
Smart Contract

Security Audit V1

Wyndblast Marketplace & MiniGame Audit

18/5/2022

OnlyUp Capital

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 12

Audit Findings …………………………………………………………………………………… 13

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 25

● Solidity static analysis ….……………………………………………………………….. 29

● Solhint Linter …………………………………………………………………….……….. 33

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

Introduction
OnlyUp was contracted by the Wyndblast team to perform the Security audit of the
Wyndblast Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 18th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
WyndBlast is a play and earn multiplayer co-operative game built on the Avalanche

blockchain. This audit project consists of game and marketplace smart contracts.

Audit scope

Name Code Review and Security Analysis Report for
Wyndblast Protocol Smart Contracts

Platform Avalanche / Solidity

File 1 WBGame.sol

File 1 MD5 Hash B4797CB4DDD640A73E62788D73B0EBB8

Updated File 1 MD5 Hash 1523F577436762D8C012AEDDC3F542A6

File 2 Marketplace.sol

File 2 MD5 Hash D314A92483287FA721B0D33B1DFF86EB

Updated File 2 MD5 Hash 3D8FEE90C0D9AF0AE2262B91070FF794

Updated File 2 MD5 Hash 52A495046B9044380F7CB6C8152F2B8C

Audit Date May 14th, 2022

Revise Audit Date May 18th, 2022

https://github.com/wyndblast/chro/blob/main/contracts/WBGame.sol
https://github.com/wyndblast/chro/blob/main/contracts/Marketplace.sol

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 WBGame.sol
● Breeding Cost: 200

● Owner can set rewards for an individual wallet,

attach tokens to the contract, dispatch tokens from

the contract

● Users can breed, buyTickets, move token

holdings, claim rewards

YES, This is valid.

File 2 Marketplace.sol
● Bid Threshold: 50

● Auction for NFT tokens, Bid, buy, sell for auction

● Owner can set the bid threshold, the job executor,

token address for payment, cancel the auction,

add/remove fee collectors, publication fee

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 3 medium and 1 low and some very low level issues.
All these issues have been fixed / acknowledged in the revised code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Passed

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 2 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the Wyndblast Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the Wyndblast Protocol.

The Wyndblast team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given a Wyndblast Protocol smart contract code in the form of a github weblink.

The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://wyndblast.com which provided

rich information about the project architecture.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://wyndblast.com

AS-IS overview

WBGame.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 onERC721Received write Passed No Issue
3 __Ownable_init internal access only

Initializing
No Issue

4 __Ownable_init_unchained internal access only
Initializing

No Issue

5 owner read Passed No Issue
6 _transferOwnership internal Passed No Issue
7 onlyOwner modifier Passed No Issue
8 renounceOwnership write access only Owner No Issue
9 transferOwnership write access only Owner No Issue

10 __ReentrancyGuard_init internal access only
Initializing

No Issue

11 __ReentrancyGuard_init_u
nchained

internal access only
Initializing

No Issue

12 nonReentrant modifier Passed No Issue
13 initialize write Passed No Issue
14 buyTicket write Passed No Issue
15 _submit internal Passed No Issue
16 batchSubmit write Passed No Issue
17 _dispatch internal Passed No Issue
18 batchDispatch write Passed No Issue
19 _removeElement internal Passed No Issue
20 _remove internal Passed No Issue
21 _save internal Passed No Issue
22 idsOf read Passed No Issue
23 setReward write access only Owner No Issue
24 batchSetReward write access only Owner No Issue
25 claimReward write Passed No Issue
26 safeDispatch write access only Owner No Issue
27 viewTotalRewards external access only Owner No Issue
28 breed write Passed No Issue
29 breedCountOf read Passed No Issue
30 move write Passed No Issue
31 batchMove write Passed No Issue

Marketplace.sol
Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 onERC721Received write Passed No Issue
3 __Ownable_init internal access only Initializing No Issue
4 __Ownable_init_unchained internal access only Initializing No Issue
5 owner read Passed No Issue
6 _transferOwnership internal Passed No Issue
7 onlyOwner modifier Passed No Issue
8 renounceOwnership write access only Owner No Issue
9 transferOwnership write access only Owner No Issue

10 __Pausable_init internal access only Initializing No Issue
11 __Pausable_init_unchained internal access only Initializing No Issue
12 paused read Passed No Issue
13 whenNotPaused modifier Passed No Issue
14 whenPaused modifier Passed No Issue
15 _pause internal Passed No Issue
16 _unpause internal Passed No Issue
17 initialize write Passed No Issue
18 onlyExecutor modifier Passed No Issue
19 sellerOf read Passed No Issue
20 auction write Passed No Issue
21 sell write Passed No Issue
22 cancel write Passed No Issue
23 buy write Passed No Issue
24 bid write Passed No Issue
25 swap write Passed No Issue
26 approveSwap write Passed No Issue
27 rejectSwap write Passed No Issue
28 cancelSwap write Passed No Issue
29 getAuctionExpiry read Passed No Issue
30 getItems read Passed No Issue
31 getItem read Passed No Issue
32 getBids read Passed No Issue
33 getBid read Passed No Issue
34 getSwaps read Passed No Issue
35 getSwap read Passed No Issue
36 getRoyaltyInfo external Passed No Issue
37 checkRoyalties external Passed No Issue
38 setTokenAddress write access only Owner No Issue
39 pause write access only Owner No Issue
40 unpause write access only Owner No Issue
41 getCollections read Passed No Issue
42 createCollection write access only Owner No Issue
43 removeCollection write access only Owner No Issue
44 updateCollection write access only Owner No Issue

45 getFeeCollectors read access only Owner No Issue
46 addFeeCollector write access only Owner No Issue
47 removeFeeCollector write access only Owner No Issue
48 emergencyTransferTo write access only Owner No Issue
49 emergencyCancel write access only Owner No Issue
50 setJobExecutor write access only Owner No Issue
51 setBidThreshold write access only Owner No Issue
52 setPublicationFee write access only Owner No Issue
53 setPublicationFeeWallet write access only Owner No Issue
54 getPublicationFeeWallet write access only Owner No Issue
55 executeJob write access only Owner No Issue
56 _putHoldAmount internal Passed No Issue
57 _releaseHoldAmount internal Passed No Issue
58 _isRoyaltiesSupport read Passed No Issue
59 _getRoyaltyInfo read Passed No Issue
60 _createItem internal Passed No Issue
61 _createItem internal Passed No Issue
62 _isActiveCollection internal Passed No Issue
63 _executePayment internal access only Owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

(1) Users can claim rewards everyday: WBGame.sol

In the claimRewards function, users can claim their rewards everyday. But that reward

amount has not been decreased from what the owner has assigned to that user.

Resolution: We suggest correcting the logic for claimRewards to avoid funds draining

from the contract. If this is a part of the plan then check for the _totalReward, it does not

allow the user to claim if _totalReward reached to 0.

Status: Fixed

Medium

(1) Division before multiplication: Marketplace.sol

Solidity being resource constrained language, dividing any amount and then multiplying

will cause discrepancies in the outcome. Therefore always multiply the amount first and

then divide it

Resolution: Consider ordering multiplication before division.
Status: Fixed

(2) Fee validation: Marketplace.sol

The owner can set the fee percentage to 100%. so the seller cannot get any amount for
his NFT.

Resolution: We suggest using some maximum limit for fees.
Status: Fixed

(3) Owner should not be allowed to bid/buy his own auction/sell: Marketplace.sol
Auction owner can place a bid for his own auction and can buy his own items.

Resolution: We suggest not allowing the auction owner to place a bid for his own auction

or buying his own items.

Status: Fixed

Low

(1) Bid can be placed with 0 price: Marketplace.sol
Users can place a bid with 0 price.

Resolution: We suggest checking for price while bidding.

Status: Acknowledged

Very Low / Informational / Best practices:

(1) SafeMath Library: Marketplace.sol
SafeMath Library is used in this contract code, but the compiler version is greater than or

equal to 0.8.0, Then it will not be required to use it, solidity automatically handles overflow

/ underflow.

Resolution: Remove the SafeMath library and use normal math operators, It will improve

code size, and less gas consumption.

Status: Acknowledged

(2) Unused event: Marketplace.sol
The SwapApproved() event is defined but not used in code.

Resolution: We suggest removing unused events.

Status: Fixed

(3) Compile time error: Marketplace.sol
1 - ParserError: Only state variables or file-level variables can have a docstring.

2 - DocstringParsingError: Documentation tag @notice not valid for non-public state

variables.

Resolution: Remove single slash before this comment - release nft and transfer it to the

seller. There are three slashes added in the comment.

Status: Fixed

(4) Unused variables: WBGame.sol
There are many variables defined but not used anywhere.

Variables are: _nftAddress, _caller, _treasury, _trainingCost, _forgingCost

Resolution: Remove unused variables from the code.

Status: Fixed

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● setReward: WBGame owner can set address mapping to Rewards.

● batchSetReward: WBGame owner can set address mapping to Rewards.

● safeDispatch: WBGame owner can set the Force Dispatch token from this contract.

● viewTotalRewards: WBGame owner can view total rewards.

● setTokenAddress: Marketplace owner can set ERC20 contract address.

● pause: Marketplace owners can trigger a stopped state.

● unpause: Marketplace owners can return to their normal state.

● createCollection: Marketplace owners can create collections.

● removeCollection: Marketplace owners can Remove collection.

● updateCollection: Marketplace owners can update collection

● getFeeCollectors: Marketplace owners can get fee collectors.

● addFeeCollector: Marketplace owners can add fee collectors.

● removeFeeCollector: Marketplace owners can remove fee collectors.

● emergencyTransferTo: Marketplace owners can transfer NFT to the user for

emergency purposes.

● emergencyCancel: Marketplace can emergency cancel sale item by admin

● setJobExecutor: Marketplace owners can set job executors.

● setBidThreshold: Marketplace owners can set bid threshold.

● setPublicationFee: Marketplace owners can set publication fee.

● setPublicationFeeWallet: Marketplace owners can set the address of the publication

fee.

● getPublicationFeeWallet: Marketplace owners can get the address of the publication

fee.

● executeJob: Marketplace owners can execute all expired auctions.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of Github weblink. And we have used all

possible tests based on given objects as files.We have observed some major issues and

those issues have been fixed. So, the smart contract is good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Appendix
Code Flow Diagram - Wyndblast Protocol

WBGame Diagram

Marketplace Diagram

Slither Results Log

Slither log >> Marketplace.sol

Slither log >> WBGame.sol

Solidity Static Analysis

WBGame.sol

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage

values, have to be used carefully. Due to the block gas limit transactions can only consume a certain

amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can

cause the complete contract to be stalled at a certain point. Additionally, using unbounded loops

incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to

such functions to make it successful.

more

Pos: 2839:8:

Miscellaneous

Constant/View/Pure functions:

WBGame._save{enum WBGame.HolderPlace,uint256): Potentially should be constant/view/pure

but is not. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 2607:4:

Similar variable names:

WBGame.initialize(address,address,address) : Variables have very similar names "_aCollection" and

"_bCollection". Note: Modifiers are currently not considered by this static analysis.

Pas: 2412:8:

No return:

IERC721b.mint{address,enum IERC721b.TokenType,string): Defines a return type but never explicitly

returns a value.

Pos: 2311:4:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your

code). Use "require(x),'' if x can be false, due to e.g. invalid input or a failing external component.

more

Pos: 2713:12:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your

code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

more

Pas: 2800:8:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The length of the array remains the same. If you want to

remove the empty position you need to shift items manually and update the "length" property.

more

Pas: 2580:16:

Marketplace.sol

For loop over dynamic array:

Loops that do not have a fixed number of iterations, for example, Loops that depend on storage

values, have to be used carefu'lly. Due to the block gas Limit transactions can only consume a certain

amount of gas .. The number of iterations in a loop can grow beyond the block gas limit which can

cause the complete contract to be stalled at a certain point. Additionally, using unbounded Loops

incurs in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to

such functions to make it successful.

more

Pas: 1932:6:

Miscellaneous

Constant/View/Pure functions:

Marketplace.getFeeCollectors(): Is constant but potentially should not be. Note: Modifiers are

currently not considered by this static analysis.

more

Pos: 1580:2:

Similar variable names:

Marketplace.cancel(bytes32): Variables have very similar names "_items" and "item". Note:

Modifiers are currently not considered by this static analysis.

Pos: 1163:4:

Similar variable names:

Marketplace.execute.lob() : Variables have very similar names "_items" and "item". Note: Modifiers

are currently not considered by this static analysis.

Pas: 1727:25:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your

code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.

more

Pas: 1196:4:

Delete from dynamic array:

Using "delete" on an array leaves a gap. The Length of the array remains the same. If you want to

remove the empty position you need to shift items manually and update the "length" property.

more

Pos: 1733:12:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of 0.1

since the result is an integer again. This does not hold for division of (only) literal values since those

yield rational constants.

Pas: 186:19:

Solhint Linter

WBGame.sol

WBGame.sol:1608:18: Error: Parse error: missing ';' at '{'
WBGame.sol:1616:18: Error: Parse error: missing ';' at '{'

Marketplace.sol

Marketplace.sol:11:18: Error: Parse error: missing ';' at '{'
Marketplace.sol:24:18: Error: Parse error: missing ';' at '{'
Marketplace.sol:36:18: Error: Parse error: missing ';' at '{'
Marketplace.sol:53:18: Error: Parse error: missing ';' at '{'
Marketplace.sol:65:18: Error: Parse error: missing ';' at '{'
Marketplace.sol:161:18: Error: Parse error: missing ';' at '{'
Marketplace.sol:184:18: Error: Parse error: missing ';' at '{'
Marketplace.sol:210:18: Error: Parse error: missing ';' at '{'

Overall Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good
industry practice as of the date of this report, in relation to cybersecurity vulnerabilities
and issues in the framework and algorithms based on smart contracts, the details of
which are set out in this report. In order to get a full view of our analysis, it is crucial for
you to read the full report. While we have done our best in conducting our analysis and
producing this report, it is important to note that you should not rely on this report and
cannot claim against the team on the basis of what it says or doesn’t say, or how team
produced it, and it is important for you to conduct your own independent investigations
before making any decisions. The team will go into more detail on this in the disclaimer
below – please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you
do not agree to the terms, then please immediately cease reading this report, and
delete and destroy any and all copies of this report downloaded and/or printed by you.
This report is provided for information purposes only and on a non-reliance basis, and
does not constitute investment advice. No one shall have any right to rely on the report
or its contents, and OnlyUp Capital and its affiliates (including holding companies,
shareholders, subsidiaries, employees, directors, officers and other representatives)
(OnlyUp Capital) owe no duty of care towards you or any other person, nor does
OnlyUp Capital make any warranty or representation to any person on the accuracy or
completeness of the report. The report is provided "as is", without any conditions,
warranties or other terms of any kind except as set out in this disclaimer, and OnlyUp
Capital hereby excludes all representations, warranties, conditions and other terms
(including, without limitation, the warranties implied by law of satisfactory quality, fitness
for purpose and the use of reasonable care and skill) which, but for this clause, might
have effect in relation to the report. Except and only to the extent that it is prohibited by
law, OnlyUp Capital hereby excludes all liability and responsibility, and neither you nor
any other person shall have any claim against OnlyUp Capital, for any amount or kind of
loss or damage that may result to you or any other person (including without limitation,
any direct, indirect, special, punitive, consequential or pure economic loss or damages,
or any loss of income, profits, goodwill, data, contracts, use of money, or business
interruption, and whether in delict, tort (including without limitation negligence), contract,
breach of statutory duty, misrepresentation (whether innocent or negligent) or otherwise
under any claim of any nature whatsoever in any jurisdiction) in any way arising from or
connected with this report and the use, inability to use or the results of use of this report,
and any reliance on this report. The analysis of the security is purely based on the smart
contracts alone. No applications or operations were reviewed for security. No product
code has been reviewed.

