccountCollateral
 .collateralShares[activeCollateral];

 if (amount == 0) {
 continue;
 }

>> updateShares(fromAccountId, activeCollateral, -amount);
 updateShares(toAccountId, activeCollateral, amount);
 }
 }

// Export some internal functions
contract ExposedModule {
 using CollateralPool for CollateralPool.Data;
<...>
 function updateCollateralShares
 (uint128 cpId, address collateral, int256 sharesDelta) external {
>> CollateralPool.updateCollateralShares(CollateralPool.exists
 (cpId), collateral, sharesDelta);
 }
}

Recommendations
Consider implementing corresponding checks for these branches.

[H-02] Ignoring withdrawal limits during
accounts merging

Severity
Impact: High

Likelihood: Medium

Description

8

The CollateralPool.merge merges collateral pool child into the collateral
pool parent ignoring withdrawal limits of the child pool.

function merge(Data storage parent, Data storage child) internal {
<...>
 // transfer funds from the child collateral pool to the parent
 {

 for (uint256 i = 0; i < collaterals.length; i++) {
 address collateral = collaterals[i];
 int256 amount = child.collateralShares[collateral].toInt();

 if (amount == 0) {
 continue;
 }

 CollateralConfiguration.exists(parentId, collateral);
>> _updateCollateralShares(child, collateral, -amount);
 _updateCollateralShares(parent, collateral, amount);
 }
 }

Funds can be withdrawn directly after merge since child pool withdrawal
limits are not transferred to the parent pool.

Recommendations
Consider transferring all withdrawal limits from the child pool to the parent
pool.

9

8.2. Medium Findings

[M-01] LPs can withdraw immediately even
with withdrawal cooldown

Severity
Impact: Medium

Likelihood: Medium

Description
The withdrawal cooldown period for Backstop LPs is now configured using
backstopLPConfig.withdrawCooldownDurationInSeconds , such that the
withdrawal cooldown period is turned on when it is greater than 0 and turned
off when it is equal 0.

However, the issue is that Backstop LPs can start the withdrawal timer before
the withdrawal cooldown is turned on, allowing them to withdraw immediately
even after the withdrawal cooldown is enabled.

1. Suppose the cooldown period for withdrawal has been disabled for a while,
so withdrawCooldownDurationInSeconds == 0 .

2. Knowing that the cooldown period will be enabled soon, Backstop LPs
proceed to start the withdrawal timer using announceBackstopLpWithdraw() .

3. Protocol now enables withdrawal cooldown to X seconds.
4. However, those Backstop LPs who had announced withdrawal earlier will be

able to withdraw immediately as the withdrawal period is active.

10

function announceBackstopLpWithdraw(Account.Data storage account) internal {
 CollateralPool.Data storage collateralPool = AccountCollateral.getPool
 (account.id);

 uint128 backstopLpAccountId = backstopLPConfig.accountId;

 if (backstopLpAccountId != account.id) {
 revert Errors.AccountIsNotBackstopLp(
 account.id,
 backstopLpAccountId,
 block.timestamp
);
 }

 Timer.Data storage backstopLpWithdrawTimer = Timer.loadOrCreate(
 backstopLpTimerId(backstopLpAccountId)
);
 if (block.timestamp < backstopLpWithdrawTimer.startTimestamp) {
 revert Errors.BackstopLpCooldownPeriodAlreadyActive(
 backstopLpAccountId,
 backstopLpWithdrawTimer.startTimestamp,
 block.timestamp
);
 }
 if (backstopLpWithdrawTimer.isActive()) {
 revert Errors.BackstopLpWithdrawPeriodAlreadyActive(
 backstopLpAccountId,
 block.timestamp
);
 }

 backstopLpWithdrawTimer.schedule(
 block.timestamp
 +
 backstopLPConfig.withdrawCooldownDurationInSeconds,
 backstopLPConfig.withdrawDurationInSeconds
);
 }

Recommendations
Prevent Backstop LPs from starting withdrawal timer using
announceBackstopLpWithdraw() by reverting when
backstopLPConfig.withdrawCooldownDurationInSeconds == 0 .

[M-02] New MarketConfigurationData
causes existing orders to fail

Severity
Impact: Medium

Likelihood: Medium

11

Description
There are three new storage variables (depthFactor , maxExposureFactor ,
maxPSlippage) in MarketConfigurationData that are used to perform slippage
and exposure checks in Market.getPSlippage() .

The issue that that these new storage variables will be initialized to zero for the
existing Market as they were previously un-used before this upgrade.

When maxExposureFactor == 0 , it will cause getPSlippage() to incorrectly
revert even when net exposure is valid.

function getPSlippage(
 Data storage self,
 SD59x18 deltaBase,
 UD60x18 oraclePrice
)
 internal
 view
 returns (SD59x18 pSlippage)
 {
 MarketConfigurationData memory marketConfig = getConfig(self);

 uint256 riskMatrixIndex = marketConfig.riskMatrixIndex;
 UD60x18 depthFactor = marketConfig.depthFactor;
 UD60x18 maxExposureFactor = marketConfig.maxExposureFactor;
 UD60x18 maxPSlippage = marketConfig.maxPSlippage;

 (
 UD60x18maxExposureShort,
 UD60x18maxExposureLong,
 SD59x18[]memoryexposures
) = getPoolMaxExposures(self
 SD59x18 deltaExposure = convertBaseToExposure(deltaBase, oraclePrice);

 SD59x18 netExposure = exposures[riskMatrixIndex].add(deltaExposure);
 UD60x18 maxExposure = netExposure.lt
 (ZERO_sd) ? maxExposureShort : maxExposureLong;

 //@audit when maxExposureFactor == 0, this will revert for valid net
 // exposure too
 if (netExposure.abs().intoUD60x18().gte(maxExposure.mul
 (maxExposureFactor))) {
 revert Errors.ExceededMaxExposure(netExposure, maxExposure);
 }

 pSlippage = computePSlippage(
 {netExposure:netExposure,
 maxExposure:maxExposure,
 depthFactor:depthFactor}
);

 if (pSlippage.abs().intoUD60x18().gt(maxPSlippage)) {
 revert Errors.ExceededPSlippage(pSlippage, maxPSlippage);
 }
 }

Recommendations
12

Ensure that the new storage variables are initialized to default values when
performing the contract upgrade. Otherwise, handle the uninitialized value in
getPSlippage() .

[M-03] Bypassing collateral cap check

Severity
Impact: High

Likelihood: Low

Description
The CollateralPool.merge merges collateral pool child into collateral pool
parent bypassing cap check in updateCollateralShares function since it
directly invokes _updateCollateralShares function.

function merge(Data storage parent, Data storage child) internal {
<...>
 // transfer funds from the child collateral pool to the parent
 {

 for (uint256 i = 0; i < collaterals.length; i++) {
 address collateral = collaterals[i];
 int256 amount = child.collateralShares[collateral].toInt();

 if (amount == 0) {
 continue;
 }

 CollateralConfiguration.exists(parentId, collateral);
 _updateCollateralShares(child, collateral, -amount);
>> _updateCollateralShares(parent, collateral, amount);
 }
 }

In case the parent pool balance before the merge is not empty the
collateralConfig.baseConfig.cap can be exceeded.

Recommendations
Consider checking the collateral cap in the merge function.

13

[M-04] matchOrders affected if withdrawals
exceed the global limit

Severity
Impact: High

Likelihood: Low

Description
Within the AccountCollateral::updateBalance function, a validation was
added to check that withdrawals do not exceed a global percentage for each X
period of time (code line 120):

File: AccountCollateral.sol
107: function updateBalance
 (Account.Data storage account, address collateral, int256 assets) internal {
108: // Convert assets to shares
109: int256 shares = GlobalCollateralConfiguration.convertToShares
 (collateral, assets);
110:
111: // check withdrawal limits, globally and per collateral pool
112: if (assets < 0) {
113: uint256 withdrawnAssets = (-assets).toUint();
114:
115: if (hasPool(account.id)) {
116: uint128 collateralPoolId = getPool(account.id).id;
117: CollateralConfiguration.exists
 (collateralPoolId, collateral).checkWithdrawLimits(withdrawnAssets);
118: }
119:
120: GlobalCollateralConfiguration.checkWithdrawLimits
 (collateral, withdrawnAssets);
121: }
122:
123: updateShares(account.id, collateral, shares);
124: }

The issue arises when a fee amount is deducted from the account in
MatchOrderModule::executeMatchOrder , specifically in line 85:

14

File: MatchOrderModule.sol
034: function executeMatchOrder(
035: address caller,
036: uint128 marketId,
037: uint128 accountId,
038: uint128 exchangeId,
039: uint128[] memory counterpartyAccountIds,
040: bytes memory orderInputs
041:)
042: external
043: override
044: returns (bytes memory output)
045: {
...
...
080: MatchOrderFees memory matchOrderFees;
081: (output, matchOrderFees) = market.executeMatchOrder
 ({ matchOrderInputs: matchOrderInputs });
082: validateMatchOrderFees(matchOrderFees, creditExchangeFees);
083:
084: // deduct fees from the main account and track the total amounts of
// fees for protocol and exchange
085: AccountCollateral.updateBalance(account, market.quoteCollateral, -
 (matchOrderFees.takerFeeDebit).toInt());
...
...
117: }

The issue is that the transaction can be reverted in edge cases where the global
limit is reached due to other withdrawals affecting the execution of match
orders and also affecting the execution of commands coming from the new
function added in periphery/src/modules/ExecutionModule::execute since
they would have to generate a signature again if the deadline is not sufficient
until checkWithdrawLimits allows withdrawals again.

Recommendations
It is recommended that if subtraction from the account for fees occurs, then
transactions should not be reversed. Otherwise, the execution of match orders
will be affected in very specific cases.

15

8.3. Low Findings

[L-01] Missing validation of non-zero value
Within ConfigurationModule::setMarketConfiguration , there is no validation
that MarketConfigurationData.maxSlippage is not zero:

16

File: ConfigurationModule.sol
55: function setMarketConfiguration
 (uint128 marketId, MarketConfigurationData memory config) external override {
56: if (config.oracleNodeId == 0) {
57: revert Errors.InvalidMarketConfiguration
 (marketId, config, "ORCLN");
58: }
59:
60: if (config.baseSpacing.eq(ZERO_ud)) {
61: revert Errors.InvalidMarketConfiguration
 (marketId, config, "BSSP");
62: }
63:
64: NodeOutput.Data memory node =
65: INodeModule(GlobalConfiguration.getOracleManagerAddress
 ()).process(config.oracleNodeId);
66: UD60x18 oraclePrice = UD60x18.wrap(node.price);
67:
68: if (config.priceSpacing.eq(ZERO_ud) || oraclePrice.lte
 (config.priceSpacing.mul(ud(1000e18)))) {
69: revert Errors.InvalidMarketConfiguration
 (marketId, config, "PRCSP");
70: }
71:
72: if (!config.minimumOrderBase.mod(config.baseSpacing).eq(ZERO_ud)) {
73: revert Errors.InvalidMarketConfiguration
 (marketId, config, "MNOB");
74: }
75:
76: // TODO: it should be less or equal than 0.01 but it breaks a lot of
// testing doing so
77: if (config.velocityMultiplier.gt(ud(1e18))) {
78: revert Errors.InvalidMarketConfiguration
 (marketId, config, "VLCTM");
79: }
80:
81: if (config.depthFactor.eq(ZERO_ud)) {
82: revert Errors.InvalidMarketConfiguration
 (marketId, config, "DPTHF");
83: }
84:
85: if (config.maxExposureFactor.gt(ONE_ud)) {
86: revert Errors.InvalidMarketConfiguration
 (marketId, config, "MXEXF");
87: }
88:
89: Market.Data storage market = Market.exists(marketId);
90: market.onlyAuthorized(Permissions.PASSIVE_PERP_MARKET_CONFIGURATOR);
91:
92: MarketConfiguration.set(marketId, config);
93: }

This could affect the calculation of pSlippage within the
Market::getPSlippage function, as any non-zero value of pSlippage would
cause the function to revert with an ExceededPSlippage error if maxPSlippage
is zero (lines 301-303).

17

File: Market.sol
272:
273: function getPSlippage(
274: Data storage self,
275: SD59x18 deltaBase,
276: UD60x18 oraclePrice
277:)
278: internal
279: view
280: returns (SD59x18 pSlippage)
281: {
282: MarketConfigurationData memory marketConfig = getConfig(self);
283:
284: uint256 riskMatrixIndex = marketConfig.riskMatrixIndex;
285: UD60x18 depthFactor = marketConfig.depthFactor;
286: UD60x18 maxExposureFactor = marketConfig.maxExposureFactor;
287: UD60x18 maxPSlippage = marketConfig.maxPSlippage;
288:
289: (
 UD60x18maxExposureShort,
 UD60x18maxExposureLong,
 SD59x18[]memoryexposures
) = getPoolMaxExposures(self
290: SD59x18 deltaExposure = convertBaseToExposure
 (deltaBase, oraclePrice);
291:
292: SD59x18 netExposure = exposures[riskMatrixIndex].add
 (deltaExposure);
293: UD60x18 maxExposure = netExposure.lt
 (ZERO_sd) ? maxExposureShort : maxExposureLong;
294:
295: if (netExposure.abs().intoUD60x18().gte(maxExposure.mul
 (maxExposureFactor))) {
296: revert Errors.ExceededMaxExposure(netExposure, maxExposure);
297: }
298:
299: pSlippage = computePSlippage(
 {netExposure:netExposure,
 maxExposure:maxExposure,
 depthFactor:depthFactor}
);
300:
301: if (pSlippage.abs().intoUD60x18().gt(maxPSlippage)) {
302: revert Errors.ExceededPSlippage(pSlippage, maxPSlippage);
303: }
304: }

It is advisable to evaluate that maxSlippage is not zero within the
ConfigurationModule::setMarketConfiguration function.

[L-02] Command execution could fail
The CommandType enum was modified with the removal of the
PropagateCashflow element, which was previously assigned to the value 4 .
The change will cause the value of TransferBetweenMarginAccounts to be
changed from 5 to 4 .

18

That could cause issues for commands constructed right before the contract
upgrade and then executed after the upgrade. If those commands contain
TransferBetweenMarginAccounts , it would be constructed based on the old
value 5 before the upgrade. When they are executed after the upgrade, these
commands will fail as they do not match the contract implementation.

enum CommandType {
 Deposit, // (core command) deposit collaterals
 Withdraw, // (core command) withdraw collaterals
 DutchLiquidation, // (core command) dutch liquidation of an account
 MatchOrder, // (market command) propagation of matched orders
 //@audit PropagateCashflow is removed from enum, causing
 // TransferBetweenMarginAccounts to change from 5 to 4
 //PropagateCashflow, // (market command) propagation of realized PnL
 TransferBetweenMarginAccounts //
 //(core command) transfer between two margin accounts

}

[L-03] Missing maxExposureFactor in
Errors.ExceededMaxExposure

A maxExposureFactor was added to adjust the max exposure during the
slippage check. However, the maxExposureFactor value is not present in the
custom error Errors.ExceededMaxExposure , which will not emit the correct
parameters when the transaction reverts.

To resolve this, add maxExposureFactor to Errors.ExceededMaxExposure .

function getPSlippage(
 Data storage self,
 SD59x18 deltaBase,
 UD60x18 oraclePrice
)
 internal
 view
 returns (SD59x18 pSlippage)
 {
 ...
 if (netExposure.abs().intoUD60x18().gte(maxExposure.mul
 (maxExposureFactor))) {
 //@audit error does not contain the maxExposureFactor value
 revert Errors.ExceededMaxExposure(netExposure, maxExposure);
 }

 ...
 }

19

