
Security Assessment

FILLiquid
CertiK Assessed on Apr 25th, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

3 Major 2 Resolved, 1 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

3 Medium 3 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

9 Minor 6 Resolved, 3 Partially Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Partially Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY FILLIQUID

CertiK Assessed on Apr 25th, 2024

FILLiquid

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Filecoin (FIL)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 04/25/2024

KEY COMPONENTS

N/A

CODEBASE
https://github.com/FILL-Lab/FILLiquid/

View All in Codebase Page

COMMITS
87d212ecce911e0e44a8df00bd82c3917cc5e261

View All in Codebase Page

16
Total Findings

11
Resolved

1
Mitigated

4
Partially Resolved

0
Acknowledged

0
Declined

https://github.com/FILL-Lab/FILLiquid/
https://github.com/FILL-Lab/FILLiquid/tree/87d212ecce911e0e44a8df00bd82c3917cc5e261

TABLE OF CONTENTS FILLIQUID

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

FIL-02 : Initial Token Distribution

FIL-03 : Centralized Balance Manipulation

FIL-04 : Centralization Related Risks

FIF-03 : Check Effect Interaction Pattern - FIL transfer

MSF-02 : Missing Check of Duplicate Signer Address

MSF-03 : Exclusion of `msg.value` in Proposal and Unchecked Low Level Call Could Cause Failure of
Proposal Execution

CUF-01 : Inconsistency with Comments

FIF-02 : Potential Frontrunning Attack if `expectAmountFILTrust` and `expectAmountFIL` Are Not Set
Properly in the Deposit and Redeem Functions

FIL-05 : Unchecked Value of ERC-20 `transfer()`/`transferFrom()` Call

FIL-06 : Missing Zero Address Validation

FIL-07 : Check Effect Interaction Pattern Violated (Out-of-Order Events)

FIS-02 : Missing check on `FILStake.setStakeParams()`

FIS-03 : `FILStake.setShares()` allows zero values

FIS-04 : Checks Effects Interaction Pattern Not Used

MSF-04 : Missing Threshold Requirement in Multisig

FIL-08 : Missing Emit Events

Optimizations

FIL-01 : Variables That Could Be Declared as Immutable

FIS-01 : If Statement Optimization

MSF-01 : User-Defined Getters

Formal Verification

Considered Functions And Scope

Verification Results

TABLE OF CONTENTS FILLIQUID

Appendix

Disclaimer

TABLE OF CONTENTS FILLIQUID

CODEBASE FILLIQUID

Repository

https://github.com/FILL-Lab/FILLiquid/

Commit

87d212ecce911e0e44a8df00bd82c3917cc5e261

CODEBASE FILLIQUID

https://github.com/FILL-Lab/FILLiquid/
https://github.com/FILL-Lab/FILLiquid/tree/87d212ecce911e0e44a8df00bd82c3917cc5e261

AUDIT SCOPE FILLIQUID

13 files audited 6 files with Mitigated findings 1 file with Partially Resolved findings 1 file with Resolved findings

5 files without findings

ID Repo Commit File SHA256 Checksum

ERC
FILL-

Lab/FILLiquid
87d212e contracts/ERC20Pot.sol

8d5a8d6afdb38d53a8f0746eeec423a24a

3dc898de23388a12ddc7964294fdf9

FIL
FILL-

Lab/FILLiquid
87d212e contracts/FILGovernance.sol

4beaff266fb7b249a8f51e6979151b4d21d

71c433ac905bcc91c894034ac65ff

FIF
FILL-

Lab/FILLiquid
87d212e contracts/FILLiquid.sol

afc78a0ef3f86cecdc0be7ffd8981deeeeef3

58afd5364250a0432ea55815279

FIS
FILL-

Lab/FILLiquid
87d212e contracts/FILStake.sol

bd511a0a179e619f17a5453e7bce740151

ef846c016ef600fa4a5232d442a9d6

FIT
FILL-

Lab/FILLiquid
87d212e contracts/FILTrust.sol

7f55f3bc9f4be0e2bea01726d4de9398c55

b03b07c07c30e6dc7eae5d023ad14

GFI
FILL-

Lab/FILLiquid
87d212e contracts/Governance.sol

1be7e939173271c889df509018f1de5f63a

f5d7230a576c27fcdf877e1a5a1be

MSF
FILL-

Lab/FILLiquid
87d212e contracts/MultiSignFactory.sol

463c8fd3648cdd9527046c3966c253a4c4f

e0f43ab6b3f3aecad7594c990ad4a

CUF
FILL-

Lab/FILLiquid
87d212e contracts/Utils/Calculation.sol

a20619d0a3f46bb42892ccb5c0257ef2383

59fce9ff8dca3805b7f35d9eff997

CUI
FILL-

Lab/FILLiquid
87d212e contracts/Utils/Conversion.sol

1413a278950ded2aa2d9cb3b8352897e3

a800fd5c0e2510ad32e26177ec906c7

FAP
FILL-

Lab/FILLiquid
87d212e contracts/Utils/FilecoinAPI.sol

2eb0d34e22efab2d7c53952d0544e835b4

cf5a9ca675db1d93b6090080bf11d3

VUF
FILL-

Lab/FILLiquid
87d212e contracts/Utils/Validation.sol

3df8107a2c808e78fdc9537a56c04e1a0e2

bb7426b6c0fa2bf6e279bf984aafa

DFI
FILL-

Lab/FILLiquid
b6ce507 contracts/Deployer1.sol

8aa6c22435b1243f97175855c02cc3bd23

05066c5aa4ab16b3f48f1f563f0ead

AUDIT SCOPE FILLIQUID

ID Repo Commit File SHA256 Checksum

DFL
FILL-

Lab/FILLiquid
b6ce507 contracts/Deployer2.sol

4947dc401d2f7e0209e954e5212850a29d

e44387b5f72fcd2f53b508e75a7230

AUDIT SCOPE FILLIQUID

APPROACH & METHODS FILLIQUID

This report has been prepared for FILLiquid to discover issues and vulnerabilities in the source code of the FILLiquid project

as well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS FILLIQUID

FINDINGS FILLIQUID

This report has been prepared to discover issues and vulnerabilities for FILLiquid. Through this audit, we have uncovered 16

issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

FIL-02 Initial Token Distribution Centralization Major Resolved

FIL-03 Centralized Balance Manipulation Centralization Major Resolved

FIL-04 Centralization Related Risks Centralization Major Mitigated

FIF-03
Check Effect Interaction Pattern - FIL

Transfer
Concurrency Medium Resolved

MSF-02
Missing Check Of Duplicate Signer

Address
Volatile Code Medium Resolved

MSF-03

Exclusion Of msg.value In Proposal

And Unchecked Low Level Call Could

Cause Failure Of Proposal Execution

Volatile Code,

Logical Issue
Medium Resolved

CUF-01 Inconsistency With Comments Inconsistency Minor Resolved

FIF-02

Potential Frontrunning Attack If

expectAmountFILTrust And

expectAmountFIL Are Not Set Properly

In The Deposit And Redeem Functions

Volatile Code,

Financial

Manipulation

Minor Partially Resolved

FIL-05
Unchecked Value Of ERC-20

transfer() / transferFrom() Call
Volatile Code Minor Resolved

FIL-06 Missing Zero Address Validation Volatile Code Minor Resolved

FINDINGS FILLIQUID

16
Total Findings

0
Critical

3
Major

3
Medium

9
Minor

1
Informational

ID Title Category Severity Status

FIL-07
Check Effect Interaction Pattern Violated

(Out-Of-Order Events)
Concurrency Minor Partially Resolved

FIS-02
Missing Check On

FILStake.setStakeParams()
Logical Issue Minor Resolved

FIS-03
FILStake.setShares() Allows Zero

Values
Logical Issue Minor Resolved

FIS-04
Checks Effects Interaction Pattern Not

Used
Volatile Code Minor Partially Resolved

MSF-04
Missing Threshold Requirement In

Multisig
Volatile Code Minor Resolved

FIL-08 Missing Emit Events Coding Style Informational Partially Resolved

FINDINGS FILLIQUID

FIL-02 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major contracts/FILGovernance.sol (base): 16~17 Resolved

Description

40% of the FILGovernance tokens are sent to the contract deployer/owner. This is a centralization risk because the

deployer / owner can significantly impact the governance system implemented in the Governance contract. Additionally, the

deployer / owner can distribute tokens without obtaining the consensus of the community. Any compromise to these

addresses may allow a hacker to steal and sell tokens on the market, resulting in severe damage to the project and indirectly

impacts the Governance system.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

Alleviation

[CertiK, 2024/04/11]: Based on the deployment contract Deploy1.sol at commit

b6ce507a20a2f517b66f3a3785aa0bc5dd543ef4, 40% of the FILGovernance tokens are transferred to the multisig

MultiSignFactory.sol when the token is deployed.

[CertiK, 2024/04/25]: Based on the deployment contract Deploy1.sol at commit

c0ea7b5ca905875d1d9c4df1115827992795c69b, the FILGovernance tokens are distributed according to the following

constant percentages and are subject to a fixed vesting schedule as defined in the ERC20Pot contract. Given the immutable

nature of the distribution % and vesting schedule, we consider the issue "resolved".

FIL-02 FILLIQUID

 uint constant INSTITUTION_LOCKING_PERIOD = 1036800; //360 days

 uint constant TEAM_LOCKING_PERIOD = 3110400; //1080 days

 uint constant FOUNDATION_LOCKING_PERIOD = 3110400; //1080 days

 uint constant RESERVE_LOCKING_PERIOD = 1036800; //360 days

 uint constant COMMUNITY_LOCKING_PERIOD = 259200; //90 days

 uint constant INSTITUTION_SHARE = 250;

 uint constant TEAM_SHARE = 375;

 uint constant FOUNDATION_SHARE = 125;

 uint constant RESERVE_SHARE = 125;

 uint constant COMMUNITY_SHARE = 125;

 uint constant RATEBASE = 1000;

FIL-02 FILLIQUID

FIL-03 CENTRALIZED BALANCE MANIPULATION

Category Severity Location Status

Centralization Major
contracts/FILGovernance.sol (base): 20~26; contracts/FILTrust.s

ol (base): 14~20
Resolved

Description

In the contract FILGovernance and FILTrust , the role Owner has the authority to add/remove Manager , and the

Manager can withdraw token balance of an arbitrary account without restriction.

Any compromise to the Owner or Manager` account may allow a hacker to take advantage of this authority and manipulate

users' balances. The hacker can subsequently use the tokens to directly impact the Governance system and potentially

execute malicious proposals, or sell the tokens on the market.

Recommendation

Given that the withdraw() function is only intended to be called by the FILStake and Governance contracts, consider

using an immutable check that the caller of the function is either the FILStake or Governance contract instead.

We recommend the team makes efforts to restrict access to the private key of the privileged account. A strategy of multi-

signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key compromise. In addition, the

team should be transparent and notify the community in advance whenever they plan to mint more tokens or engage in

similar balance-related operations.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk:

Short Term:

A multi signature (⅔, ⅗) wallet mitigate the risk by avoiding a single point of key management failure.

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers' addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

FIL-03 FILLIQUID

Long Term:

A DAO for controlling the operation mitigate the risk by applying transparency and decentralization.

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

A medium/blog link for sharing the multi-signers' addresses, and DAO information with the community.

For remediation and mitigated status, please provide the following information:

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

The following actions can fully resolve the risk:

Renounce the ownership and never claim back the privileged role.

OR

Remove the risky functionality.

OR

Add minting logic (such as a vesting schedule) to the contract instead of allowing the owner account to call the

sensitive function directly.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Alleviation

[CertiK, 2024/04/11]: Based on the deployment contract Deploy1.sol and Deploy2.sol at commit

b6ce507a20a2f517b66f3a3785aa0bc5dd543ef4, the setting() function of Deploy1.sol would transfer the ownership of

the FILGovernance and FILTrust tokens to the address deployer2 . If the deployer2 address is the Deploy2.sol

contract, AND both deployment contracts are configured correctly and the setting() function is called on the

Deploy2.sol contract, then the only Manager of the FILTrust token would be _filLiquid and _fitStake , and the

only Manager of the FILGovernance token would be _fitStake and _governance . Moreover, ownership would be

renounced for _filTrust , _filGovernance , _fitStake , _governance , and _filLiquid .

[CertiK, 2024/04/25]: Based on https://github.com/FILL-Lab/FILLiquid/pull/92, despite having the manager role of the

FILGovernance token, the Governance contract cannot call the withdraw() or mint() functions of the

FILGovernance token, as the Governance contract does not allow arbitrary call even after a proposal passes the voting

process successfully. As such, the finding can be considered "resolved".

FIL-03 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/pull/92

FIL-04 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

contracts/ERC20Pot.sol (base): 30, 36; contracts/FILGovernanc

e.sol (base): 20, 24, 28, 40, 44, 56, 65; contracts/FILLiquid.sol (ba

se): 805, 821, 923; contracts/FILStake.sol (base): 242, 249, 256, 2

73, 291; contracts/FILTrust.sol (base): 14, 18, 22, 27, 31, 43; contr

acts/Governance.sol (base): 356, 394, 408

Mitigated

Description

In the contract ERC20Pot the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and transfer tokens to arbitrary addresses.

Authenticated Role

Function

Function State Variables

Internal Calls

External Calls

_owner

transfer

changeOwner

canReleaseNow

_token.transfer

_owner

In the contract FILGovernance the role _manager has authority over the functions shown in the diagram below. Any

compromise to the _manager account may allow the hacker to take advantage of this authority and transfer tokens from any

arbitrary address.

FIL-04 FILLIQUID

Authenticated Role

Function Internal Calls

Function Internal Calls

Internal Calls

_manager

mint

withdraw

_mint

_msgSender

_transfer

In the contract FILGovernance the role _managerorburner has authority over the functions shown in the diagram below.

Any compromise to the _managerorburner account may allow the hacker to take advantage of this authority and burn

tokens.

Authenticated Role Function

Internal Calls

Internal Calls

_managerorburner burn

_msgSender

_burn

In the contract FILGovernance the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and add/remove _manager

and burner .

FIL-04 FILLIQUID

Function State Variables

Function State Variables

Authenticated Role

Function State Variables

Function State Variables

removeManager _manageAddresses

setOwner _owner

_owner

addManager

setBurner

_manageAddresses

_burner

In the contract FILLiquid the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and set important addresses including the

_governance address which can call the setGovernanceFactors() function to change critical parameters.

Function

State Variables

Function State Variables

Authenticated Role
setAdministrativeFactors

_foundation

_tokenFILTrust

_governance

_filStake

_calculation

_validation

_filecoinAPI

setOwner _owner

_owner

In the contract FILStake the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and set critical addresses and parameters.

FIL-04 FILLIQUID

Function

State Variables

Function State Variables

Authenticated Role

Function
State Variables

Function
State Variables

setContractAddrs

_tokenFILGovernance

_calculation

_filLiquid

_tokenFILTrust

_governance

setOwner _owner

_owner

setStakeParams

setShares

_minStake

_minStakePeriod

_maxStakePeriod

_maxStakes

_stake_share

_rateBase

_interest_share

In the contract FILTrust the role _manager has authority over the functions shown in the diagram below. Any compromise

to the _manager account may allow the hacker to take advantage of this authority and transfer tokens from arbitrary

addresses and mint/burn tokens.

FIL-04 FILLIQUID

Function

Internal Calls

Function Internal CallsAuthenticated Role

Function
Internal Calls

Internal Calls

Internal Calls

Internal Calls

withdraw

_msgSender

_transfer

mint _mint_manager

burn
decimals

_burn

totalSupply

In the contract FILTrust the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and add/remove _manager .

FIL-04 FILLIQUID

Function State Variables

Authenticated Role Function State Variables

Function State Variables

setOwner _owner

_owner addManager

removeManager

_manageAddresses

_manageAddresses

In the contract Governance the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and change important addresses such as

the token address that can participate in the governance system, and critical parameters of the Governance system.

FIL-04 FILLIQUID

Function

State Variables

Authenticated Role Function
State Variables

Function State Variables

setFactors

_executionPeriod

_voteThreshold

_maxNoWithVeto

_minYes

_depositRatioThreshold

_quorum

_maxActiveProposals

_votingPeriod

_depositAmountThreshold

_liquidate

_maxNo

_rateBase

_owner setContractAddrs

setOwner

_filStake

_tokenFILGovernance

_filLiquid

_owner

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

FIL-04 FILLIQUID

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[CertiK, 2024/04/11]: Based on the deployment contract Deploy1.sol and Deploy2.sol at commit

b6ce507a20a2f517b66f3a3785aa0bc5dd543ef4, the setting() function of Deploy1.sol would transfer the ownership of

the FILGovernance and FILTrust tokens to the address deployer2 . If the deployer2 address is the Deploy2.sol

contract, AND both deployment contracts are configured correctly and the setting() function is called on the

Deploy2.sol contract, then the only Manager of the FILTrust token would be _filLiquid and _fitStake , and the

only Manager of the FILGovernance token would be _fitStake and _governance . Moreover, ownership would be

renounced for _filTrust , _filGovernance , _fitStake , _governance , and _filLiquid .

[CertiK, 2024/04/25]: Based on https://github.com/FILL-Lab/FILLiquid/pull/92, if a proposal passes through the governance

process, the Governance contract can call the setGovernanceFactors() function of the FILLiquid and FITStake

contracts, and set important parameters such as liquidation threshold. The governance contract is a strong long-term

mitigation to the centralization risk.

FIL-04 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/pull/92

FIF-03 CHECK EFFECT INTERACTION PATTERN - FIL TRANSFER

Category Severity Location Status

Concurrency Medium
contracts/FILLiquid.sol (base): 402~403, 403~404, 403~404, 450~45

1, 473~474, 487~488, 513~514, 515~516
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects.

If the attacker can control the untrusted contract, they can make a recursive call back to the original contract, repeating

interactions that would have otherwise not run after the external call resolved the effects.

In FILLiquid.sol , FIL tokens are sent to a caller in multiple functions before state variables are updated and events

emitted.

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Here to follow the Checks-Effects-Interactions pattern, the external calls can be put at the end of the relevant functions, right

after updating state variables and events emissions.

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

FIF-03 FILLIQUID

https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

MSF-02 MISSING CHECK OF DUPLICATE SIGNER ADDRESS

Category Severity Location Status

Volatile Code Medium contracts/MultiSignFactory.sol (base): 61~67, 90~100 Resolved

Description

A properly set Multisig contract should have unique individual signer addresses. However, there's no such check when the

_signers are set in the constructor and the renewSigners() function of the MultiSignFactory contract. If there are

duplicate signer address in the signers array, then the _approvalThreshold would not work as intended, as the same

signer cannot approve a proposal more than once.

Recommendation

Recommend adding a check that there cannot be duplicate address in the provided signers array.

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

MSF-02 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

MSF-03 EXCLUSION OF msg.value IN PROPOSAL AND

UNCHECKED LOW LEVEL CALL COULD CAUSE FAILURE
OF PROPOSAL EXECUTION

Category Severity Location Status

Volatile Code, Logical

Issue
Medium

contracts/MultiSignFactory.sol (base): 69~71, 84~88, 182~

201, 234~239
Resolved

Description

In the MultiSignFactory contract, any signer can create a proposal, and if enough signers approve the proposal, any

signer can call the execute() function to execute the proposal.

When a proposal is created, its proposer , target , code , and text are recorded in a ProposalInfo struct. When a

proposal is executed, the caller can include an arbitrary amount of msg.value in its function call. Note that this msg.value

is not included in the ProposalInfo struct. Furthermore, in the _execute() function, the return value success of the low

level call is not checked in line 237, but info.executed is always set to true regardless. This makes it possible for a

proposal that has enough approval to be executed to fail execution due to the msg.value being included. For example,

calling a nonpayable function of the target contract with a positive msg.value would fail to execute. The low level call in

line 237 would return false instead of reverting, and this proposal cannot be re-executed because info.executed is

already set to true in line 236.

Recommendation

Consider including the msg.value in the ProposalInfo struct when a proposal is created. Also, recommend checking for

the return value of the low level call in line 237, and only set info.executed to true if the success variable is true .

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

MSF-03 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

CUF-01 INCONSISTENCY WITH COMMENTS

Category Severity Location Status

Inconsistency Minor contracts/Utils/Calculation.sol (base): 59~60, 69 Resolved

Description

In the function Calculation.getFilByRedeem() , the Proportional Redemption will take place if

69 if (filLiquidity * u_m > utilizedLiquidity * rateBase) {

however, the comments state that:

59

// - Proportional Redemption when utilizationRate is less than or equal to u_m /

rateBase

Recommendation

We recommend modifying the code or the comments accordingly to ensure consistency.

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

CUF-01 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

FIF-02 POTENTIAL FRONTRUNNING ATTACK IF
expectAmountFILTrust AND expectAmountFIL ARE NOT SET

PROPERLY IN THE DEPOSIT AND REDEEM FUNCTIONS

Category Severity Location Status

Volatile Code, Financial

Manipulation
Minor

contracts/FILLiquid.sol (base): 375~389, 3

91~407
Partially Resolved

Description

In the FILLiquid contract, the deposit() function takes in a parameter expectAmountFILTrust , and the redeem()

function takes in a parameter expectAmountFIL . They act as safety checks for the amount of FIT token and FIL token that

the user receives. If they are left at 0 or not set properly, an attacker could potentially frontrun normal user transactions.

For example, when a normal user calls the redeem() function when U < _u_m , an attacker could frontrun the transaction

by borrowing FIL up to _u_m , such that when the user redeems, its U would be greater than _u_m , in which case the

curve penalizes redemption and the user would receive a smaller amount of FIL than it otherwise would receive. The attacker

could subsequently call deposit() and receive a larger share of FIT than normal because of the higher utilization rate, and

then payback the borrowing incurring minimal/no interest expense.

Recommendation

We'd like to understand if users are supposed to come up with their own expectAmountFILTrust and expectAmountFIL ,

or if the project team would provide those values via off-chain calculation when users interact with the project via the UI. We'd

like to understand how the project team calculates those values to protect against potential frontrunning attacks.

Alleviation

Filliquid team:: the calculation and slippage are set off chain, and the slippage parameter would protect against this type of

MEV based attacks.

FIF-02 FILLIQUID

FIL-05 UNCHECKED VALUE OF ERC-20 transfer() /

transferFrom() CALL

Category Severity Location Status

Volatile

Code
Minor

contracts/FILStake.sol (base): 158; contracts/Governance.sol (base): 16

4, 229, 241, 244~245
Resolved

Description

The linked transfer() / transferFrom() invocations do not check the return value of the function call, which should yield

true in the case of a proper ERC-20 implementation, including the inherited OpenZeppelin ERC20 contract.

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We

recommend using OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and transferFrom()

functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a return value and

reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[FILLiquid Team, 2024/04/08]: FIG and FIG are self-defined tokens & transfer function is inherited from erc-20 standard,

transfer function will always return true.

FIL-05 FILLIQUID

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/docs-v4.x/contracts/token/ERC20/utils/SafeERC20.sol

FIL-06 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/ERC20Pot.sol (base): 23, 37; contracts/FILGovernance.sol (bas

e): 57, 66; contracts/FILTrust.sol (base): 44
Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

23 _owner = owner;

owner is not zero-checked before being used.

37 _owner = new_owner;

new_owner is not zero-checked before being used.

57 _owner = new_owner;

new_owner is not zero-checked before being used.

66 _burner = new_burner;

new_burner is not zero-checked before being used.

44 _owner = new_owner;

new_owner is not zero-checked before being used.

Recommendation

FIL-06 FILLIQUID

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

FIL-06 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

FIL-07 CHECK EFFECT INTERACTION PATTERN VIOLATED (OUT-
OF-ORDER EVENTS)

Category Severity Location Status

Concurrency Minor
contracts/ERC20Pot.sol (base): 32, 33; contracts/MultiSignFact

ory.sol (base): 237, 238
Partially Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is considered minor because the reentrancy only causes out-of-order events.

External call(s)

32 _token.transfer(receiver, amount);

Events emitted after the call(s)

33 emit Transferred(receiver, amount);

External call(s)

237 (bool success, bytes memory output) = info.target.call{value: msg.value

}(info.code);

Events emitted after the call(s)

238 emit Executed(_msgSender(), proposalId, success, output);

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

FIL-07 FILLIQUID

https://docs.soliditylang.org/en/v0.8.19/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Alleviation

[CertiK, 2024/04/08]: The team partially resolved the finding in commit 575b30ec16bcb12c1ea6794511a888716749944f:

FIL-07 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

FIS-02 MISSING CHECK ON FILStake.setStakeParams()

Category Severity Location Status

Logical Issue Minor contracts/FILStake.sol (base): 250~253 Resolved

Description

In FILStake.setStakeParams() , there is no check preventing to set:

_minStakePeriod > _maxStakePeriod ;

_minStake > _maxStakes ;

Recommendation

We recommend enforcing _minStakePeriod =< _maxStakePeriod and _minStake =< _maxStakes to prevent unexpected

errors.

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

FIS-02 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

FIS-03 FILStake.setShares() ALLOWS ZERO VALUES

Category Severity Location Status

Logical Issue Minor contracts/FILStake.sol (base): 245~246 Resolved

Description

The function FILStake.setShares() enforce that new_rateBase == new_interest_share + new_stake_share , however,

this check does not prevent setting zero values as new parameters.

Recommendation

We recommend adding a check to ensure that only positive values are allowed.

Alleviation

[CertiK, 2024/04/11]: The team resolved the finding in commit b6ce507a20a2f517b66f3a3785aa0bc5dd543ef4

require(new_rateBase != 0 && new_interest_share != 0 && new_stake_share != 0 &&

new_rateBase == new_interest_share + new_stake_share, "factor invalid");

[CertiK, 2024/04/08]: The team partially resolved the finding in commit 575b30ec16bcb12c1ea6794511a888716749944f:

require(new_rateBase != 0 && new_rateBase == new_interest_share + new_stake_share,

"factor invalid");

only prevents the sum from being equal to zero, however, it is still possible for new_interest_share or new_stake_share

to be zero when the other value is positive.

FIS-03 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

FIS-04 CHECKS EFFECTS INTERACTION PATTERN NOT USED

Category Severity Location Status

Volatile Code Minor contracts/FILStake.sol (base): 128~129, 158~162 Partially Resolved

Description

In the function unstakeFilTrust() , the Checks-Effects-Interaction Pattern is not strictly followed. External Call

("Interaction") of token transfer in line 158 takes place before relevant state variables are updated.

Recommendation

Consider following the Checks-Effects-Interactions Pattern by putting the external call to _tokenFILTrust at the last line of

the related functions.

Alleviation

[CertiK, 2024/04/08]: The team partially resolved the finding in commit 575b30ec16bcb12c1ea6794511a888716749944f:

in handleInterest() , the external call takes place before the updates of the variables.

FIS-04 FILLIQUID

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

MSF-04 MISSING THRESHOLD REQUIREMENT IN MULTISIG

Category Severity Location Status

Volatile Code Minor contracts/MultiSignFactory.sol (base): 66, 98, 124 Resolved

Description

Multisig wallet should always have a threshold of more than (at least) half of total signer count. In the MultiSignFactory ,

there is no enforcement of the requirement. The implication is that one multisig signer could potentially execute privileged

functions without the agreement of a majority of signers.

Recommendation

We recommend enforcing the threshold requirement in the setup of the multi-sig wallet to be at least more than half of the

signers count.

Alleviation

[CertiK, 2024/04/1]: The team resolved the finding in commit b6ce507a20a2f517b66f3a3785aa0bc5dd543ef4

MSF-04 FILLIQUID

FIL-08 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

contracts/FILGovernance.sol (base): 20~22, 24~26, 28~30,

40~42, 44~46, 56~59, 65~68; contracts/FILLiquid.sol (bas

e): 805~807, 821~837, 923~940; contracts/FILStake.sol (b

ase): 242~247, 249~254, 256~259, 273~285, 291~293; co

ntracts/FILTrust.sol (base): 14~16, 18~20, 22~25, 27~29, 3

1~33, 43~46; contracts/Governance.sol (base): 356~388, 3

94~402, 408~411

Partially Resolved

Description

It is important to emit events for sensitive actions, particularly those that can be executed by centralized roles or

administrators. This ensures transparency and enables tracking of critical changes, which is essential for security and trust in

the system. Missing event logs can result in a lack of visibility and potential information loss.

Recommendation

It is recommended to emit events in sensitive functions that are controlled by centralization roles.

Alleviation

[FILLiquid Team, 2024/04/08]: We cannot add events to contract FILLiquid.sol due to contract size limitation.

Commit: 575b30ec16bcb12c1ea6794511a888716749944f.

FIL-08 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

OPTIMIZATIONS FILLIQUID

ID Title Category Severity Status

FIL-01
Variables That Could Be Declared As

Immutable

Gas

Optimization
Optimization Partially Resolved

FIS-01 If Statement Optimization Coding Style Optimization Resolved

MSF-01 User-Defined Getters
Gas

Optimization
Optimization Resolved

OPTIMIZATIONS FILLIQUID

https://acc.audit.certikpowered.info/project/35ba01d0-dc49-11ee-b628-6f6b20459a4f/report/new?fid=1710192909558
https://acc.audit.certikpowered.info/project/35ba01d0-dc49-11ee-b628-6f6b20459a4f/report/new?fid=1711409474875
https://acc.audit.certikpowered.info/project/35ba01d0-dc49-11ee-b628-6f6b20459a4f/report/new?fid=1710192909571

FIL-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

contracts/ERC20Pot.sol (base): 18, 19, 20; contracts/F

ILLiquid.sol (base): 291, 292, 293, 299, 300, 318
Partially Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[FILLiquid Team]: In FIL-01, modification advises are applied in contract ERC20Pot.sol . But in case of Filliquid.sol ,

such modifications could not be applied as it would increase the size of contract bytecode to such an extent that the contract

would not be able to be deployed on chain.

Commit 575b30ec16bcb12c1ea6794511a888716749944f.

FIL-01 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

FIS-01 IF STATEMENT OPTIMIZATION

Category Severity Location Status

Coding Style Optimization contracts/FILStake.sol (base): 143~144 Resolved

Description

The variable _onceStaked[staker] only needs to be set to true if it is not true already, so line 144 can be included in

the if statement for clarity and some gas savings.

Recommendation

Consider including line 144 in the if statement above instead.

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

FIS-01 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

MSF-01 USER-DEFINED GETTERS

Category Severity Location Status

Gas Optimization Optimization contracts/MultiSignFactory.sol (base): 111~113 Resolved

Description

The linked functions are equivalent to the compiler-generated getter functions for the respective variables.

Recommendation

We advise that the linked variables are instead declared as public as compiler-generated getter functions are less prone

to error and much more maintainable than manually written ones.

Alleviation

[CertiK, 2024/04/08]: The team heeded the advice and resolved the finding in commit

575b30ec16bcb12c1ea6794511a888716749944f.

MSF-01 FILLIQUID

https://github.com/FILL-Lab/FILLiquid/commit/575b30ec16bcb12c1ea6794511a888716749944f

FORMAL VERIFICATION FILLIQUID

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-transfer-succeed-normal transfer Succeeds on Valid Transfers

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-revert-zero-argument transferFrom Fails for Transfers with Zero Address Arguments

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-transfer-never-return-false transfer Never Returns false

FORMAL VERIFICATION FILLIQUID

Property Name Title

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Transfers

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-succeed-normal transferFrom Succeeds on Valid Transfers

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Transfers

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve Never Returns false

erc20-approve-succeed-normal approve Succeeds for Valid Inputs

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-allowance-correct-value allowance Returns Correct Value

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-allowance-succeed-always allowance Always Succeeds

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

FORMAL VERIFICATION FILLIQUID

Detailed Results For Contract FILTrust (contracts/FILTrust.sol) In Commit
87d212ecce911e0e44a8df00bd82c3917cc5e261

Verification of ERC-20 Compliance

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-change-state True

erc20-totalsupply-correct-value True

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-false True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-revert-zero-argument True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-correct-amount True

erc20-transferfrom-never-return-false True

FORMAL VERIFICATION FILLIQUID

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-false True

erc20-transfer-succeed-normal True

erc20-transfer-revert-zero True

erc20-transfer-never-return-false True

erc20-transfer-exceed-balance True

erc20-transfer-correct-amount True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-change-state True

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-change-state True

erc20-allowance-correct-value True

erc20-allowance-succeed-always True

FORMAL VERIFICATION FILLIQUID

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-false True

erc20-approve-never-return-false True

erc20-approve-succeed-normal True

erc20-approve-revert-zero True

erc20-approve-correct-amount True

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

False: The property is violated by the project.

Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

Inapplicable: The property does not apply to the project.

Detailed Results For Contract FILGovernance (contracts/FILGovernance.sol) In Commit
87d212ecce911e0e44a8df00bd82c3917cc5e261

Verification of ERC-20 Compliance

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-change-state True

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

FORMAL VERIFICATION FILLIQUID

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-never-return-false True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow Inconclusive

erc20-transfer-correct-amount Inconclusive

erc20-transfer-succeed-normal Inconclusive

erc20-transfer-revert-zero True

erc20-transfer-false True

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-zero-argument True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-recipient-overflow Inconclusive

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-succeed-normal Inconclusive

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

FORMAL VERIFICATION FILLIQUID

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-change-state True

erc20-totalsupply-correct-value True

erc20-totalsupply-succeed-always True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-change-state True

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-succeed-normal True

erc20-approve-false True

erc20-approve-revert-zero True

erc20-approve-correct-amount True

erc20-approve-never-return-false True

FORMAL VERIFICATION FILLIQUID

APPENDIX FILLIQUID

Finding Categories

Categories Description

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Concurrency
Concurrency findings are about issues that cause unexpected or unsafe interleaving of code

executions.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Financial

Manipulation
Financial Manipulation findings indicate issues in design that may lead to financial losses.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

APPENDIX FILLIQUID

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract FILGovernance must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-change-state

The totalSupply function in contract FILTrust must not change any state variables.

APPENDIX FILLIQUID

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract FILTrust.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract FILGovernance.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) - \old(amount)

 || (allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

APPENDIX FILLIQUID

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +

amount)

 && balanceOf(\old(sender)) == \old(balanceOf(sender) - amount);

 also

requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

erc20-transferfrom-fail-exceed-allowance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

requires msg.sender != sender;

requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-fail-recipient-overflow

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount > type(uint256).max;

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

APPENDIX FILLIQUID

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

ensures \result;

erc20-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, dest, amount) must fail for transfers from or to the zero address.

Specification:

ensures \old(sender) == address(0) ==> !\result;

also

ensures \old(recipient) == address(0) ==> !\result;

erc20-transferfrom-succeed-normal

All invocations of transferFrom(from, dest, amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

requires recipient != address(0) && sender != address(0) && recipient != sender;

requires amount <= balanceOf(sender);

requires amount <= allowance(sender, msg.sender);

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result;

reverts_only_when false;

Properties related to function transfer

erc20-transfer-correct-amount

APPENDIX FILLIQUID

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

requires recipient != msg.sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);

 also

requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

If the transfer function in contract FILTrust fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-false

If the transfer function in contract FILGovernance fails by returning false , it must undo all state changes it incurred

before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

APPENDIX FILLIQUID

erc20-transfer-recipient-overflow

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

Specification:

requires recipient != msg.sender;

requires balanceOf(recipient) + amount > type(uint256).max;

ensures !\result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

erc20-transfer-succeed-normal

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

requires recipient != address(0) && recipient != msg.sender;

requires amount <= balanceOf(msg.sender);

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result;

reverts_only_when false;

Properties related to function balanceOf

erc20-balanceof-change-state

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

APPENDIX FILLIQUID

erc20-balanceof-correct-value

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function approve

erc20-approve-correct-amount

APPENDIX FILLIQUID

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

requires spender != address(0);

ensures \result;

reverts_only_when false;

APPENDIX FILLIQUID

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER FILLIQUID

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER FILLIQUID

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

FILLiquid Security Assessment CertiK Assessed on Apr 25th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

