
Security Assessment &
Formal Verification
Report

Astaria starport
January 2024

Prepared for
Astaria

Table of content
Project Summary...5

Project Scope.. 5
Project Overview... 5
Findings Summary.. 7

Detailed Findings.. 8
High Severity Concerns..8
H-1. Starport._feeRake(): wrong index used for feeItem...8
H-2. Starport.incrementCounter(): DOS due to shifting in the wrong direction... 10
H-3. Funds will be locked inside StrategistOriginator..16
H-4. Wrong calculation for excess of funds...17
H-5. USDT won’t be accepted as a collateral in Custodian anymore after the first user...............................18
H-6. In DutchAuctionSettlement, the carryRate’s decimals is assumed to always be 18............................. 20
H-7. interest will always be 0 for low-decimal tokens.. 21
H-8. Global concerns about modules pricing settlement and status... 23
Medium Severity Concerns.. 24
M-1. Lack of EIP-712 compliance: using keccak256() directly on an array or struct variable....................... 24
M-2. Missing right parenthesis on INTENT_ORIGINATION_TYPEHASH.. 25
M-3. Error-prone string casting for tokenURI.. 26
M-4. defaultFeeRake assumes 18 decimals... 30
M-5. Unsafe use of transfer()/transferFrom() with IERC20... 32
M-6. Fee-On-Transfer tokens are not explicitly mentioned as unsupported..33
Low Severity Concerns...34
L-1. Immutable _DOMAIN_SEPARATOR... 34
L-2. The Custodian contract shouldn’t be an authorized collateral recipient on settlement.......................... 36
L-3. As AmountDeriver._locateCurrentAmount can underflow, there should exist a check that
block.timestamp >= start... 37
L-4. A non-default Custodian could omit the calls to postSettlement or postRepayment, opening the path to
a frontrunning attack..38
L-5. The protocol should round up on incoming funds and round up on outgoing funds.............................. 40
L-6. Starport: originate() and refinance() are frontrunnable when all caveats are provided.......................... 41
L-7. If there’s a carryRate, ERC721 tokens will be locked.. 42
L-8. decimals() is not a part of the ERC-20 standard.. 43
L-9. Solidity version 0.8.20 may not work on other chains due to PUSH0.. 44
L-10. Owner can renounce while system is paused..45
L-11. defaultFeeRake and overrideValue should be bounded...46
L-12. DutchAuctionSettlement.validate(): window can be 0.. 47
L-13. Stargate is unknown...48
L-14. DutchAuctionSettlement assumes a debt array of length 1... 49
L-15. DutchAuctionSettlement assumes startPrice = endPrice = 1 for an ERC721 token............................ 50

2

Informational Concerns.. 51
I-1. Extra warnings will need to be given to users with funds approved to Starport and the use of singleUse
== false..51
I-2. For user-friendliness, consider returning the final loan in Starport.originate() and Starport.refinance(). 51
I-3. There are still mentions of the LoanManager contract..51
I-4. Renaming suggestions..52
I-5. Refactoring suggestion: Use loan.getId() in Custodian’s mint functions... 53
I-6. Refactoring suggestion: make a private function for repeated code... 54
I-7. Renaming suggestion: parameter address borrower on StarportLib.validateSalt() should be address
validator...55
I-8. Delete unused errors, or use them..56
I-9. maximumSpent isn’t used on Custodian.generateOrder and can be removed.......................................57
I-10. References to the old naming Loan Manager or LM instead of Starport.. 58
I-11. Starport.originate() shouldn’t be payable.. 58
I-12. Consider renaming open to opened to match closed..58
I-13. Consider adding the name field to EIP712Domain... 59
I-14. Missing pragma in PausableNonReentrant.sol... 59
I-15. Constants should be in CONSTANT_CASE... 59
I-16. Default Visibility for constants... 60
I-17. Consider using named mappings..60
I-18. StarportLib.transferSpentItemsSelf() shouldn’t take a from parameter...62
Gas Optimizations Recommendations..63
G-1. Consider checking the allowance before calling ERC20.approve().. 63
G-2. Use the lighter version of ERC721.safeMint()... 63
G-3. Redundant operations can be deleted.. 63
G-4. BNPLHelper.activeUserDataHash can be deleted.. 64
G-5. Unchecking arithmetics operations that can’t underflow/overflow...65
G-6. Cache array length outside of loop..66
G-7. ++i costs less gas compared to i++ or i += 1...69
G-8. Increments/decrements can be unchecked...70
G-9. Unused StrategistOriginator.strategistFee.. 71
G-10. The _moveCollateralToAuthorized() path is less expensive..71
G-11. Cache _counter in StrategistOriginator.incrementCounter()..71
G-12. Cache Status.isActive in Custodian.generateOrder()..71

Formal Verification..72
Assumptions and Simplifications Made During Verification.. 72
Formal Verification Properties... 73
Notations..73
Custodian.sol...73
Starport.sol.. 74
PausableNonReentrant.sol... 75

3

Disclaimer.. 76
About Certora.. 76

4

Project Summary
Project Scope

Repo Name Repository Commits
Compiler
version

Platform

starport
https://github.com/AstariaXYZ/
starport/

67e3177
67b3182
Be0b40b
5da8b31

Solidity
0.8.17

EVM

Project Overview
This document describes the specification and verification of the Starport Lending Kernel protocol and
AstariaV1 modules using the Certora Prover and manual code review findings. The work was undertaken
from 16 November 2023 to 25 January 2024.

The following contract list is included in our scope:

starport/src/Starport.sol
starport/src/Custodian.sol
starport/src/BNPLHelper.sol

starport/src/originators/StrategistOriginator.sol
starport/src/originators/Originator.sol

starport/src/enforcers/BorrowerEnforcerBNPL.sol
starport/src/enforcers/BorrowerEnforcer.sol
starport/src/enforcers/LenderEnforcer.sol
starport/src/enforcers/CaveatEnforcer.sol

starport/src/lib/StarportLib.sol
starport/src/lib/RefStarportLib.sol
starport/src/lib/PausableNonReentrant.sol
starport/src/lib/Validation.sol

starport/src/pricing/SimpleInterestPricing.sol

5

https://github.com/AstariaXYZ/starport/
https://github.com/AstariaXYZ/starport/
https://github.com/AstariaXYZ/starport/commit/67e31775978d494007b85a5c338bf460bd26f544
https://github.com/AstariaXYZ/starport/commit/67b31829c6e83253433b3d6c736e4fc7c894f06d
https://github.com/AstariaXYZ/starport/commit/be0b40bddeb459af36d106802b7091af61e0fbf1
https://github.com/AstariaXYZ/starport/commit/5da8b3191e085208de92a01a69243f50f445208c

starport/src/pricing/BasePricing.sol
starport/src/pricing/Pricing.sol

starport/src/settlement/FixedTermDutchAuctionSettlement.sol
starport/src/settlement/DutchAuctionSettlement.sol
starport/src/settlement/Settlement.sol

starport/src/status/FixedTermStatus.sol
starport/src/status/Status.sol

The Certora Prover demonstrated the implementation of the Solidity contracts above is correct with respect to
the formal rules written by the Certora team. In addition, the team performed a manual audit of all the Solidity
contracts. During the verification process and the manual audit, the Certora Prover discovered bugs in the
Solidity contracts code, as listed below.

6

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Acknowledged Code Fixed

Critical 0 0 0

High 8 1 7

Medium 6 1 5

Low 15 8 7

Informational 18 5 13

Total 47 15 32

7

Unset

Detailed Findings
High Severity Concerns

H-1. Starport._feeRake(): wrong index used for feeItem

Severity: High
Probability: High
Description:
If some tokens aren’t ERC20 in _feeRake, there will be some empty feeItems, and the truncation would
cut some real fees as totalFeeItems < i: Starport.sol#L633
This line
(https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/
Starport.sol#L607) should be SpentItem memory feeItem = feeItems[totalFeeItems];.
With a cleverly crafted loan, it’s possible to avoid paying fees to the protocol.
Indeed, consider an array of debts with 3 ERC721 tokens and 1 ERC20 token. We would have feeItems

== [0, 0, 0, feeAmount] and totalFeeItems == 1. Then, at line 694, the final result would be feeItems

== [0].

Recommendation:

File: Starport.sol
645: function _feeRake(SpentItem[] memory debt)
...
649: {
650: feeItems = new SpentItem[](debt.length);
...
652: uint256 totalFeeItems;
653: for (uint256 i = 0; i < debt.length;) {
654: uint256 amount;
655: SpentItem memory debtItem = debt[i];
656: if (debtItem.itemType == ItemType.ERC20) {
...

8

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L633
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L607
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L607

- 658: SpentItem memory feeItem = feeItems[i];
+ 658: SpentItem memory feeItem =
feeItems[totalFeeItems];
..
674: if (amount > 0) {
...
679: ++totalFeeItems; //@audit only gets
incremented when there's a fee
680: }
681: }
...
688: unchecked {
689: ++i; //@audit gets incremented for each `debt` in
the array
690: }
691: }
692:
693: assembly ("memory-safe") {
694: mstore(feeItems, totalFeeItems)
695: }

Astaria’s response: Fixed in commit 3189cea. We accept the finding and have implemented the
recommended changes. Additionally added a new test case `testDefaultFeeRake2`.

9

https://github.com/AstariaXYZ/starport/commit/3189ceae273c2059b57f9ff992fdf10462f9a6d9

Unset

H-2. Starport.incrementCounter(): DOS due to shifting in the wrong
direction

Severity: High
Probability: High
Description:
Starport.incrementCounter() intends to use a quasi-random number, just like Seaport does:

● CounterManager.sol#L31-L55

function _incrementCounter() internal returns (uint256 newCounter)
{

// Ensure that the reentrancy guard is not currently set.
_assertNonReentrant();

// Utilize assembly to access counters storage mapping
directly. Skip

// overflow check as counter cannot be incremented that far.
assembly {

// Use second half of previous block hash as a quasi-random
number.

let quasiRandomNumber := shr(Counter_blockhash_shift,
blockhash(sub(number(), 1)))
...

// Derive new counter value using random number and
original value.

newCounter := add(quasiRandomNumber, sload(storagePointer))
...

Here, Counter_blockhash_shift == 0x80, where 0x80 == 128, and the code is shifting right the
block.number - 1’s blockhash by 128 thereby making it a quasi random value evaluating to at most
type(uint128).max. This means that there would need around 1e38 additions for an overflow to ever
occur if this is being cast to uint256.

However, the non-assembly implementation from Starport is shifting left instead of right:

10

https://github.com/ProjectOpenSea/seaport-core/blob/2f546b9a0d61a70e1632445cbcb108149a9369ae/src/lib/CounterManager.sol#L31-L55

Unset

Unset

● Starport.sol#L302-L306

File: Starport.sol
function incrementCaveatNonce() external {

uint256 newNonce = caveatNonces[msg.sender] +
uint256(blockhash(block.number - 1) << 0x80);

caveatNonces[msg.sender] = newNonce;
emit CaveatNonceIncremented(msg.sender, newNonce);

}

Shifting left means that the final value here would still be in the realm of uint256 (with half the bits
being zeros). This means that newNonce can be very close to type(uint256).max, easily putting
incrementCaveatNonce() in a DOS situation.

As a reminder:

● Shifting right by n is like dividing by 2 ** n
● Shifting left by n is like multiplying by 2 ** n

Coded Proof of Concept 1

The POC below simulates 2 calls to incrementCaveatNonce():

● 1 call at block.number == 18784547

● 1 call at block.number == 18784577

The following test can be run with forge test --mt test_incrementCaveatNonce --fork-url

{YOUR_ALCHEMY_ETHEREUM_MAINNET_RPC} --fork-block-number 18784577 -vvvv:

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.17;

import "forge-std/Test.sol";
import "forge-std/console.sol";

11

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L302-L306

contract BlockTest is Test {
function setUp() public {}

function test_incrementCaveatNonce() external {
uint firstBlockNumber = 18784547;
uint firstNonce = uint256(blockhash(firstBlockNumber - 1) <<

0x80);
console.logBytes32(blockhash(firstBlockNumber - 1)); //

0x34ee8faee749ca86ce3b2c5119a22a2aa3621ade1f0c12d0720451c20178fc5f
console.logBytes32(blockhash(firstBlockNumber - 1) << 0x80); //

0xa3621ade1f0c12d0720451c20178fc5f00000000000000000000000000000000
console.log(

"LOG: ~ file: BlockTests.sol:38 ~ test_incrementCaveatNonce
~ firstNonce:",

firstNonce
); //

739003307652035274199663885934818349133992521112961595787434341036469
56027904 (7.3e76)

uint currentBlock = block.number; // 18784577
bytes32 currentRightPart = blockhash(currentBlock - 1);
console.logBytes32(currentRightPart); //

0x640a156fb6da4f9ad1b5e18077bcb035dfd908c6d2ce9281f9f76917806fb13f
console.log(

"LOG: ~ file: BlockTests.sol:42 ~ test_incrementCaveatNonce
~ currentRightPart:",

uint256(currentRightPart)
); //

452491012774584303381614655647487333119939774248735707200321616651838
50148159

// Below will revert with "Arithmetic over/underflow"
vm.expectRevert();

12

Unset

uint newNonce = firstNonce + uint256(currentRightPart) << 0x80;
}

}

As a reminder, the --fork-block-number 18784577 part of the command is important as blockhash

returns 0 for all block numbers below the latest 256th one.

Coded Proof of Concept 2

Apply the following diff to TestStarport.sol and run with forge test --mt testIncrementCaveatNonce to
see this test reverting with FAIL. Reason: Arithmetic over/underflow:

File: TestStarport.sol
320: function testIncrementCaveatNonce() public {
321: vm.roll(5);
322: uint256 newNonce = SP.caveatNonces(address(this)) +
uint256(blockhash(block.number - 1) << 0x80);
323: vm.expectEmit();
324: emit CaveatNonceIncremented(address(this), newNonce);
325: SP.incrementCaveatNonce();
+ 326: vm.roll(50);
+ 327: SP.incrementCaveatNonce(); // [FAIL. Reason: Arithmetic
over/underflow]
328: }

Recommendation:

Seaport’s ReferenceCounterManager contract can be looked at as an example as it’s more readable
than the assembly version:

● ReferenceCounterManager.sol#L34-L49

13

https://github.com/ProjectOpenSea/seaport/blob/50a0c09621f90196e8d07dbfb6c564256a241e66/reference/lib/ReferenceCounterManager.sol#L34-L49

Unset

Unset

function _incrementCounter() internal returns (uint256 newCounter)
{

// Use second half of the previous block hash as a quasi-random
number.

uint256 quasiRandomNumber = uint256(blockhash(block.number -
1)) >> 128;

// Retrieve the original counter value.
uint256 originalCounter = _counters[msg.sender];

// Increment current counter for the supplied offerer.
newCounter = quasiRandomNumber + originalCounter;

// Update the counter with the new value.
_counters[msg.sender] = newCounter;

// Emit an event containing the new counter.
emit CounterIncremented(newCounter, msg.sender);

}

The mitigation in the current codebase would therefore be:

File: Starport.sol
function incrementCaveatNonce() external {

- uint256 newNonce = caveatNonces[msg.sender] +
uint256(blockhash(block.number - 1) << 0x80);
+ uint256 newNonce = caveatNonces[msg.sender] +
(uint256(blockhash(block.number - 1) >> 0x80));

caveatNonces[msg.sender] = newNonce;
emit CaveatNonceIncremented(msg.sender, newNonce);

}

14

Notice that putting the quasiRandomNumber (shift part) of the operation between parenthesis is
important here as, unlike the expected behavior from divisions and multiplications, the shift operation
here would apply on the whole addition instead of only the blockhash. See
https://docs.soliditylang.org/en/latest/cheatsheet.html#order-of-precedence-of-operators.

Astaria’s response: Fixed in commit 7f1d2ca. We accept the finding and have modified the
recommended changes
- uint256 newNonce = caveatNonces[msg.sender] + uint256(blockhash(block.number -

1) << 0x80);

+ uint256 newNonce = caveatNonces[msg.sender] + 1 +

(uint256(blockhash(block.number - 1) >> 0x80));

Incrementer added to ensure nonce changes in instances where
`uint256(blockhash(block.number - 1) >> 0x80) == uint256(0)`

15

https://docs.soliditylang.org/en/latest/cheatsheet.html#order-of-precedence-of-operators
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

H-3. Funds will be locked inside StrategistOriginator

Severity: High
Probability: High
Description:
In StrategistOriginator.originate(), for the loan, originator is hardcoded to address(0). It means that
StrategistOriginator will be set as the loan’s originator in Starport._issueLoan().

If there are carryConsiderations, which target the loan.originator: the assets will be stuck inside
StrategistOriginator, given that:

● ERC20 tokens aren’t withdrawable
● ERC721 tokens are transferred with transferFrom() (not safeTransferFrom()), so they’re received

but not withdrawable
● ERC1155 tokens transfers will revert due to the use of safeTransferFrom() and the lack of

onERC1155Received() implementation on the StrategistOriginator

Recommendation:
Consider adding access-controlled receivers and withdraw functions to the StrategistOriginator (the
assets mustn’t be stealable)
Additionally, consider adding onERC1155Received() on the abstract Originator itself.

Astaria’s response: Fixed in commit 67b3182. We accept the recommendations and added
withdraw methods and receivers to the StrategistOriginator.

16

https://github.com/AstariaXYZ/starport/commit/67b31829c6e83253433b3d6c736e4fc7c894f06d

Unset

H-4. Wrong calculation for excess of funds

Severity: High
Probability: High
Description and Recommendation:

● DutchAuctionSettlement.sol#L142-L144

if (carry > 0 && loan.debt[0].amount + interest - carry <
settlementPrice) {

consideration = new ReceivedItem[](2);
- uint256 excess = settlementPrice - loan.debt[0].amount +
interest - carry;
+ uint256 excess = settlementPrice - (loan.debt[0].amount +
interest - carry);

Astaria’s response: Fixed in commit 3189cea. We accept the finding and have applied the
recommended changes to `DutchAuctionSettlement.sol`. As an informational note, modules
implemented in the starport repository are for demonstration purposes only.

17

https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/settlement/DutchAuctionSettlement.sol#L142-L144
https://github.com/AstariaXYZ/starport/commit/3189ceae273c2059b57f9ff992fdf10462f9a6d9

Unset

Unset

H-5. USDT won’t be accepted as a collateral in Custodian anymore after the
first user

Severity:Medium
Probability: High
Description:
When Seaport calls generateOrder(), on Actions.Repayment there’s a systematic call to
_setOfferApprovalsWithSeaport(loan), which will give the maximum approval for the given tokens to
Seaport:

● Custodian.sol#L353-L362

function _enableAssetWithSeaport(SpentItem memory offer) internal
{
...

} else if (offer.itemType == ItemType.ERC20) {
ERC20(offer.token).approve(seaport, type(uint256).max);

}
}

However, it happens that USDT is a token that reverts when called with a different approve value than 0

when the current allowance isn’t 0. This is why OpenZeppelin implemented the forceApprove()

function:

● SafeERC20.sol#L76-L83

/**
* @dev Set the calling contract's allowance toward `spender` to

`value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be

used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as

USDT.
*/

18

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol#L353-L362
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.0.1/contracts/token/ERC20/utils/SafeERC20.sol#L76-L83

Unset

function forceApprove(IERC20 token, address spender, uint256
value) internal {

bytes memory approvalCall = abi.encodeCall(token.approve,
(spender, value));

if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve,

(spender, 0)));
_callOptionalReturn(token, approvalCall);

}
}

Given that, here, there isn’t a call to approve(seaport, 0) before approve(seaport, type(uint256).max):
any calls to generateOrder() using USDT as collateral, will revert after the first call ever.

Recommendation

Consider using Solady’s equivalent: safeApproveWithRetry:

● SafeTransferLib.sol#L321-L325

/// @dev Sets `amount` of ERC20 `token` for `to` to manage on
behalf of the current contract.

/// If the initial attempt to approve fails, attempts to reset the
approved amount to zero,

/// then retries the approval again (some tokens, e.g. USDT,
requires this).

/// Reverts upon failure.
function safeApproveWithRetry(address token, address to, uint256

amount) internal {

Astaria’s response: Fixed in commit 41af20b. We agree with the findings and accept the
recommendation. We have updated implementation to use Solady
`SafeTransferLib.safeApproveWithRetry`

19

https://github.com/Vectorized/solady/issues/525
https://github.com/Vectorized/solady/blob/cb7f768ccfcf333d86e8f4e6f96f1a3b83e8cfe6/src/utils/SafeTransferLib.sol#L321-L325
https://github.com/AstariaXYZ/starport/commit/41af20ba6a355e51d1b266c9a2290e456153bef8

Unset

H-6. In DutchAuctionSettlement, the carryRate’s decimals is assumed to
always be 18

Severity: High
Probability: High
Description:
mulWad is used at DutchAuctionSettlement.sol#L137, however the interest is calculated by using
pricingDetails.decimals right above at DutchAuctionSettlement.sol#L134.

Given the mismatch in unit and how the carry consideration is calculated elsewhere
(BasePricing.sol#L92, StarportLib.sol#L95), then most likely the correct formula should be:

- uint256 carry = interest.mulWad(pricingDetails.carryRate);
+ uint256 carry = interest * pricingDetails.carryRate / 10 **
pricingDetails.decimals;

Astaria’s response: Fixed in commit 7f1d2ca. Accept the finding and have applied the
recommended fix. As an informational note, modules implemented in the starport repository are for
demonstration and testing purposes only.

20

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/settlement/DutchAuctionSettlement.sol#L137
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/settlement/DutchAuctionSettlement.sol#L134
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/pricing/BasePricing.sol#L92
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/lib/StarportLib.sol#L95
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

Unset

Unset

H-7. interest will always be 0 for low-decimal tokens

Severity: High
Probability: High
Description:
Given StarportLib.sol#L94 :

function calculateSimpleInterest(uint256 delta_t, uint256 amount,
uint256 rate, uint256 decimals)

public
pure
returns (uint256)

{
rate /= 365 days;
return ((delta_t * rate) * amount) / 10 ** decimals;

}

The rate can be rounded down to 0 given that 365 days == 31_536_000.
As an example, with USDC (6 decimals) and a 100% rate (rate == 1e6), this rate will always be 0,
giving no interest.

Recommendation:

function calculateSimpleInterest(uint256 delta_t, uint256 amount,
uint256 rate, uint256 decimals)

public
pure
returns (uint256)

{
- rate /= 365 days;
- return ((delta_t * rate) * amount) / 10 ** decimals;
+ return ((delta_t * rate) * amount) / 10 ** decimals / 365
days;

21

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/lib/StarportLib.sol#L94

}

Astaria’s response: Fixed in commit 7f1d2ca. We accept the findings and have implemented the a
modification of the recommended fix. Additionally we will note that this is a module implementation
used to demonstrate Starport and is not intended to be deployed.
- rate /= 365 days;

- return ((delta_t * rate) * amount) / 10 ** decimals;

+ return ((delta_t * rate) * amount) / 10 ** decimals / 365 days;

22

https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

Unset

H-8. Global concerns about modules pricing settlement and status

Severity: High
Probability:Medium
Description:

Inside struct Loan, there’s the struct Terms which contains 3 addresses:

File: Starport.sol
117:
118: struct Terms {
119: address status; // the address of the status module
...
121: address pricing; // the address of the pricing module
...
123: address settlement; // the address of the handler module
..
125: }

Arbitrary addresses are one of the most dangerous types to be arbitrary. Here, these can be abused to
either lock funds or steal funds.

Given that users will be interacting with the protocol through the frontend, the concept of “Trusted
Modules” is held outside of the protocol. This can put users at risk in case of a frontend attack (e.g.
XSS adding an address to the list of trusted modules).

Recommendation:
While the users are told not to interact with untrusted modules, it is important to have several sources
of truth regarding the list of trusted addresses for the status, pricing and settlement modules, so as to
not select a malicious one in case of attack on the frontend.
Alternatively, consider adding an allowlist (or officialList) on Starport

Astaria’s response: Acknowledged. We will establish documentation outlining the trusted modules
and their deployed addresses.

23

Unset

Medium Severity Concerns

M-1. Lack of EIP-712 compliance: using keccak256() directly on an array or
struct variable

Severity: Low
Probability: High
Description:
Directly using the actual variable instead of encoding the array values goes against the EIP-712
specification
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#definition-of-encodedata.
Note: OpenSea’s Seaport’s example with offerHashes and considerationHashes can be used as a
reference to understand how array of structs should be encoded.

Affected code:

● src/Starport.sol

File: Starport.sol
396: CaveatEnforcer.Caveat[] calldata caveats
...
411: keccak256(abi.encode(caveats))

The adopted methodology for hashing an array of structs deviates from the prescribed guidelines set
forth in EIP-712.

Astaria’s response: Fixed in commit 41af20b. We accept the recommendation. The implementation
has been adjusted to conform with the EIP-712 signing spec.

24

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md#definition-of-encodedata
https://github.com/ProjectOpenSea/seaport/blob/a62c2f8f484784735025d7b03ccb37865bc39e5a/reference/lib/ReferenceGettersAndDerivers.sol#L130-L131
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol
https://github.com/AstariaXYZ/starport/commit/41af20ba6a355e51d1b266c9a2290e456153bef8

Unset

M-2. Missing right parenthesis on INTENT_ORIGINATION_TYPEHASH

Severity: Low
Probability: High
Description:
By adding the right parenthesis, the typehash would go from
0x3b79d2ff6939199614b0e56e719f097dc6eafc66adf2e5992da19e9e20413b1b to
0x93d5b3eb7e7c73e817f1f0b6a9b409fa1b84da976c364c97b62acaf9c35047bb:

● Starport.sol#L103

File: Starport.sol
102: bytes32 public constant INTENT_ORIGINATION_TYPEHASH =
keccak256(
- 103: "Origination(address account,uint256 accountNonce,bool
singleUse,bytes32 salt,uint256 deadline,bytes32 caveatHash"
+ 103: "Origination(address account,uint256 accountNonce,bool
singleUse,bytes32 salt,uint256 deadline,bytes32 caveatHash)"
104:);

Astaria’s response: Fixed in commit 41af20b. We accept the finding, and have made the
recommended change to conform with EIP-712 signing spec.

25

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L103
https://github.com/AstariaXYZ/starport/commit/41af20ba6a355e51d1b266c9a2290e456153bef8

Unset

Unset

M-3. Error-prone string casting for tokenURI

Severity: Low
Probability: High
Description:
While not implemented yet,tokenURI is using an error-prone string casting:

● Custodian.sol#L125

File: Custodian.sol
121: function tokenURI(uint256 loanId) public view override
returns (string memory) {
122: if (!_exists(loanId)) {
123: revert InvalidLoan();
124: }
125: return string("");
126: }

In a previous commit, the tokenURI was computed this way:

function tokenURI(uint256 tokenId) public view override returns
(string memory) {

return
string(abi.encodePacked("https://astaria.xyz/loans?id=", tokenId));

}

This wouldn’t work as abi.encodePacked doesn’t differentiate between bytes data and string data. And,
here, tokenId isn’t a string.

By trying this exact function into Remix, as an example with 42as an input, the following string would
be returned: https://astaria.xyz/loans?id=*.

Indeed, to use a uint256 type as a string, the following library from Solady should be used:
https://github.com/Vectorized/solady/blob/main/src/utils/LibString.sol.

To fix the tokenURI, the following syntax could be used:
26

https://github.com/AstariaXYZ/starport/blob/master/src/Custodian.sol#L125
https://github.com/AstariaXYZ/starport/blob/5f10aa10c32b6ad5065d2a049bca88d974c9db53/src/LoanManager.sol#L193
https://github.com/Vectorized/solady/blob/main/src/utils/LibString.sol

Unset

Unset

+ import
"https://github.com/Vectorized/solady/blob/main/src/utils/LibString.s
ol";

function tokenURI(uint256 tokenId) public view override returns
(string memory) {
- return
string(abi.encodePacked("https://astaria.xyz/loans?id=", tokenId));
+ return
string(abi.encodePacked("https://astaria.xyz/loans?id=",
LibString.toString(tokenId)));

}

However, the best mitigation would be to use string.concat instead of combining the casting to string

and use of abi.encodePacked for type-safety:

+ import
"https://github.com/Vectorized/solady/blob/main/src/utils/LibString.s
ol";

function tokenURI(uint256 tokenId) public view override returns
(string memory) {
- return
string(abi.encodePacked("https://astaria.xyz/loans?id=", tokenId));
+ return string.concat("https://astaria.xyz/loans?id=",
LibString.toString(tokenId));

}

Indeed, this latest fix wouldn’t even allow the project to compile with a non-string parameter.

This finding is showcased as a Medium Severity one given the medium impact (tokenURI never
working) and the high probability of making a mistake given:

● The absence of import {LibString} from "solady/src/utils/LibString.sol"; in Custodian.sol

27

Unset

Unset

● The use of string casting
● The use of abi.encodePacked for concatenating strings in a previous commit
● The following tests under TestCustodian.sol that can be improved

File: TestCustodian.sol
105: function testTokenURI() public {
106:
assertEq(custodian.tokenURI(uint256(keccak256(abi.encode(activeLoan))
)), "");
107: }
108:
109: function testTokenURIInvalidLoan() public {
110:
vm.expectRevert(abi.encodeWithSelector(Custodian.InvalidLoan.selector
));
111: custodian.tokenURI(uint256(0));
112: }

Proof of concept to try on Remix

// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.17;
import
"https://github.com/Vectorized/solady/blob/main/src/utils/LibString.s
ol";

contract TestStringConcat {
function tokenURIBroken(uint256 tokenId)

public
pure
returns (string memory)

{

28

return
string(abi.encodePacked("https://astaria.xyz/loans?id=",

tokenId));
}

function tokenURIFixed(uint256 tokenId)
public
pure
returns (string memory)

{
return

string(
abi.encodePacked(

"https://astaria.xyz/loans?id=",
LibString.toString(tokenId)

)
);

}

function tokenURIOptimized(uint256 tokenId)
public
pure
returns (string memory)

{
// string.concat resulted in a compile error with `tokenId`
return

string.concat(
"https://astaria.xyz/loans?id=",
LibString.toString(tokenId)

);
}

Astaria’s response: Fixed in commit 748326b. We accept the finding and have applied the
recommended fix.

29

https://github.com/AstariaXYZ/starport/commit/748326b72101e4e0073d794f5772ac4afe78ef3a

Unset

M-4. defaultFeeRake assumes 18 decimals

Severity: High
Probability: Low
Description:
Given the following in Starport._feeRake():

● Starport.sol#L603-L614

File: Starport.sol
if (debtItem.itemType == ItemType.ERC20) {

Fee memory feeOverride = feeOverrides[debtItem.token];
SpentItem memory feeItem = feeItems[i];
feeItem.identifier = 0;
amount = debtItem.amount.mulDiv(

!feeOverride.enabled ? defaultFeeRake :
feeOverride.amount, 10 ** ERC20(debtItem.token).decimals()

);

if (amount > 0) {
feeItem.amount = amount;
feeItem.token = debtItem.token;
feeItem.itemType = debtItem.itemType;

We can see that the unit used for amount is [ERC20.decimals] * [WAD] / [ERC20.decimals] == [WAD]

However, when the feeItem is constructed, we have feeItem.token = debtItem.token and feeItem.amount

= amount, which wouldn’t be the right amount. Let’s imagine [ERC20.decimals] = 6 like with USDC: we’d
get an amount above 1e17 (10% defaultFeeRake for USDC), which amounts to above hundreds of
billions of USDC for fees.

Most likely, but not always, the call would revert here:

● Starport.sol#L625

30

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L603-L614
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L625

Unset

paymentToBorrower[i] = SpentItem({
token: debtItem.token,
itemType: debtItem.itemType,
identifier: debtItem.identifier,
amount: debtItem.amount - amount

});

As for tokens with a lot of decimals, they’ll make the fee being a dust amount.

In conclusion, the defaultFeeRake shouldn’t be used for tokens that aren’t 18 decimals.

Consider adding a check that feeOverride.enabled == true if ERC20(debtItem.token).decimals() != 18.

Astaria’s response: Fixed in commit f0fc582. We agree with the finding and have reworked the
calculation to calculate using basis points standardized across all decimal points.

31

https://github.com/AstariaXYZ/starport/commit/f0fc582f7bb615d07e12006b8ebbee83635017e7

Unset

M-5. Unsafe use of transfer()/transferFrom() with IERC20

Severity:Medium
Probability:Medium
Description:
Some tokens do not implement the ERC20 standard properly but are still accepted by most code that
accepts ERC20 tokens.
For example Tether (USDT)'s transfer() and transferFrom() functions on L1 do not return booleans as
the specification requires, and instead have no return value. When these sorts of tokens are cast to
ERC20, their function signatures match but they’re not complying to the interfaces they’re cast to, so
when a call is made, it reverts (see this link for a test case to use on Remix).
Use OpenZeppelin’s SafeERC20’s safeTransfer()/safeTransferFrom() instead.

Affected code:

● src/Custodian.sol

File: Custodian.sol
387: ERC20(offer.token).transfer(authorized, offer.amount);

Astaria’s response: Fixed in commit 41af20b. We accept the finding and have made the
recommended changes regarding using Solady SafeTransferLib.safeTransfer().

32

https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://gist.github.com/IllIllI000/2b00a32e8f0559e8f386ea4f1800abc5
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol
https://github.com/AstariaXYZ/starport/commit/41af20ba6a355e51d1b266c9a2290e456153bef8

M-6. Fee-On-Transfer tokens are not explicitly mentioned as
unsupported

Severity:Medium
Probability:Medium

Description:
This is missing in the whitepaper at the time of the audit. The collateral amount being transferred to
the Custodian won’t be the amount held by the custodian. Hence, when repaying or on settlement, a
higher amount than what is held will be transferred out from the Custodian.

Recommendation:
Add “Fee-On-Transfer tokens are not supported” in the whitepaper, alongside Rebasing tokens

Astaria’s response: Acknowledged. We accept this finding and will update the Starport whitepaper
to reflect the lack of support for fee-on-transfer tokens.

33

Unset

Low Severity Concerns

L-1. Immutable _DOMAIN_SEPARATOR

Severity: Low
Probability: Low
Description:
_DOMAIN_SEPARATOR is immutable or only defined in the constructor. As noted in
https://eips.ethereum.org/EIPS/eip-2612#security-considerations this may lead to replay attacks in
case of a future chain split.
Remediation: Consider using the implementation from OpenZeppelin, which recalculates the domain
separator if the current block.chainid is not the cached chain ID.
Past occurrences of this issue:

● Reality Cards Contest
● Swivel Contest
● Malt Finance Contest

See Starport.sol#L397-L422:

File: Starport.sol
function hashCaveatWithSaltAndNonce(

address account,
bool singleUse,
bytes32 salt,
uint256 deadline,
CaveatEnforcer.Caveat[] calldata caveats

) public view virtual returns (bytes32) {
return keccak256(

abi.encodePacked(
bytes1(0x19),
bytes1(0x01),
_DOMAIN_SEPARATOR,
keccak256(

34

https://eips.ethereum.org/EIPS/eip-2612#security-considerations
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol#L77-L90
https://github.com/code-423n4/2021-06-realitycards-findings/issues/166
https://github.com/code-423n4/2021-09-swivel-findings/issues/98
https://github.com/code-423n4/2021-11-malt-findings/issues/349
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L397-L422

abi.encode(
INTENT_ORIGINATION_TYPEHASH,
account,
caveatNonces[account],
singleUse,
salt,
deadline,
keccak256(abi.encode(caveats))

)
)

)
);

Astaria’s response: Fixed in commit 7f1d2ca. We accept the finding and have implemented a
`CACHED_DOMAIN_SEPARATOR`.

35

https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

Unset

Unset

L-2. The Custodian contract shouldn’t be an authorized collateral
recipient on settlement

Severity: Low
Probability: Low
Description:
If, by mistake/misunderstanding of the protocol, users set the authorized == loan.custodian inside
their settlement, the funds would be locked:

● Custodian.sol#L249-L250

} else if (authorized == loan.terms.settlement || authorized ==
loan.issuer) {

_moveCollateralToAuthorized(loan.collateral, authorized);

Consider disallowing it:

File: Custodian.sol
- 246: if (authorized == address(0) || fulfiller ==
authorized) {
+ 246: if (authorized == address(0) || authorized ==
address(this) || fulfiller == authorized) {
247: offer = loan.collateral;
248: _setOfferApprovalsWithSeaport(loan);

Astaria’s response: Fixed in commit 7f1d2ca. We accept the finding, and have committed a change
resolving this issue.

36

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol#L249-L250
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

L-3. As AmountDeriver._locateCurrentAmount can underflow, there
should exist a check that block.timestamp >= start

Severity: Low
Probability: Low
Description:

Given this note: AmountDeriver.sol#L25-L29, it would be great to check that block.timestamp is above
start at the following places calling _locateCurrentAmount to avoid an underflow:

● DutchAuctionSettlement.sol#L124
● AstariaV1Settlement.sol#L65
● AstariaV1Settlement.sol#L158

The constructed loans inside the protocol shouldn’t be affected by this. However, a third party
interacting with the protocol or building on the protocol could receive some invalid data depending on
their input.

Recommendation:
Check that block.timestamp >= start.

Astaria’s response: Fixed in commit e390d2e. We accept the finding and have made the
recommended fix.

37

https://github.com/ProjectOpenSea/seaport-core/blob/2f546b9a0d61a70e1632445cbcb108149a9369ae/src/lib/AmountDeriver.sol#L25-L29
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/settlement/DutchAuctionSettlement.sol#L124
https://github.com/AstariaXYZ/v1-core/blob/dea12a73ca524ae6703294762974c40ea83bbc99/src/settlement/AstariaV1Settlement.sol#L65
https://github.com/AstariaXYZ/v1-core/blob/dea12a73ca524ae6703294762974c40ea83bbc99/src/settlement/AstariaV1Settlement.sol#L158
https://github.com/AstariaXYZ/v1-core/commit/e390d2e1b1013708033a673da86ff3ffd5e2b956

Unset

L-4. A non-default Custodian could omit the calls to postSettlement or
postRepayment, opening the path to a frontrunning attack

Severity: Low
Probability: Low
Description:

postSettlement and postRepayment functions are used in the Starport.refinance(), and
Custodian.generateOrder().
As non-default Custodians are authorized, the calls to postSettlement and postRepayment may be
omitted, which would open the path to a frontrunning attack on such Custodians.

If we look at Astaria v1-core, the functions execute BaseRecall.withdraw():

File: AstariaV1Settlement.sol
102: function postSettlement(Starport.Loan calldata loan, address)
external virtual override returns (bytes4) {
103: (address recaller,) =
BaseRecall(loan.terms.status).recalls(loan.getId());
104: _executeWithdraw(loan, recaller);
105: return Settlement.postSettlement.selector;
106: }
...
109: function postRepayment(Starport.Loan calldata loan, address
fulfiller) external virtual override returns (bytes4) {
110: _executeWithdraw(loan, fulfiller);
111:
112: return Settlement.postRepayment.selector;
113: }

This must indeed be done here as, on refinance, settlement or repayment: the loan is set to inactive.
From the moment this is done, BaseRecall.withdraw() can be called with the loan’s data, and a
receiver: BaseRecall.sol#L148

Failing to call withdraw in the same transaction where the loan is set to inactive would let anyone
claim the recaller’s staked funds

38

https://github.com/AstariaXYZ/v1-core/blob/dea12a73ca524ae6703294762974c40ea83bbc99/src/status/BaseRecall.sol#L148

Recommendation:
Make sure this is clearly explained in the integration guidelines.

Astaria’s response: Acknowledged. We accept the finding and will ensure it is clearly explained in
the integration guidelines.

39

L-5. The protocol should round up on incoming funds and round up on
outgoing funds

Severity: Low
Probability: Low
Description:
In _feeRake, feeItem.amount is calculated using a mulDiv, which rounds down. Then,
PaymentToBorrower.amount = debtItem.amount - feeItem.amount, which is akin to a round up in favor of
the borrower.

It’s best practice to round down on outgoing funds to users and tp round up on incoming funds to the
protocol.

Consider using mulDivUp instead of mulDiv when calculating feeItem.amount: Starport.sol#L669

Astaria’s response: Fixed in commit 67b3182. We accept the finding and have implemented the
recommended fix.

40

https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/Starport.sol#L669
https://github.com/AstariaXYZ/starport/commit/67b31829c6e83253433b3d6c736e4fc7c894f06d

L-6. Starport: originate() and refinance() are frontrunnable when all
caveats are provided

Severity: Low
Probability: Low
Description:

When all caveats are provided, the calls to originate() and refinance() are frontrunnable.

On originate(): if loan.originator == address(0), the first caller would become the loan.originator in
_issueLoan.

On refinance(): while there’s no impact in the Starport repo, in v1-core it becomes a race to redeem
the staked recalled funds on AstariaV1Status.

Remediation:While this behavior is intended, it could surprise some users. Consider highlighting
those behavior in the documentation.

Astaria’s response: Acknowledged. We accept this finding and will annotate the behavior in the
documentation.

41

L-7. If there’s a carryRate, ERC721 tokens will be locked

Severity: Low
Probability: Low
Description:

In getPaymentConsideration(), if it happens that carryRate is set to non-zero, there may be 2
SpentItem with the same ERC721 identifier, which means that the first transfer will work but the
second one will fail: BasePricing.sol#L88-L100. This means that Repayment, Refinance and
Settlement operations will always fail, effectively locking the ERC721 token

Recommendation:
There should never be ERC721 tokens combined with a concept of carryRate != 0 or even rate != 0

Astaria’s response: Acknowledged. We accept this finding, however this is by design as carry
cannot be applied to an ERC-721. We will document this for implementers.

42

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/pricing/BasePricing.sol#L88-L100
https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/Custodian.sol#L335
https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/Starport.sol#L278
https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/settlement/DutchAuctionSettlement.sol#L140-L163

Unset

L-8. decimals() is not a part of the ERC-20 standard

Severity: Low
Probability: Low
Description:
The decimals() function is not a part of the ERC-20 standard, and was added later as an optional
extension. As such, some valid ERC20 tokens do not support this interface, so their use would make
the originate() function revert at the following line:

● Starport.sol#L610

amount = debtItem.amount.mulDiv(
!feeOverride.enabled ? defaultFeeRake : feeOverride.amount, 10

** ERC20(debtItem.token).decimals()
);

Astaria’s response: Fixed in commit a653644. We have reworked our fee calculations to be
independent of decimals of the base token.

43

https://eips.ethereum.org/EIPS/eip-20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/IERC20Metadata.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/IERC20Metadata.sol
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L610
https://github.com/AstariaXYZ/starport/commit/a65364442f2adf80eae226428d198b2da5a001a3#diff-d3c0e8732527a4797dcd0b54199a861c6adefd7f9fd4f8fc7122c1d4ddf6ebb5

L-9. Solidity version 0.8.20 may not work on other chains due to PUSH0

Severity: Low
Probability: Low
Description:
The usage of floating pragma solidity ^0.8.17 (not recommended) makes it possible for the project to
be compiled with 0.8.20.

The compiler for Solidity 0.8.20 switches the default target EVM version to Shanghai, which includes
the new PUSH0 op code. This op code may not yet be implemented on all L2s, so deployment on these
chains will fail. To work around this issue, use an earlier EVM version.

Astaria’s response: Acknowledged. We accept the finding, and will note in our documentation
regarding compilation and deployments.

44

https://blog.soliditylang.org/2023/05/10/solidity-0.8.20-release-announcement/#important-note
https://docs.soliditylang.org/en/v0.8.20/using-the-compiler.html?ref=zaryabs.com#setting-the-evm-version-to-target
https://book.getfoundry.sh/reference/config/solidity-compiler#evm_version

Unset

L-10. Owner can renounce while system is paused

Severity: Low
Probability: Low
Description:
The contract owner or single user with a role is not prevented from renouncing the role/ownership
while the contract is paused, which would cause any user assets stored in the protocol, to be locked
indefinitely.

Affected code:

● src/lib/PausableNonReentrant.sol

File: src/lib/PausableNonReentrant.sol

PausableNonReentrant.sol:71: function pause() external onlyOwner {

PausableNonReentrant.sol:87: function unpause() external onlyOwner
{

Astaria’s response: Acknowledged. We accept the finding, and will note this condition in our
documentation.

45

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/lib/PausableNonReentrant.sol

Unset

Unset

L-11. defaultFeeRake and overrideValue should be bounded

Severity: Low
Probability: Low
Description:
To increase trust in the protocol, defaultFeeRake_ should be upper bounded to a reasonable value, like
30%:

● Starport.sol#L322-L326

File: Starport.sol
function setFeeData(address feeTo_, uint88 defaultFeeRake_)

external onlyOwner {
feeTo = feeTo_;

+ require(defaultFeeRake <= 3e17, "Fees are too high");
defaultFeeRake = defaultFeeRake_;
emit FeeDataUpdated(feeTo_, defaultFeeRake_);

}

● Starport.sol#L334-L337

File: Starport.sol
function setFeeOverride(address token, uint88 overrideValue, bool

enabled) external onlyOwner {
+ require(overrideValue <= 3e17, "Fees are too high");

feeOverrides[token] = Fee({enabled: enabled, amount:
overrideValue});

emit FeeOverrideUpdated(token, overrideValue, enabled);
}

Given that those functions are behind the onlyOwner modifier, the extra gas cost shouldn’t be a
concern.

Astaria’s response: Fixed in commit a653644. We accept the finding and have made the
recommended changes.

46

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L322-L326
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L334-L337
https://github.com/AstariaXYZ/starport/commit/a65364442f2adf80eae226428d198b2da5a001a3#diff-d3c0e8732527a4797dcd0b54199a861c6adefd7f9fd4f8fc7122c1d4ddf6ebb5

L-12. DutchAuctionSettlement.validate(): window can be 0

Severity: Low
Probability: Low
Description:

There should be a check that window is not 0 in validate(): DutchAuctionSettlement.sol#L68

Otherwise, this would result in a divide by zero in _locateCurrentAmount()’s assembly:
DutchAuctionSettlement.sol#L131

As this would return a zero instead of reverting (dividing by zero in assembly results in zero), consider
adding a check to validate().

Astaria’s response: Fixed in commit 748326b. We accept the finding and have made the
recommended changes.

47

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/settlement/DutchAuctionSettlement.sol#L68
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/settlement/DutchAuctionSettlement.sol#L131
https://github.com/AstariaXYZ/starport/commit/748326b72101e4e0073d794f5772ac4afe78ef3a#diff-fe4d863eef848f9af246a0a1c6a8e35426159db52fd2cea37b7c49235f8cee2e

Unset

L-13. Stargate is unknown

Severity: Low
Probability: Low
Description:

The Stargate contract isn’t deployed onchain yet. Still, it is declared as immutable and the interface it
uses isn’t inherited from an official source, therefore there could be a mismatch in function
signatures:

File: Starport.sol
44: interface Stargate {
45: function getOwner(address) external returns (address);
46: }
...
96: Stargate public immutable SG;

Astaria’s response: Acknowledged. We accept the finding and will set the Stargate immutable
address to address(0) on deployment and note the finding in our documentation.

48

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Starport.sol#L96
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Starport.sol#L44-L46

L-14. DutchAuctionSettlement assumes a debt array of length 1

Severity: Low
Probability: Low
Description:

DutchAuctionSettlement.sol should be moved to v1-core since it assumes that debt array is always of
length 1 (see DutchAuctionSettlement.sol#L139)

Astaria’s response: Acknowledged. To mitigate, we will move DutchAuctionSettlement.sol into
v1-core.

49

https://github.com/AstariaXYZ/starport/blob/master/src/settlement/DutchAuctionSettlement.sol
https://github.com/AstariaXYZ/starport/blob/e9ddcedda8e28913de924b1ede7913c3652a784a/src/settlement/DutchAuctionSettlement.sol#L139

L-15. DutchAuctionSettlement assumes startPrice = endPrice = 1 for an
ERC721 token

Severity: Low
Probability: Low
Description:
DutchAuctionSettlement.sol#L127-L133: for an ERC721 token we need to have startPrice =

endPrice = 1 but this isn’t enforced or validated.

Astaria’s response: Acknowledged. This is a valid concern regarding DutchAuctionSettlement.sol.
We plan to move DutchAuctionSettlement.sol to v1-core due to the nature of it’s specificity and
inflexibility to support ERC-721, and ERC-1155s as debt tokens.

50

https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/settlement/DutchAuctionSettlement.sol#L127-L133

Unset

Informational Concerns

I-1. Extra warnings will need to be given to users with funds approved to
Starport and the use of singleUse == false

If, for “convenience”, a user approves type(uint256).max of their ERC20 token to Starport, and sign a
caveat with singleUse == false, then the whole balance from the user could be used as a loan,
potentially against their consent.

Astaria’s response: Acknowledged. We acknowledge this and it is a core design element of the
`singleUse` parameter. Selection of this parameter will be explicit within the Astaria front end.

I-2. For user-friendliness, consider returning the final loan in
Starport.originate() and Starport.refinance()

Given that loan.start and loan.originator can be changed during Starport.originate() and
Starport.refinance(): the output loan won’t be equal to the input one.

As the final loan is the one used to compute the loanId, consider returning it for ease of further
interaction with the protocol.

Astaria’s response: Acknowledged. We did not do this because the gas costs were prohibitive ~3000
gas units to return the `loan` struct.

I-3. There are still mentions of the LoanManager contract

src/Custodian.sol:
403: * @dev settle the loan with the LoanManager
416: * @dev settle the loan with the LoanManager
429: * @dev settle the loan with the LoanManager

src/Starport.sol:
450: * @dev Settle the loan with the LoanManager

Astaria’s response: Fixed in commit f0fc582. We accept this finding and have applied a fix.

51

https://github.com/AstariaXYZ/starport/commit/f0fc582f7bb615d07e12006b8ebbee83635017e7

Unset

Unset

I-4. Renaming suggestions

File: Starport.sol
- 125: SpentItem[] collateral; // array of collateral
+ 125: SpentItem[] collaterals; // array of collateral
- 126: SpentItem[] debt; // array of debt
+ 126: SpentItem[] debts; // array of debt
- 156: mapping(uint256 => uint256) public loanState;
+ 156: mapping(uint256 => uint256) public loansStates;

File: AstariaV1Lib.sol
- 93: function getBaseRecallRecallMax(bytes memory statusData)
internal pure returns (uint256 recallMax) {
+ 93: function getBaseRecallMax(bytes memory statusData) internal
pure returns (uint256 recallMax) {

Astaria’s response: Fixed in commit be0b40b

52

https://github.com/AstariaXYZ/starport/commit/be0b40bddeb459af36d106802b7091af61e0fbf1

Unset

Unset

I-5. Refactoring suggestion: Use loan.getId() in Custodian’s mint
functions

In Custodian, several uses of loan.getId() can be seen. However, the following places reimplement the
functions:

● Custodian.sol#L162-L163

function mint(Starport.Loan calldata loan) external {
bytes memory encodedLoan = abi.encode(loan);
uint256 loanId = uint256(keccak256(encodedLoan));

● Custodian.sol#L176-L177

function mintWithApprovalSet(Starport.Loan calldata loan, address
approvedTo) external {

bytes memory encodedLoan = abi.encode(loan);
uint256 loanId = uint256(keccak256(encodedLoan));

Consider just using uint256 loanId = loan.getId();

Astaria’s response: Fixed in commit 7f1d2ca.

53

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol#L162-L163
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol#L176-L177
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

Unset

Unset

I-6. Refactoring suggestion: make a private function for repeated code

Consider creating a private function as to not duplicate code:

● Custodian.sol#L162-L166

File: Custodian.sol
162: bytes memory encodedLoan = abi.encode(loan);
163: uint256 loanId = uint256(keccak256(encodedLoan));
164: if (loan.custodian != address(this) || !SP.active(loanId))
{
165: revert InvalidLoan();
166: }

● Custodian.sol#L176-L180

File: Custodian.sol
176: bytes memory encodedLoan = abi.encode(loan);
177: uint256 loanId = uint256(keccak256(encodedLoan));
178: if (loan.custodian != address(this) || !SP.active(loanId))
{
179: revert InvalidLoan();
180: }

Astaria’s response: Fixed in commit 7f1d2ca.

54

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol#L162-L166
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol#L176-L180
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

Unset

I-7. Renaming suggestion: parameter address borrower on
StarportLib.validateSalt() should be address validator

StarportLib.validateSalt() isn’t only called on the borrower. Sometimes, it’s on the issuer or the
lender. Consider renaming the following:

● StarportLib.sol#L108

File: StarportLib.sol
106: function validateSalt(
107: mapping(address => mapping(bytes32 => bool)) storage
usedSalts,
- 108: address borrower,
+ 108: address validator,
109: bytes32 salt
110:) internal {

Astaria’s response: Fixed in commit 7f1d2ca.

55

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/lib/StarportLib.sol#L108
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6

Unset

Unset

Unset

Unset

I-8. Delete unused errors, or use them

The following errors are not used: consider using them where appropriate or deleting them:

File: BNPLHelper.sol
79: error DoNotSendETH();

File: Starport.sol
57: error AdditionalTransferError();
58: error CannotTransferLoans();
...
67: error InvalidRefinance();

File: LenderEnforcer.sol
35: error LenderOnlyEnforcer();

File: StrategistOriginator.sol
50: error InvalidCustodian();

Astaria’s response: Fixed in commit f0fc582.

56

https://github.com/AstariaXYZ/starport/commit/f0fc582f7bb615d07e12006b8ebbee83635017e7

Unset

I-9. maximumSpent isn’t used on Custodian.generateOrder and can be
removed

● Custodian.sol#L222

File: Custodian.sol
207: /**
208: * @dev Generates the order for this contract offerer
209: * @param fulfiller The address of the contract fulfiller
- 210: * @param maximumSpent The maximum amount of items to be
spent by the order
211: * @param context The context of the order
212: * @return offer The items spent by the order
213: * @return consideration The items received by the order
214: */
215: function generateOrder(
216: address fulfiller,
217: SpentItem[] calldata,
- 218: SpentItem[] calldata maximumSpent,
+ 218: SpentItem[] calldata,

Astaria’s response: Fixed in commit 748326b. We accept the finding and have applied the
recommended fix.

57

https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/Custodian.sol#L222
https://github.com/AstariaXYZ/starport/commit/748326b72101e4e0073d794f5772ac4afe78ef3a

Unset

I-10. References to the old naming Loan Manager or LM instead of Starport

starport/src/BNPLHelper.sol:
98: address lm;

starport/src/Custodian.sol:
475: * @dev Hook to call before the loan is settled with the LM
481: * @dev Hook to call after the loan is settled with the LM

starport/src/Starport.sol:
658: * @dev Issues a LM token if needed, only owner can call

starport/src/originators/StrategistOriginator.sol:
163: start: uint256(0), // Set in the loan manager
164: originator: address(0), // Set in the loan manager

Astaria’s response: Fixed in commit f0fc582.

I-11. Starport.originate() shouldn’t be payable

While using the payable keyword makes the function cheaper by 24 gas, it puts at risk users’ funds
that could make a mistake (albeit at a very low probability).

Even if it means paying 24 more gas, it’s recommended to remove the payable keyword

Astaria’s response: Acknowledged. We accept the finding and have opted not to make a fix for gas
savings of a nonpayable function.

I-12. Consider renaming open to opened to match closed

● Starport.sol#L91
● Starport.sol#L474-L476

Astaria’s response: Acknowledged. We accept the finding, but will not make any changes.

58

https://github.com/AstariaXYZ/starport/commit/f0fc582f7bb615d07e12006b8ebbee83635017e7
https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/Starport.sol#L91
https://github.com/AstariaXYZ/starport/blob/be9dee4c8a8498fde68edcfe6dc0fffff9eb2eaa/src/Starport.sol#L474-L476

Unset

Unset

I-13. Consider adding the name field to EIP712Domain

● Starport.sol#L99-L100
● StrategistOriginator.sol#L75

Astaria’s response: Fixed in commit 7f1d2ca.

I-14. Missing pragma in PausableNonReentrant.sol

This file is missing the pragma directive: PausableNonReentrant.sol#L1-L29

Astaria’s response: Fixed in commit 41af20b.

I-15. Constants should be in CONSTANT_CASE

For constant variable names, each word should use all capital letters, with underscores separating
each word (CONSTANT_CASE)

Affected code:

● src/BNPLHelper.sol

85: address private constant vault =
address(0xBA12222222228d8Ba445958a75a0704d566BF2C8);

● src/Custodian.sol

75: address public immutable seaport;

Astaria’s response: Fixed in commit 41af20b.

59

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol#L99-L100
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/originators/StrategistOriginator.sol#L75
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6
https://github.com/AstariaXYZ/starport/blob/67e31775978d494007b85a5c338bf460bd26f544/src/lib/PausableNonReentrant.sol#L1-L29
https://github.com/AstariaXYZ/starport/commit/41af20ba6a355e51d1b266c9a2290e456153bef8
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/BNPLHelper.sol
https://github.com/AstariaXYZ/starport/commit/41af20ba6a355e51d1b266c9a2290e456153bef8

Unset

Unset

I-16. Default Visibility for constants

Some constants are using the default visibility. For readability, consider explicitly declaring them as
internal.

Affected code:

● src/originators/StrategistOriginator.sol

File: src/originators/StrategistOriginator.sol

StrategistOriginator.sol:75: bytes32 constant EIP_DOMAIN =
keccak256("EIP712Domain(string version,uint256 chainId,address
verifyingContract)");

StrategistOriginator.sol:77: bytes32 constant VERSION =
keccak256("0");

Astaria’s response: Fixed in commit 41af20b. We accept the finding, and have made the constants
`public`.

I-17. Consider using namedmappings

Consider moving to solidity version 0.8.18 or later, and using named mappings to make it easier to
understand the purpose of each mapping

Affected code:

● src/Starport.sol

File: src/Starport.sol

Starport.sol:152: mapping(address => Fee) public feeOverrides;

60

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/originators/StrategistOriginator.sol
https://github.com/AstariaXYZ/starport/commit/41af20ba6a355e51d1b266c9a2290e456153bef8
https://ethereum.stackexchange.com/questions/51629/how-to-name-the-arguments-in-mapping/145555#145555
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Starport.sol

Unset

Unset

Unset

Starport.sol:153: mapping(address => mapping(address =>
ApprovalType)) public approvals;

Starport.sol:154: mapping(address => mapping(bytes32 => bool))
public invalidSalts;

Starport.sol:155: mapping(address => uint256) public caveatNonces;

Starport.sol:156: mapping(uint256 => uint256) public loanState;

● src/lib/RefStarportLib.sol

File: src/lib/RefStarportLib.sol
RefStarportLib.sol:58: mapping(address => mapping(bytes32 =>
bool)) storage usedSalts,

● src/lib/StarportLib.sol

File: src/lib/StarportLib.sol
StarportLib.sol:107: mapping(address => mapping(bytes32 =>
bool)) storage usedSalts,

● src/originators/StrategistOriginator.sol

File: src/originators/StrategistOriginator.sol
StrategistOriginator.sol:84: mapping(bytes32 => bool) public
usedHashes;

Astaria’s response: Acknowledged. We accept the finding, but will not make any changes.

61

https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/lib/RefStarportLib.sol
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/lib/StarportLib.sol
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/originators/StrategistOriginator.sol

I-18. StarportLib.transferSpentItemsSelf() shouldn’t take a from
parameter

In the fixed code in StarportLib, function transferSpentItemsSelf transfers ERC20 from itself, however
it also allows a from as input argument for ERC721 and ERC1155. The StrategistOriginator calls the
function with from == address(this), so it’s fine, but it would be less error prone and more consistent
to remove the from parameter in transferSpentItemsSelf().

Astaria’s response: Fixed.

62

https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/lib/StarportLib.sol#L311
https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/originators/StrategistOriginator.sol#L275

Gas Optimizations Recommendations

G-1. Consider checking the allowance before calling ERC20.approve()

In Custodian, if offer.itemType == ItemType.ERC20, there’s always a call to approve with
type(uint256).max: Custodian.sol#L369-L371.
However, this is a call(), which is a lot more expensive than a staticcall() (staticcall() is generally
executed when you call a function marked as view or pure on an external contract).
Consider checking if the allowance() isn’t already type(uint256).max before calling approve(), so as to
save gas for all users after the first one who used a certain type of ERC20 token.

Astaria’s response: Fixed in commit a6aaccb.

G-2. Use the lighter version of ERC721.safeMint()

Given that the loanId already holds the information from the loan, using the encodedLoan data in the
bytes field for safeMint() seems redundant: Custodian.sol#L167

Consider using the version of safeMint() without the bytes data:
https://github.com/Vectorized/solady/blob/68fe9b5829467515cae89079fa7aea7bcdbf838a/src/tok
ens/ERC721.sol#L479

Astaria’s response: Fixed in commit 7f1d2ca.

G-3. Redundant operations can be deleted

Given that named returns already have a default value, it’s not necessary to assign that same value at
the end of the function. Hence, the following can be deleted:

● BasePricing.sol#L80
● SimpleInterestPricing.sol#L89
● DutchAuctionSettlement.sol#L126
● StarportLib: new bytes(0) can be replaced with "" (#L253, #L284, #L361, #L385)

Astaria’s response: Fixed in commit d760601. We accept the finding and have removed
BaseRecallPricing.sol since all the methods were overridden by AstariaV1Pricing.sol.

63

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Custodian.sol#L369-L371
https://github.com/AstariaXYZ/starport/commit/a6aaccb9a6231fedcecf51368cb83114bdbbe3d7
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/Custodian.sol#L167
https://github.com/Vectorized/solady/blob/68fe9b5829467515cae89079fa7aea7bcdbf838a/src/tokens/ERC721.sol#L479
https://github.com/Vectorized/solady/blob/68fe9b5829467515cae89079fa7aea7bcdbf838a/src/tokens/ERC721.sol#L479
https://github.com/AstariaXYZ/starport/commit/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6
https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/pricing/BasePricing.sol#L80
https://github.com/AstariaXYZ/starport/blob/b835af20d7dd20d1634c58270b11f5dfa300431b/src/pricing/SimpleInterestPricing.sol#L89
https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/settlement/DutchAuctionSettlement.sol#L126
https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/lib/StarportLib.sol#L253
https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/lib/StarportLib.sol#L284
https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/lib/StarportLib.sol#L361
https://github.com/AstariaXYZ/starport/blob/67b31829c6e83253433b3d6c736e4fc7c894f06d/src/lib/StarportLib.sol#L385
https://github.com/AstariaXYZ/v1-core/commit/d760601148d38bed8c0a8cc4e7ae4faeccd38f82

G-4. BNPLHelper.activeUserDataHash can be deleted

● BNPLHelper.sol#L91

Given that activeUserDataHash is set in the same transaction in which it’s deleted, the checks around it
are redundant with the fact that there are just 2 functions (makeFlashLoan, called by the user, and
receiveFlashLoan, called by the balancer vault) and no state changes.

Astaria’s response: Fixed in commit a6aaccb.

64

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/BNPLHelper.sol#L91
https://github.com/AstariaXYZ/starport/commit/a6aaccb9a6231fedcecf51368cb83114bdbbe3d7

Unset

Unset

Unset

G-5. Unchecking arithmetics operations that can’t underflow/overflow

Solidity version 0.8+ comes with implicit overflow and underflow checks on unsigned integers. When
an overflow or an underflow isn’t possible (as an example, when a comparison is made before the
arithmetic operation), some gas can be saved by using an unchecked block:
https://docs.soliditylang.org/en/v0.8.10/control-structures.html#checked-or-unchecked-arithmetic

Consider wrapping with an unchecked block where it’s certain that there cannot be an underflow

25 gas saved per instance

Affected code:

● src/Starport.sol

File: src/Starport.sol

Starport.sol:323: uint256 newNonce = caveatNonces[msg.sender] +
1 + uint256(blockhash(block.number - 1) >> 0x80);

● src/originators/StrategistOriginator.sol

File: src/originators/StrategistOriginator.sol

StrategistOriginator.sol:150: _counter +=
uint256(blockhash(block.number - 1) >> 0x80);

● src/settlement/DutchAuctionSettlement.sol

File: src/settlement/DutchAuctionSettlement.sol

+ DutchAuctionSettlement.sol:144: uint256 excess =
settlementPrice - (loan.debt[0].amount + interest - carry);

Astaria’s response: Fixed in commit a6aaccb.
65

https://docs.soliditylang.org/en/v0.8.10/control-structures.html#checked-or-unchecked-arithmetic
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Starport.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/originators/StrategistOriginator.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/settlement/DutchAuctionSettlement.sol
https://github.com/AstariaXYZ/starport/commit/a6aaccb9a6231fedcecf51368cb83114bdbbe3d7

Unset

Unset

Unset

G-6. Cache array length outside of loop

If not cached, the solidity compiler will always read the length of the array during each iteration. That
is, if it is a storage array, this is an extra sload operation (100 additional extra gas for each iteration
except for the first) and if it is a memory array, this is an extra mload operation (3 additional gas for
each iteration except for the first).

Affected code:

● src/BNPLHelper.sol

File: src/BNPLHelper.sol

BNPLHelper.sol:133: for (uint256 i = 0; i < tokens.length;) {

BNPLHelper.sol:144: for (uint256 i = 0; i < tokens.length;) {

● src/Custodian.sol

File: src/Custodian.sol

Custodian.sol:380: for (uint256 i = 0; i <
loan.collateral.length; i++) {

Custodian.sol:407: for (uint256 i = 0; i < offer.length; i++) {

● src/Starport.sol

File: src/Starport.sol

Starport.sol:344: for (uint256 i = 0; i <
defaultFeeRakeByDecimals_.length;) {

66

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/BNPLHelper.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Custodian.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Starport.sol

Unset

Unset

Starport.sol:389: for (; i < considerationPayment.length;)
{

Starport.sol:402: for (; i < considerationPayment.length;)
{

Starport.sol:432: for (; i < caveats.length;) {

Starport.sol:532: for (; i < additionalTransfers.length;) {

Starport.sol:556: for (; i < additionalTransfers.length;) {

Starport.sol:600: for (uint256 i = 0; i <
signedCaveats.caveats.length;) {

Starport.sol:653: for (uint256 i = 0; i < debt.length;) {

● src/enforcers/BorrowerEnforcer.sol

File: src/enforcers/BorrowerEnforcer.sol

BorrowerEnforcer.sol:85: for (; i <
additionalTransfers.length;) {

● src/enforcers/LenderEnforcer.sol

File: src/enforcers/LenderEnforcer.sol

LenderEnforcer.sol:78: for (; i <
additionalTransfers.length;) {

● src/lib/StarportLib.sol

67

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/enforcers/BorrowerEnforcer.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/enforcers/LenderEnforcer.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/lib/StarportLib.sol

Unset

Unset

Unset

File: src/lib/StarportLib.sol

StarportLib.sol:150: for (; i < payment.length;) {

StarportLib.sol:172: for (; i < carry.length;) {

StarportLib.sol:210: for (uint256 i = 0; i <
consideration.length;) {

StarportLib.sol:236: for (; i < transfers.length;) {

StarportLib.sol:267: for (; i < transfers.length;) {

StarportLib.sol:299: for (; i < transfers.length;) {

● src/originators/StrategistOriginator.sol

File: src/originators/StrategistOriginator.sol

StrategistOriginator.sol:226: for (uint256 i = 0; i <
request.debt.length;) {

● src/pricing/BasePricing.sol

File: src/pricing/BasePricing.sol

BasePricing.sol:85: for (; i < loan.debt.length;) {

Astaria’s response: Acknowledged.We accept the finding, but will not make any changes as we are
optimizing the protocol for array sizes of 1, with support for larger array sizes at higher gas profiles.

68

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/originators/StrategistOriginator.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/pricing/BasePricing.sol

Unset

Unset

G-7. ++i costs less gas compared to i++ or i += 1

Pre-increments and pre-decrements are cheaper.

For a uint256 i variable, the following is true with the Optimizer enabled at 10k:

Increment:

● i += 1 is the most expensive form
● i++ costs 6 gas less than i += 1

● ++i costs 5 gas less than i++ (11 gas less than i += 1)

In the pre-increment case, the compiler has to create a temporary variable (when used) for returning 1

instead of 2.

Consider using pre-increments where they are relevant (meaning: not where
post-increments/decrements logic are relevant).

Saves 5 gas per instance

Affected code:

● src/Custodian.sol

File: src/Custodian.sol

Custodian.sol:380: for (uint256 i = 0; i <
loan.collateral.length; i++) {

Custodian.sol:407: for (uint256 i = 0; i < offer.length; i++) {

● src/originators/StrategistOriginator.sol

File: src/originators/StrategistOriginator.sol

StrategistOriginator.sol:242: i++;

69

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Custodian.sol
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/originators/StrategistOriginator.sol

Unset

Unset

G-8. Increments/decrements can be unchecked

In Solidity 0.8+, there’s a default overflow check on unsigned integers. It’s possible to uncheck this in
for-loops and save some gas at each iteration, but at the cost of some code readability, as this
uncheck cannot be made inline.

ethereum/solidity#10695

The change would be:

- for (uint256 i; i < numIterations; i++) {
+ for (uint256 i; i < numIterations;) {
// ...
+ unchecked { ++i; }
}

These save around 25 gas saved per instance.

The same can be applied with decrements (which should use break when i == 0).

The risk of overflow is non-existent for uint256.

Affected code:

● src/Custodian.sol

File: src/Custodian.sol

Custodian.sol:380: for (uint256 i = 0; i <
loan.collateral.length; i++) {

Custodian.sol:407: for (uint256 i = 0; i < offer.length; i++) {

Astaria’s response: Fixed in commit a6aaccb.

70

https://github.com/ethereum/solidity/issues/10695
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/Custodian.sol
https://github.com/AstariaXYZ/starport/commit/a6aaccb9a6231fedcecf51368cb83114bdbbe3d7

G-9. Unused StrategistOriginator.strategistFee

StrategistOriginator has a strategistFee
This can be retrieved via getStrategistData(), but it isn't used/checked anywhere else in the code.
Consider deleting it.
Astaria’s response: Fixed in commit 748326b.

G-10. The _moveCollateralToAuthorized() path is less expensive

In Custodian.generateOrder(), after the call to getSettlementConsideration(), if the DutchAuction has
failed and the collateral should be sent back to the loan.issuer, then the path taken when the order is
filled by the loan.issuer will be the Seaport one (fulfiller == authorized and authorized == loan.issuer),
whereas the _moveCollateralToAuthorized() path is quite likely less expensive but is only reachable
when the order is filled by a third party.

Astaria’s response: Acknowledged. Your description is correct. It might be more gas efficient to use
_moveCollateralToAuthorized but would be best not to make the change this close to code freeze

G-11. Cache _counter in StrategistOriginator.incrementCounter()

To save some gas: In StrategistOriginator, the function incrementCounter(), could use a temporary
variable (for the state variable _counter), similar to incrementCaveatNonce() in Starport.sol

Astaria’s response: Fixed in commit 748326b. We accept the finding and have a applied a modified
fix.

G-12. Cache Status.isActive in Custodian.generateOrder()

To save some gas: In Custodian, the function generateOrder(), could use a temporary variable for
Status(loan.terms.status).isActive(loan, close.extraData)

Astaria’s response: Fixed in commit 748326b. We accept the finding and have applied the
recommended fix.

71

https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/originators/StrategistOriginator.sol#L89
https://github.com/AstariaXYZ/starport/blob/7f1d2cad318796468bdb0d23fd26e25c3ee7d1b6/src/originators/StrategistOriginator.sol#L196-L198
https://github.com/AstariaXYZ/starport/commit/748326b72101e4e0073d794f5772ac4afe78ef3a#diff-fe4d863eef848f9af246a0a1c6a8e35426159db52fd2cea37b7c49235f8cee2e
https://github.com/AstariaXYZ/starport/blob/5da8b3191e085208de92a01a69243f50f445208c/src/Custodian.sol#L252-L256
https://github.com/AstariaXYZ/starport/commit/748326b72101e4e0073d794f5772ac4afe78ef3a
https://github.com/AstariaXYZ/starport/commit/748326b72101e4e0073d794f5772ac4afe78ef3a

Formal Verification
Assumptions and Simplifications Made During Verification

General Assumptions
A. Any loop was unrolled to two iterations at most.

Token transfers summarization

When transfer of any of the ERC20/ERC721/ERC1155 tokens occurred, instead of using a contract
implementation, we used a ghost mapping to monitor and store the relevant transfers. We checked manually
the approval mechanism implemented by _enableAssetWithSeaport() and during verification assumed that
it works correctly.

Code refactoring and explicit summarizations of internal parts of the code

Some functions had as input bytes calldata that represented encoded structs. We had to refactor the code
and present internal functions that were having as input the explicit structs instead. This way we could prove in
a faster and more efficient manner any properties related to the parameters passed within those structs. In
addition, in Starport.sol, the compute() function was introduced to wrap the mulDiv computation in the
_feeRake() function, thus reducing the Prover’s run time.

Replacing explicit keccak computations with equivalent getId() call and summarizing them

in Custodian.sol, the _validateAndMint() function used explicit keccak computations to calculate the
loanId of the input loan. Instead of the explicit computation, we used the call to the getId() function already
implementing the exact logic within StarportLib.sol. This modification allowed us later to summarize the
computation to explicit value, and reduce the Prover’s run time without impacting the correctness of the
properties we proved.

Solady implementations replaced by OpenZeppelin’s implementations

The mostly-assembly implementation of the imported Solady contracts used in the protocol caused some
issues (like longer running time) to the Prover. We used instead the OpenZeppelin implementations of the
ERC721 and PausableNonReentrant contracts. Later, we individually proved properties on the original Solady
contract PausableNonReentrant which can be seen in the list of properties below.

72

Formal Verification Properties

Notations
✅Indicates the rule is formally verified.
❌Indicates the rule is violated.

Since the protocol consists of different contracts, we will present the relative properties for each of the main
contracts in separate sections.

The following files were formally verified, and the properties are listed below per library/contract:
A. Custodian.sol
B. Starport.sol
C. PausableNonReentrant.sol

Custodian.sol
Assumptions

- We verified the contract functions against an arbitrary storage state.

Properties

1. ✅ Only the seaport contract address can call the ratifyOrder() and generateOrder() methods
2. ✅ One cannot mint a custody token for a closed loan
3. ✅ One cannot mint a custody token if the custodian of the loan is not the same as the custodian

contract
4. ✅ One cannot mint and approve a loan if msg.sender is not the loan’s borrower
5. ✅ One cannot call mint() twice using the same Starport.Loan loan
6. ✅ After minting a ERC721 token for a loan, the owner of the token must be loan.borrower
7. ✅ Custodian cannot settle a loan when loan.custodian field differs from custodian.
8. ✅ getBorrower returns the owner of the token or the loan.borrower
9. ✅ If previewOrder() reverted then generateOrder() would also revert
10.✅ generateOrder() can only settle an open loanId, and the requested action can only be

Actions.Repayment of active loan or Actions.Settlement of inactive loan
11.✅ Only the party returned by Custodian._getBorrower(loan) (equal to ownerOf(loanId) or loan.issuer)

is able to repay a loan or the fulfiller is approved, and the collateral will be sent to the fulfiller of the
order

12.✅ Only authorized party is able to settle a loan if the authorized address is not the
loan.terms.settlement or loan.issuer.

73

Starport.sol
Assumptions

- We verified the contract functions against an arbitrary storage state.

Properties
1. ✅ setOrignateApproval sets the correct values
2. ✅ setFeeData sets the correct values
3. ✅ setFeeOverride sets the correct values
4. ✅ Issuing a loan results in a open loan
5. ✅ Settling a loan results in a closed loan and can only be performed by the custodian of the loan
6. ✅ Only the message sender can change the caveat nonce
7. ✅ Only the message sender can change the approvals
8. ✅ Settling an closed loan is not possible
9. ✅ Settling a loan can only close the input loan, and doesn't change the status of any other loan
10.✅ Only the owner can call pause and unpause
11.✅ One cannot originate a loan without providing a collateral
12.✅ Calling originate() can create only one new active loan
13.✅ Only the protocol owner can change fee settings (feeTo, defaultFeeRake, feeOverrides)
14.✅When originating a loan, if there are fees, the debt items will be split between the borrower and the

fee collector, and their sum must be equal to the initial debt (no assets are lost or created due to fees)
15.✅ After calling originate, the sum of the balances of the loan’s custodian, issuer, borrower, and the

feeRecipient, remains the same
16.✅ A closed loan cannot be refinanced
17.✅ An already open loan cannot be originated
18.✅ Invalidating salt indeed invalidates the various caveats as intended
19.✅ One cannot originate a loan with unauthorized additional transfers

74

PausableNonReentrant.sol
Assumptions

- We verified the contract functions against an arbitrary storage state.

Properties
1. ✅ Only owner can call the pause(), unpause(), renounceOwnership(), transferOwnership() methods
2. ✅ The only method that can pause a contract is pause()
3. ✅ The only method that can unpause a contract is unpause()
4. ✅ Only owner can change the owner of the contract
5. ✅ Once the renounceOwnership() is executed correctly, no method can set a new owner
6. ✅ One cannot call transferOwnership() with the zero address (even the owner cannot)
7. ✅ Only owner can call completeOwnershipHandover()
8. ✅ To complete successfully ownership handover, the pending owner must have requested ownership

handover in less than 48 hours prior to the handover
9. ✅ No one (that is not owner or the pending owner) cannot interfere with the handover
10.✅ Integrity of ownershipHandoverExpiresAt(), i.e., it returns correctly the handover expiration, which is

block.timestamp + 48 hours from the request ownership handover
11.✅ cancelOwnershipHandover() affects only the msg.sender

75

Disclaimer
The Certora Prover takes a contract and a specification as input and formally proves that the
contract satisfies the specification in all scenarios. Notably, the guarantees of the Certora Prover
are scoped to the provided specification and the Certora Prover does not check any cases not
covered by the specification.

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora
Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

76

