
Fractal Protocol

Smart Contract Security Assessment

March 18, 2022

Prepared for:

Alex Elkrief

Fractal Protocol

Prepared by:

Jasraj Bedi and Ayaz Mammadov

Zellic Inc.

Contents

About Zellic 2

1 Introduction 3

1.1 About Fractal Protocol . 3

1.2 Methodology . 3

1.3 Scope . 4

1.4 Project Overview . 5

1.5 Disclaimer . 5

2 Executive Summary 6

3 Detailed Findings 7

3.1 An attacker may claim risk-free rewards without risking their staked
capital . 7

3.2 Lack of slippage checks on DEX swaps 9

3.3 Potential lock-up of funds in FractalVaultV1 as anySwap Router is not
approved . 11

3.4 Potential lock-up of funds in the event of insufficient AnySwap liquidity 12

3.5 Access Control functions should emit events 13

3.6 Multiple internal inconsistencies . 14

3.7 Lack of documentation . 15

3.8 Insufficient code documentation . 16

4 Discussion 18

Zellic 1 Fractal Protocol

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of our
partners rather than to simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

Zellic 2 Fractal Protocol

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io

1 Introduction

1.1 About Fractal Protocol

Fractal is a cross-chain liquidity routing protocol. Its first product is USDF, a yield
bearing stable coin which accrues value at a fixed APR. The Fractal yield is powered
by a diversified set of DeFi strategies from all the integrated cross-chain blockchains.

For the current revision, majority of the functionality is behind whitelisted and access
controlled functions along with the cross-chain swapping process. There are also
external strategy managers, and a part of divesting funds to strategies also happens
through a manual process.

1.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these “shallow” bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, etc. as necessary. We also perform a cursory review of the code to familiarize
ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use-cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, etc.

Complex integration risks. Several high-profile exploits have been the result of not
any bug within the contract itself, but rather an unintended consequence of its inter-
action with the broader DeFi ecosystem. We perform a meticulous review of all of
the contract’s possible external interactions, and summarize the associated risks; for

Zellic 3 Fractal Protocol

example: flash loan attacks, oracle price manipulation, MEV/sandwich attacks, etc.

Codematurity. We review for possible improvements in the codebase in general. We
look for violations of industry best practices and guidelines, or code quality standards.
We also provide suggestions for possible optimizations, such as gas optimization, up-
gradeability weaknesses, centralization risks, etc.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document, rather than impact alone. Thus, we may sometimes emphasize a
“Informational” finding higher than a “Low” finding. The key distinction is that although
certain findings may have the same impact rating, their importance may differ. This
varies based on numerous soft factors, such as our clients’ threatmodel, their business
needs, project timelines, etc. We aim to provide useful and actionable advice to our
partners that consider their long-term goals, rather than simply a list of security issues
at present.

1.3 Scope

The engagement involved a review of the following targets:

f-smart-contracts

Repository https://github.com/fractal-protocol/f-smart-contracts

Versions ee0fa9e0fb04872c2349b90e1bcdce0dbcf98a99

Type Solidity

Platform Ethereum (and other compatible chains)

f-strategy-contracts

Repository https://github.com/fractal-protocol/f-strategy-contracts

Versions 38761447a0379ee65946210b90590e0542d48bdb

Type Solidity

Platform Ethereum (and other compatible chains)

Zellic 4 Fractal Protocol

https://github.com/fractal-protocol/f-smart-contracts
https://github.com/fractal-protocol/f-strategy-contracts

1.4 Project Overview

Zellic was approached to perform a two-week assessment with two consultants, for
a total of 4 person-weeks.

Contact Information

The following project managers were associated with the engagement:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Stephen Tong, Co-founder
stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Jasraj Bedi, Co-founder
jazzy@zellic.io

Ayaz Mammadov, Senior Partner
ayaz@zellic.io

Project Timeline

The key dates of the engagement are detailed below.

March 4, 2022 Kick-off call

March 7, 2022 Start of primary review period

March 14, 2022 Weekly progress update

March 18, 2022 End of primary review period

March 22, 2022 Closing call

1.5 Disclaimer

This assessment does not provide any warranties on finding all possible issues within
its scope; i.e., the evaluation results do not guarantee the absence of any subsequent
issues. Zellic, of course, also cannot make guarantees on any additional code added
to the assessed project after our assessment has concluded. Furthermore, because a
single assessment can never be considered comprehensive, we always recommend
multiple independent assessments paired with a bug bounty program. Finally, this
assessment report should not be considered as financial or investment advice.

Zellic 5 Fractal Protocol

mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:jazzy@zellic.io
mailto:ayaz@zellic.io

2 Executive Summary

Zellic conducted an audit for Fractal fromMarch 4th toMarch 18th, 2022 on the scoped
contracts and discovered 8 findings. Fortunately, no critical issues were found. We
applaud Fractal for their attention to detail and diligence inmaintaining high code qual-
ity standards. Of the 8 findings, 2 were of high impact, 1 was of medium impact, and
1 was of low impact. The remaining findings were informational in nature.

Fractal is a cross-chain yield farming aggregator, with themajority of current function-
ality locked behind centralized access-controlled methods. These methods would be
called by thoroughly vetted, transparent, trusted third parties. Thus, for this audit, we
focused heavily on the externally reachable attack surface, as bugs there would be of
the highest impact.

Our general overview of the code is that it was very well organized and structured.
The code coverage is high and tests are included for the majority of the functions. The
documentation was adequate, although it could be improved. There were some pain
points in a few areas that were confusing to read, but apart from those, the code was
easy to comprehend.

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 2

Medium 1

Low 1

Informational 4

Zellic 6 Fractal Protocol

3 Detailed Findings

3.1 An attackermay claim risk-free rewardswithout risking their
staked capital

• Target: Vault.sol
• Severity: High
• Impact: High

• Category: Business Logic
• Likelihood: High

Description

The Example Vault aims for an APR of 20%. At the beginning of every new period (1
day), the vault distributes the daily interest and calculates the new token price. The
caveat here is that users can stake capital at the end of a period and reap rewards
instantly at the beginning of the next period. Depositing on the last block before the
start of new period and redeeming it in the next block would essentially guarantee an
instant riskless profit.

function compute () public {
uint256 currentTimestamp = block.timestamp; /) solhint-disable-line
not-rely-on-time
uint256 newPeriod = DateUtils.diffDays(startOfYearTimestamp,
currentTimestamp);
if (newPeriod <= currentPeriod) return;

for (uint256 i = currentPeriod + 1; i <= newPeriod; i++) {
_records[i].apr = _records[i - 1].apr;
_records[i].totalDeposited = _records[i - 1].totalDeposited;

uint256 diff = uint256(_records[i - 1].apr) *
USDF_DECIMAL_MULTIPLIER * uint(100)/ uint256(365);

_records[i].tokenPrice = _records[i - 1].tokenPrice + (diff /
uint256(10000));

_records[i].dailyInterest = _records[i - 1].totalDeposited *
uint256(_records[i - 1].apr) / uint256(365) / uint256(100);
}
currentPeriod = newPeriod;

}

Zellic 7 Fractal Protocol

Impact

An attacker can effectively siphon out money from vaults without participating in the
strategies or taking on any risk. The profit is directly dependent on attackers’ capital.
For a concrete example: With an APR of 20% and a capital of 1 Million USDC, the
attacker can freely profit 540 dollars a day (0.054%) disregarding the gas fee. The
profit scales linearly and for 10 million USDC, the profit would be $5400/day.

Recommendations

There are multiple strategies that can be taken to address this:

• Lock the users capital for a minimum period of time to prevent instant with-
drawals.

• Immediately forward funds to the yieldReserve, so a large deposit is not with-
drawable instantly.

Remediation

The issue has been fixed in commit e6a58acb by adding a flat withdrawl fee.

Zellic 8 Fractal Protocol

https://github.com/fractal-protocol/f-smart-contracts/commit/e6a58acbbc9536131257bc96f39ac10d2fb6663b

3.2 Lack of slippage checks on DEX swaps

• Target: Multiple contracts
• Severity: High
• Impact: High

• Category: Business Logic
• Likelihood: High

Description

In many separate areas of the project, interactions and swaps with Uniswap are han-
dled through DexLibrary. There is no slippage check on these interactions and are
thus vulnerable to market manipulation.

function swap(
uint256 amountIn,
address fromToken,
address toToken,
IPair pair

) internal returns (uint256) {
(address token0,) = sortTokens(fromToken, toToken);
(uint112 reserve0, uint112 reserve1,) = pair.getReserves();
if (token0 != fromToken) (reserve0, reserve1) = (reserve1, reserve0);
uint256 amountOut1 = 0;
uint256 amountOut2 = getAmountOut(amountIn, reserve0, reserve1);
if (token0 != fromToken)

(amountOut1, amountOut2) = (amountOut2, amountOut1);
safeTransfer(fromToken, address(pair), amountIn);
pair.swap(amountOut1, amountOut2, address(this), ZERO_BYTES);
return amountOut2 > amountOut1 ? amountOut2 : amountOut1;

}

Impact

Due the nature of most of the vulnerable methods being onlyOwner or onlyAdmin, the
quantity of funds accumulatedwould be rather large alongwith the swap amount. An
attacker could sandwich the the swap transaction, artificially inflating the spot price
and profiting off the manipulated market conditions when the swap executes.

Recommendations

Set the default slippage to 0.5% for Uniswap, customizable for bigger trades.

Zellic 9 Fractal Protocol

Remediation

The issue has been fixed in commit 7d2c1c7d.

Zellic 10 Fractal Protocol

https://github.com/fractal-protocol/f-strategy-contracts/commit/7d2c1c7db748614733083cfb2e03404501eabaa1

3.3 Potential lock-upof funds in FractalVaultV1 as anySwapRouter
is not approved

• Target: FractalVaultV1.sol
• Severity: Medium
• Impact: Medium

• Category: Business Logic
• Likelihood: Medium

Description

The FractalVaultV1 does not approve the anySwap router before executing anySwapOut-
Underlying, and would fail all the withdrawal attempts.

function withdrawToLayerOne(...))) {
...))
emit WithdrawToLayerOne(msg.sender, amount);

anySwapRouter.anySwapOutUnderlying(anyToken, anyswapRouter,
amount, chainId);
}

Impact

The FractalVaultV1will never be able towithdraw to LayerOne. Though the recoverERC20
function can be used in an emergency to manually transfer funds as a backup func-
tionality; however, this is likely not the intended flow of funds.

Recommendations

Approve AnySwap router before anySwapOutUnderlying.

Remediation

The issue has been fixed in commit 7d2c1c7d.

Zellic 11 Fractal Protocol

https://github.com/fractal-protocol/f-strategy-contracts/commit/7d2c1c7db748614733083cfb2e03404501eabaa1

3.4 Potential lock-upof funds in the event of insufficient AnySwap
liquidity

• Target: FractVaultV1.sol
• Severity: Low
• Impact: Low

• Category: Business Logic
• Likelihood: Low

Description

AnySwap cross-chain transfers will provide the underlying token to the destination
only if sufficient liquidity exists on AnySwap reserves. If not, AnySwap will mint a
wrapped token (AnyToken) that can be redeemed later when liquidity is available.
The FractVaultV1 does not handle that. Even if reserves are checked before executing
a swap, since AnySwap is not atomic with no guarantee on order of transactions,
simultaneous swaps by other users would lead to locked tokens.

Impact

FractalVaultV1 currently has no way to redeem the AnyTokens to the underlying to-
kens. However, the recoverERC20 method can be used by the owner to manually
recover the anySwap tokens, mitigating this issue’s impact.

Recommendations

Add functionality to redeem AnyTokens to their underlying.

Remediation

The issue has been acknowledgedby Fractal. No changes are necessary as recoverERC20
can withdraw any stuck tokens.

Zellic 12 Fractal Protocol

3.5 Access Control functions should emit events

• Target: Mintable.sol, Address-
Whitelist.sol, Migrations.sol

• Severity: Informational
• Impact: Informational

• Category: Access Control
• Likelihood: N/A

Description

Several methods in multiple contracts related to access control such as whitelisting
and minter/burner roles do not emit events.

Impact

In the case of a compromise, events allow for secure and early detection of breaches
& security incidents.

Recommendations

Add events to all functions relating to access control.

Remediation

The issue has been fixed in commit e6a58acb.

Zellic 13 Fractal Protocol

https://github.com/fractal-protocol/f-smart-contracts/commit/e6a58acbbc9536131257bc96f39ac10d2fb6663b

3.6 Multiple internal inconsistencies

• Target: Multiple contracts
• Severity: Informational
• Impact: Informational

• Category: Business Logic
• Likelihood: N/A

Description

In several areas of the project, internal inconsistencies were noted, such as lack of
checks that were present in other areas, or non-standard practices in general.

The respective areas are affected:

• FractalVaultV1: withdrawToLayerOne - No chainId Checks.
• Mintable.sol: mint - Transfer event should mint from address 0.
• DexLibrary.sol: convertRewardTokensToDepositTokens - lack of slippage checks
mentioned.

Impact

These issues are minor, and do not pose a security hazard at present. More broadly
however, this is a source of developer confusion and a general coding hazard. Internal
inconsistencies may lead to future problems or bugs. Avoiding internal inconsisten-
cies alsomakes it easier for developers to understand the code and helps any potential
auditors more quickly and thoroughly assess it.

Recommendations

Consider changing the code to fix the inconsistencies.

Remediation

The issue has been acknowledged by Fractal. It is believed that no changes are nece-
saary at this time.

Zellic 14 Fractal Protocol

3.7 Lack of documentation

• Target: Multiple contracts
• Severity: Informational
• Impact: Informational

• Category: Business Logic
• Likelihood: N/A

Description

Several files in the project are lacking documentation, the following being:

• DateUtils.sol: diffDays
• DateUtils.sol: _daysToDate
• DateUtils.sol: _daysFromDate
• DateUtils.sol: getYear
• DateUtils.sol: timestamp
• Migrations.sol: setCompleted

Impact

This is a source of developer confusion and a general coding hazard. Lack of doc-
umentation, or unclear documentation, is a major pathway to future bugs. It is best
practice to document all code. Documentation also helps third-party developers inte-
grate with the platform, and helps any potential auditors more quickly and thoroughly
assess the code.

Recommendations

Add documentation to the affected functions.

Remediation

The issue has been fixed in commit e6a58acb.

Zellic 15 Fractal Protocol

https://github.com/fractal-protocol/f-smart-contracts/commit/e6a58acbbc9536131257bc96f39ac10d2fb6663b

3.8 Insufficient code documentation

• Target: DateUtils.sol
• Severity: Informational
• Impact: Informational

• Category: Business Logic
• Likelihood: N/A

Description

We found that the code quality unsatisfactory for certain functions, namely:

• DateUtils.sol: _daysToDate

function _daysToDate(uint256 _days) internal pure returns (uint256
year, uint256 month, uint256 day) {
int256 __days = int256(_days);

int256 L = __days + 68569 + OFFSET19700101;
int256 N = 4 * L / 146097;
L = L - (146097 * N + 3) / 4;
int256 _year = 4000 * (L + 1) / 1461001;
L = L - 1461 * _year / 4 + 31;
int256 _month = 80 * L / 2447;
int256 _day = L - 2447 * _month / 80;
L = _month / 11;
_month = _month + 2 - 12 * L;
_year = 100 * (N - 49) + _year + L;

...))

_daysToDate uses a lot of abstract math to converts days to a date.
• DateUtils.sol: _daysFromDate

function _daysFromDate(uint256 year, uint256 month, uint256 day)
internal pure returns (uint256 _days) {
require(year >= 1970, “Error”);
int _year = int(year);
int _month = int(month);
int _day = int(day);

int __days = _day
- 32075
+ 1461 * (_year + 4800 + (_month - 14) / 12) / 4
+ 367 * (_month - 2 - (_month - 14) / 12 * 12) / 12

Zellic 16 Fractal Protocol

- 3 * ((_year + 4900 + (_month - 14) / 12) / 100) / 4
- OFFSET19700101;

_days = uint256(__days);
}

_daysFromDate uses a lot of optimized math to converts days to a date.
• Vault.sol: Compute

function compute () public {
...))
for (uint256 i = currentPeriod + 1; i <= newPeriod; i++) {

_records[i].apr = _records[i - 1].apr;
_records[i].totalDeposited = _records[i - 1].

totalDeposited;

uint256 diff = uint256(_records[i - 1].apr) *
USDF_DECIMAL_MULTIPLIER * uint256(100) / uint256(365);

_records[i].tokenPrice = _records[i - 1].tokenPrice + (
diff / uint256(10000));

_records[i].dailyInterest = _records[i - 1].
totalDeposited * uint256(_records[i - 1].apr) / uint256(365) /
uint256(100);

}
...))

}

A lack of comments here renders this function difficult to understand.

Impact

Code maturity is very important in a code base, this is because commented out code
and unused variables can result in increased complexity and confusion when devel-
opers have to modify the business logic.

Remediation

The issue has been fixed in commit e6a58acb.

Zellic 17 Fractal Protocol

https://github.com/fractal-protocol/f-smart-contracts/commit/e6a58acbbc9536131257bc96f39ac10d2fb6663b

4 Discussion

In this section, we discussmiscellaneous interesting observations during the audit that
are noteworthy and merit some consideration.

We applaud Fractal’s initiative for taking on the challenge of yield farming over frag-
mented liquidity in multiple chains.

The quality of code is commendable, and the test coverage reaches almost 100%
(99.6%).

Wewere a bit confused by the custom re-entrancy guards instead of OpenZeppelins’,
but the functionality seems identical so it is a non-issue.

Another point to consider may be that many functions are allowed to be called by
whitelisted addresses dictated by the owner pose a large centralization risk. Here is a
non-comprehensive list of such functions:

• mint - onlyMinter
• burn - onlyBurner
• executeTransfer - onlyIfWhitelistedSender

This is by design but we would still suggest the following:

• Use amulti-signature address wallet, this would prevent an attacker from caus-
ing irreversible damage if the EOA wallet were compromised.

• Place dangerous functions like whitelists behind a timelock to catch malicious
executions in the case of compromise.

Zellic 18 Fractal Protocol

	About Zellic
	Introduction
	About Fractal Protocol
	Methodology
	Scope
	Project Overview
	Disclaimer

	Executive Summary
	Detailed Findings
	An attacker may claim risk-free rewards without risking their staked capital
	Lack of slippage checks on DEX swaps
	Potential lock-up of funds in FractalVaultV1 as anySwap Router is not approved
	Potential lock-up of funds in the event of insufficient AnySwap liquidity
	Access Control functions should emit events
	Multiple internal inconsistencies
	Lack of documentation
	Insufficient code documentation

	Discussion

