
Reya Network Security Review
Pashov Audit Group

Conducted by: T1MOH, Dan Ogurtsov, ubermensch
March 30th 2024 - April 5th 2024

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Reya Network
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Critical Findings
[C-01] Users can't bridge funds back from the app chain
[C-02] Attacker can drain Periphery by specifying big
socketPayloadSize
[C-03] Decimals are incorrectly handled in
DivReducerNode

8.2. High Findings
[H-01] User can lose tokens during deposit fallback
bridging

8.3. Medium Findings
[M-01] Inadequate Verification of tokenAmount Leads to
Potential Dust Theft
[M-02] Stale Price Data in DivReducer Due to Average
Timestamp Calculation
[M-03] Lack of Price Freshness Verification in Oracle
Price Data
[M-04] Invalid Nodes can be registered due to an
incorrect check

8.4. Low Findings
[L-01] Non-Compliance with EIP-712 Specification in
Signature Functions

1

3

3

3

3

4

4
4
5

6

8

10

10

10

11

12

14

14

15

15

16

17

17

19

19

[L-02] Signature Malleability in ecrecover Precompile
Usage

2

19

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the reya-network repository was done by Pashov
Audit Group, with a focus on the security aspects of the application's smart
contracts implementation.

4. About Reya Network
Reya Network is a trading-optimised modular L2. The chain layer is powered by
Arbitrum Orbit and is gas-free, with transactions ordered on a FIFO basis. The
protocol layer directly tackles the vertical integration of DeFi applications by
breaking the chain into modular components to support trading, such as PnL
settlements, margin requirements, liquidations.

3

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

4

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

5

6. Security Assessment Summary
review commit hash - 39b31762f0fe5836397c87ba78fd6cd11f147a9f

fixes review commit hash - 29b5286569b08c63b2c94365b04434a5d24a7a03

Scope

The following smart contracts were in scope of the audit:

6

https://github.com/Reya-Labs/reya-network/tree/39b31762f0fe5836397c87ba78fd6cd11f147a9f
https://github.com/Reya-Labs/reya-network/tree/29b5286569b08c63b2c94365b04434a5d24a7a03

IDepositModule

IExecutionModule

SignatureHelpers

DepositModule

ExecutionModule

ISharesModule

SharesModule

IConfigurationModule

ConfigurationModule

NodeModule

DivReducerNode

NodeDefinition

IConfigurationModule

ITransfersModule

ISocketControllerWithPayload

ISocketExecutionHelper

BridgingUtils

CoreUtils

DataTypes

Deposits

Errors

Events

Transfers

Withdrawals

ConfigurationModule

DepositsFallbackModule

TransfersModule

Configuration

TokenProxy

IERC20TokenModule

FeatureFlagSupport

FeatureFlagModule

ERC20TokenModule

OwnerUpgradeModule

IOrderModule

OrderModule

7

7. Executive Summary
Over the course of the security review, T1MOH, Dan Ogurtsov, ubermensch
engaged with Reya Network to review Reya Network. In this period of time a total
of 10 issues were uncovered.

Protocol Summary
Protocol Name Reya Network

Repository https://github.com/Reya-Labs/reya-network

Date March 30th 2024 - April 5th 2024

Protocol Type Trading-optimised modular L2

Findings Count
Severity Amount

Critical 3

High 1

Medium 4

Low 2

Total Findings 10

8

Summary of Findings
ID Title Severity Status

[C-01] Users can't bridge funds back from
the app chain Critical Resolved

[C-02] Attacker can drain Periphery by
specifying big socketPayloadSize Critical Resolved

[C-03] Decimals are incorrectly handled in
DivReducerNode Critical Resolved

[H-01] User can lose tokens during deposit
fallback bridging High Resolved

[M-01]
Inadequate Verification of
tokenAmount Leads to Potential Dust
Theft

Medium Resolved

[M-02] Stale Price Data in DivReducer Due
to Average Timestamp Calculation Medium Resolved

[M-03] Lack of Price Freshness Verification
in Oracle Price Data Medium Resolved

[M-04] Invalid Nodes can be registered due
to an incorrect check Medium Resolved

[L-01] Non-Compliance with EIP-712
Specification in Signature Functions Low Acknowledged

[L-02] Signature Malleability in ecrecover
Precompile Usage Low Acknowledged

9

8. Findings

8.1. Critical Findings

[C-01] Users can't bridge funds back from
the app chain

Severity
Impact: High

Likelihood: High

Description
The protocol must pay a fee in native coin to bridge funds back from the app
chain:

(uint256 tokenFees, uint256 nativeFees) =
 getFees(
 withdrawToken,
 socketController,
 socketConnector,
 socketMsgGasLimit,
 socketPayloadSize
);
 if (tokenAmount > tokenFees) {
 uint256 tokensToWithdraw = tokenAmount - tokenFees;
@> socketController.bridge{ value: nativeFees }({
 receiver_: receiver,
 amount_: tokensToWithdraw,
 msgGasLimit_: socketMsgGasLimit,
 connector_: socketConnector,
 execPayload_: abi.encode(),
 options_: abi.encode()
 });

Periphery is the module that interacts with the bridge. The problem is that none
of these contracts has payable function to receive ETH

10

contract PeripheryRouter is
 ConfigurationModule,
 DepositsModule,
 DepositsFallbackModule,
 OrderModule,
 TransfersModule,
 WithdrawalsModule,
 OwnerUpgradeModule,
 ERC721ReceiverModule,
 FeatureFlagModule
{ }

contract PeripheryProxy is UUPSProxyWithOwner, PeripheryRouter {
 constructor(
 address firstImplementation,
 address initialOwner
)
 UUPSProxyWithOwner(firstImplementation, initialOwner)
 { }
}

Recommendations
Make sure that PeripheryRouter.sol inherits the module with the function
receive() payable

[C-02] Attacker can drain Periphery by
specifying big socketPayloadSize

Severity
Impact: High

Likelihood: High

Description
When a user withdraws funds from protocol, tokens are bridged to another
chain to address receiver . The fee to pay for bridging is based on gasLimit
and payloadSize :

function getFees(...)
 internal
 view
 returns (uint256 feeInToken, uint256 nativeFees)
 {
@> nativeFees = controller.getMinFees(connector, gasLimit, payloadSize);
 feeInToken = Configuration.getStaticWithdrawFee(token, connector);
 }

11

User can just set very high payloadSize and protocol will pay high fee:

function executeBridging(...)
 internal
 {
 ISocketControllerWithPayload socketController =
 ISocketControllerWithPayload(Configuration.getController
 (withdrawToken));

 (uint256 tokenFees, uint256 nativeFees) =
 getFees(
 withdrawToken,
 socketController,
 socketConnector,
 socketMsgGasLimit,
 socketPayloadSize
);
 if (tokenAmount > tokenFees) {
 uint256 tokensToWithdraw = tokenAmount - tokenFees;
@> socketController.bridge{ value: nativeFees }({
 receiver_: receiver,
 amount_: tokensToWithdraw,
 msgGasLimit_: socketMsgGasLimit,
 connector_: socketConnector,
 execPayload_: abi.encode(),
 options_: abi.encode()
 });
 withdrawToken.safeTransfer(OwnableStorage.getOwner(), tokenFees);
 } else {
 revert Errors.NotEnoughFees(tokenAmount, tokenFees);
 }
 }

Note that Socket which is used for bridging doesn't send back excessive
msg.value . It treats excessive msg.value as executionFee : Link

Another note is that currently payloadSize is not used in fee calculation, but
will be in a future version link

Recommendations
Remove argument socketPayloadSize and use 0 instead

[C-03] Decimals are incorrectly handled in
DivReducerNode

Severity
Impact: High

Likelihood: High
12

https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L246-L250
https://github.com/SocketDotTech/socket-DL/blob/1766c10c0e4dee08db1dc24f0ca8a0b469232a57/contracts/ExecutionManager.sol#L275

Description
Node DivReducer is supposed to have 2 parents which are Redstone oracles
and combine 2 prices. For example, to price ETH/USDC it will fetch 2 prices
and divide (ETH/USD) / (USDC/USD) .

The problem is that Redstone oracles have 8 decimals by default, but the code
uses 1e18 arithmetic:

function process
 (NodeOutput.Data[] memory parentNodeOutputs) internal pure returns (NodeOutput.D
 if (parentNodeOutputs[1].price == 0) {
 revert InvalidPrice();
 }

@> uint256 price = divUintUint
 (parentNodeOutputs[0].price, parentNodeOutputs[1].price).unwrap();
 uint256 timestamp =
 (parentNodeOutputs[0].timestamp + parentNodeOutputs[1].timestamp) / 2;

 return NodeOutput.Data({ price: price, timestamp: timestamp });
 }

function divUintUint(uint256 a, uint256 b) pure returns (UD60x18) {
 return UD60x18.wrap(a).div(UD60x18.wrap(b));
}

Here you can see the default decimals is 8: link

Recommendations
Normalize the price from RedstoneOracle by decimals of that oracle. Only
after using it in internal calculations

13

https://github.com/redstone-finance/redstone-oracles-monorepo/blob/9d10a48aad7a2ccb5f3f48396d970fd63761dbce/packages/on-chain-relayer/contracts/price-feeds/PriceFeedBase.sol#L46-L53

8.2. High Findings

[H-01] User can lose tokens during deposit
fallback bridging

Severity
Impact: High

Likelihood: Medium

Description
DepositsFallbackModule handles situations where a deposit reverts and
initiates bridging back of users' funds. Note that it uses the address receiver
of the deposit on the Reya chain to bridge back funds on the source chain:

try DepositsModule(address(this)).depositPassivePool(inputs) { }
 catch {
 BridgingUtils.executeBridging({
 withdrawToken: usdc,
 socketConnector: fallbackData.socketConnector,
 socketMsgGasLimit: fallbackData.socketMsgGasLimit,
 tokenAmount: inputs.amount,
@> receiver: inputs.owner,
 socketPayloadSize: fallbackData.socketPayloadSize
 });
 }

It incorrectly assumes that the address inputs.owner on the source chain is
owned by the same person on Reya chain. There are 2 cases when the
assumption is not guaranteed:

1. Account Abstraction wallet implementations
2. old version of Safe multisigs https://rekt.news/wintermute-rekt/

Recommendations
Add argument receiver to FallbackData struct and use it instead of
inputs.accountOwner in DepositsFallbackModule.sol

14

8.3. Medium Findings

[M-01] Inadequate Verification of
tokenAmount Leads to Potential Dust Theft

Severity
Impact: Medium

Likelihood: Medium

Description
The Periphery's functionality allows bridging of funds between the source
chain and the protocol, encompassing integration with the deposit, withdrawal,
and transfer functionalities of the Core and Passive Pool. An issue arises when
the deposit action fails on the destination chain; the DepositsFallbackModule
is designed to catch this failure and refund the user on the source chain via the
Socket bridge. The problem occurs when the tokenAmount is lower than the
tokenFees (a static fee), leading to a transaction revert due to insufficient fees,
consequently trapping the tokenAmount in the periphery. This scenario
becomes exploitable due to the absence of verification between the user-input
tokenAmount and the bridgeAmount in the BridgingUtils::executeBridging
function. Attackers can exploit this by calling
DepositsFallbackModule::depositPassivePool with a tokenAmount equating
to the Periphery's balance (accumulated from previous users' dust) and a
different bridgeAmount , causing a revert in the
DepositsModule::depositPassivePool that triggers the
BridgingUtils::executeBridging function, thereby bridging the Periphery's
balance back to the attacker in the other chain. This issue allows attackers to
siphon accumulated dust amounts from the Periphery.

Recommendations
To mitigate this vulnerability and safeguard against potential dust theft, it is
recommended to:

15

1. Implement a mechanism to allow users to reclaim their tokens on the
destination chain in case of a bridging failure.

2. Enhance the verification within the BridgingUtils::executeBridging
function to ensure that the tokenAmount matches the bridgeAmount
exactly. This would prevent the discrepancy that allows the attack to
occur.

[M-02] Stale Price Data in DivReducer Due
to Average Timestamp Calculation

Severity
Impact: High

Likelihood: Low

Description
The DivReducer function within the system is designed to calculate the
quotient of the prices from two input nodes, typically used for deriving asset
prices in alternative currency terms when direct feeds are not available. A
critical part of this functionality is the calculation of the updated_at
timestamp for the output, which currently averages the timestamps of the two
input nodes. This approach introduces a significant risk; if one input node
provides a very recent timestamp and the other is significantly stale, the
averaged timestamp could misleadingly pass staleness checks, thus presenting
the output as more current than it actually is. This can lead to the use of
outdated price data in critical financial calculations, potentially affecting all
dependent systems relying on the accuracy of this feed for timely decision-
making.

Recommendations
To mitigate the risk of using stale data and enhance the reliability of the
DivReducer node's output, amend the logic for determining the updated_at
timestamp of the DivReducerNode output. Instead of averaging the timestamps
of the input nodes, use the minimum of the two timestamps. This approach
ensures that the output timestamp accurately reflects the freshness of the data,
prioritizing the most conservative estimate of data recency.

16

[M-03] Lack of Price Freshness Verification
in Oracle Price Data

Severity
Impact: Medium

Likelihood: Medium

Description
The getOraclePrice and getCollateralExchangeInfo functions retrieve
NodeOutput.Data containing price information and a timestamp indicating the
freshness of this price. An issue has been identified wherein these functions use
the price data directly without verifying the freshness of the data based on the
timestamp. This oversight could lead to scenarios where stale or outdated price
data is used in significant financial calculations or decision-making processes.

Recommendations
To address this vulnerability and ensure the reliability of price data used
throughout the system by introducing logic in both getOraclePrice and
getCollateralExchangeInfo functions to check the timestamp of the
NodeOutput.Data against a predefined freshness threshold.

[M-04] Invalid Nodes can be registered due
to an incorrect check

Severity
Impact: Medium

Likelihood: Medium

Description
DivReducer node is supposed to have 2 parent nodes. During registration node
is checked to be valid, however it does nothing if parents are invalid:

17

function _isValidNodeDefinition
 (NodeDefinition.Data memory nodeDefinition) internal view returns (bool valid) {
 if (nodeDefinition.nodeType == NodeDefinition.NodeType.DIV_REDUCER) {
 //check if parents are processable
@> _hasValidParentNodeDefinitions(nodeDefinition);
 }

 ...
 }

 function _hasValidParentNodeDefinitions
 (NodeDefinition.Data memory nodeDefinition)
 internal
 view
 returns (bool valid)
 {
 for (uint256 i = 0; i < nodeDefinition.parents.length; i++) {
 NodeDefinition.Data memory nodeDef = _getNode
 (nodeDefinition.parents[i]);
 if (!_isValidNodeDefinition(nodeDef)) {
 return false;
 }
 }
 return true;
 }

Recommendations
function _isValidNodeDefinition
 (NodeDefinition.Data memory nodeDefinition) internal view returns (bool valid) {
 if (nodeDefinition.nodeType == NodeDefinition.NodeType.DIV_REDUCER) {
 //check if parents are processable
- _hasValidParentNodeDefinitions(nodeDefinition);
+ if(!_hasValidParentNodeDefinitions(nodeDefinition)) return false;
 }
 ...
 }

18

8.4. Low Findings

[L-01] Non-Compliance with EIP-712
Specification in Signature Functions

The calculateDigest and hashExecuteBySig functions currently do not
adhere to the EIP-712 specification regarding the encoding and hashing of
messages for signature verification. EIP-712 aims to standardize typed data
signing with Ethereum, providing a secure and compliant way to generate
verifiable and understandable messages. According to the specification, the
correct encoding format is "\x19\x01" ‖ domainSeparator ‖
hashStruct(message) , with the domainSeparator being the result of
hashStruct(eip712Domain) , where eip712Domain is a struct containing fields
like name , version , chainId , verifyingContract , and salt . These fields
are essential for ensuring the integrity and domain specificity of signatures,
enhancing security against certain attacks.

The deviation from this standard in the current implementation could
potentially lead to unexpected integration failures with EIP712-compliant
wallets or tooling that perform the encoding in the appropriate way, where
users will be requested to sign random bytes instead of a clear message that
they can verify.

It is recommended to adopt the OpenZeppelin library's EIP712.sol
implementation, which is fully compliant with the EIP-712 standard and
widely recognized for its security and reliability. This change would ensure
consistency with Ethereum's best practices for signing and verifying typed
data, enhancing the protocol's overall security posture with minimal impact on
functionality.

[L-02] Signature Malleability in ecrecover
Precompile Usage

The protocol's current use of the ecrecover precompile introduces a security
concern due to signature malleability. Specifically, the vulnerability arises from

19

the possibility of altering the s and v components of a signature, thereby
generating a different yet valid signature that corresponds to the same hash and
signer. This issue does not presently pose a direct threat to the protocol's
security due to the implementation of nonces within the system's signature
scheme, which mitigates the risk of replay attacks.

However, addressing this form of signature malleability is considered best
practice to fortify the protocol against potential future vulnerabilities or
exploits that may arise from unforeseen interactions or changes within the
system. OpenZeppelin's ECDSA library provides a solution to this issue
ensuring that signatures are both standard and strictly non-malleable.

20

