
ShimmerSea
smart contracts
final audit report

September 2022

hashex.org

contact@hashex.org

Contents

Page 2 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

1. Disclaimer 3

2. Overview 4

3. Found issues 6

4. Contracts 9

5. Conclusion 23

Appendix A. Issues’ severity classification 24

Appendix B. List of examined issue types 25

1. Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry

practice at the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework

and algorithms based on smart contracts, the details of which are set out in this report. In order to get a

full view of our analysis, it is crucial for you to read the full report. While we have done our best in

conducting our analysis and producing this report, it is important to note that you should not rely on

this report and cannot claim against us on the basis of what it says or doesn’t say, or how we produced

it, and it is important for you to conduct your own independent investigations before making any

decisions. We go into more detail on this in the disclaimer below – please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you do not agree to

the terms, then please immediately cease reading this report, and delete and destroy any and all

copies of this report downloaded and/or printed by you. This report is provided for information

purposes only and on a non-reliance basis and does not constitute investment advice. No one shall

have any right to rely on the report or its contents, and HashEx and its affiliates (including holding

companies, shareholders, subsidiaries, employees, directors, officers, and other representatives)

(HashEx) owe no duty of care towards you or any other person, nor does HashEx make any warranty or

representation to any person on the accuracy or completeness of the report. The report is provided "as

is", without any conditions, warranties, or other terms of any kind except as set out in this disclaimer,

and HashEx hereby excludes all representations, warranties, conditions, and other terms (including,

without limitation, the warranties implied by law of satisfactory quality, fitness for purpose and the use

of reasonable care and skill) which, but for this clause, might have effect in relation to the report. Except

and only to the extent that it is prohibited by law, HashEx hereby excludes all liability and responsibility,

and neither you nor any other person shall have any claim against HashEx, for any amount or kind of

loss or damage that may result to you or any other person (including without limitation, any direct,

indirect, special, punitive, consequential or pure economic loss or damages, or any loss of income,

profits, goodwill, data, contracts, use of money, or business interruption, and whether in delict, tort

(including without limitation negligence), contract, breach of statutory duty, misrepresentation

(whether innocent or negligent) or otherwise under any claim of any nature whatsoever in any

jurisdiction) in any way arising from or connected with this report and the use, inability to use or the

results of the use of this report, and any reliance on this report. The analysis of the security is purely

based on the smart contracts alone. No applications or operations were reviewed for security. No

product code has been reviewed. HashEx owns all copyright rights to the text, images, photographs,

and other content provided in the following document. When using or sharing partly or in full, third

parties must provide a direct link to the original document mentioning the author (hashex.org).

Page 3 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://hashex.org

2. Overview

HashEx was commissioned by the ShimmerSea team to perform an audit of their smart

contract. The audit was conducted between 24/08/2022 and 05/09/2022.

The purpose of this audit was to achieve the following:

Identify potential security issues with smart contracts

Formally check the logic behind given smart contracts.

Information in this report should be used for understanding the risk exposure of

smart contracts, and as a guide to improving the security posture of smart contracts by

remediating the issues that were identified.

The code is available at @ShimmerSea/shimmersea-contracts and @ShimmerSea/shimmersea-

magiclum GitHub repositories after the commits fc5e952 and 20cbb9c respectively.

Documentation was provided via pre-production website.

Update: the ShimmerSea team has responded to this report. The updated code is located in

the same GitHub repositories after the cd03053 and 40dbbd4 commits.

2.1 Summary

Project name ShimmerSea

URL https://shimmersea.finance/

Platform Shimmer Network

Language Solidity

Page 4 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://github.com/ShimmerSea/shimmersea-contracts/tree/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927
https://github.com/ShimmerSea/shimmersea-magiclum/tree/20cbb9c1011c20a8b30620f057445e4b700c0d91
https://github.com/ShimmerSea/shimmersea-contracts/commit/cd030531e3a6b338e4dddc281570b3f1f0bd2c37
https://github.com/ShimmerSea/shimmersea-magiclum/commit/40dbbd4bdee33ed7a23a80dabf25b94b99704d6f
https://shimmersea.finance/

2.2 Contracts

Name Address

DEX contracts https://github.com/ShimmerSea/shimmersea-contracts/tree/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/dex

FarmUniV2Zap https://github.com/ShimmerSea/shimmersea-contracts/blob/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/zaps/

FarmUniV2Zap.sol

Interfaces https://github.com/ShimmerSea/shimmersea-contracts/tree/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/interfaces

Misc contracts https://github.com/ShimmerSea/shimmersea-contracts/tree/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/misc

PearlToken https://github.com/ShimmerSea/shimmersea-contracts/blob/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/PearlToken.sol

LumToken https://github.com/ShimmerSea/shimmersea-contracts/blob/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/LumToken.sol

RewardPool https://github.com/ShimmerSea/shimmersea-contracts/blob/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/

RewardPool.sol

RestrictedLumPool https://github.com/ShimmerSea/shimmersea-contracts/blob/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/

RestrictedLumPool.sol

TangleSeaMasterChef https://github.com/ShimmerSea/shimmersea-contracts/blob/

fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/

TangleSeaMasterChef.sol

MagicLum https://github.com/ShimmerSea/shimmersea-magiclum/

blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/

MagicLum.sol

TimeBasedMasterChefRew

arder

https://github.com/ShimmerSea/shimmersea-magiclum/

blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/rewarder/

TimeBasedMasterChefRewarder.sol

Page 5 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://github.com/ShimmerSea/shimmersea-contracts/tree/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/dex
https://github.com/ShimmerSea/shimmersea-contracts/tree/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/dex
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/zaps/FarmUniV2Zap.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/zaps/FarmUniV2Zap.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/zaps/FarmUniV2Zap.sol
https://github.com/ShimmerSea/shimmersea-contracts/tree/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/interfaces
https://github.com/ShimmerSea/shimmersea-contracts/tree/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/interfaces
https://github.com/ShimmerSea/shimmersea-contracts/tree/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/misc
https://github.com/ShimmerSea/shimmersea-contracts/tree/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/misc
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/PearlToken.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/PearlToken.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/LumToken.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/LumToken.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/RewardPool.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/RewardPool.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/RewardPool.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/RestrictedLumPool.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/RestrictedLumPool.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/pools/RestrictedLumPool.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/TangleSeaMasterChef.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/TangleSeaMasterChef.sol
https://github.com/ShimmerSea/shimmersea-contracts/blob/fc5e9527a8499d1d0eea151fe2d6118a5a8e7927/contracts/TangleSeaMasterChef.sol
https://github.com/ShimmerSea/shimmersea-magiclum/blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/MagicLum.sol
https://github.com/ShimmerSea/shimmersea-magiclum/blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/MagicLum.sol
https://github.com/ShimmerSea/shimmersea-magiclum/blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/MagicLum.sol
https://github.com/ShimmerSea/shimmersea-magiclum/blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/rewarder/TimeBasedMasterChefRewarder.sol
https://github.com/ShimmerSea/shimmersea-magiclum/blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/rewarder/TimeBasedMasterChefRewarder.sol
https://github.com/ShimmerSea/shimmersea-magiclum/blob/20cbb9c1011c20a8b30620f057445e4b700c0d91/contracts/rewarder/TimeBasedMasterChefRewarder.sol

3. Found issues

24
Total issues

Critical 1 (4%)

High 1 (4%)

Medium 7 (29%)

Low 5 (21%)

Info 10 (42%)

Ce6. DEX contracts

ID Severity Title Status

Ce6I3b Low TangleseaLibrary: code with no effect Resolved

Ce6I3a Info TangleseaFactory: fees distribution Acknowledged

Ce7. FarmUniV2Zap

ID Severity Title Status

Ce7I3c Medium zapOut() function doesn't perform safety

checks

Resolved

Ce7I3d Info Typos Resolved

Cec. RewardPool

Page 6 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

ID Severity Title Status

CecI3e Medium External functions can be used for

phishing

Resolved

CecI40 Low Gas optimizations Resolved

CecI3f Info Rewards aren't guaranteed Acknowledged

Ced. RestrictedLumPool

ID Severity Title Status

CedI69 High Staked funds may be transferred as

reward

Resolved

CedI46 Medium External functions can be used for

phishing

Resolved

CedI44 Low Gas optimizations Resolved

CedI43 Info Typos Resolved

Cee. TangleSeaMasterChef

ID Severity Title Status

CeeI48 Medium Unfair distribution of awards without

massUpdatePool()

Acknowledged

CeeI47 Medium External functions can be used for

phishing

Resolved

CeeI4d Low Gas optimizations Resolved

Page 7 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

CeeI4aCeeI4a Info Typos Resolved

CeeI4c Info Lack of events Resolved

CeeI49 Info emergencywithdraw() doesn't notify the

rewarder

Resolved

CeeI4b Info Tokens with fees on transfers aren’t

supported

Resolved

CeeI4e Info Lack of safety checks on input values Resolved

Cf0. TimeBasedMasterChefRewarder

ID Severity Title Status

Cf0I4f Critical Rewarder is exposed to

emergencyWithdraw() exploit

Resolved

Cf0I50 Medium Rewards aren't guaranteed Resolved

Cf0I6b Medium Unfair distribution of awards without

massUpdatePool()

Resolved

Cf0I52 Low Gas optimizations Resolved

Cf0I51 Info Typos Resolved

Page 8 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

4. Contracts

Ce6. DEX contracts

Overview

A typical fork of a UniswapV2 DEX with minor changes of customizable fee for each pair.

Issues

ResolvedLowCe6I3b TangleseaLibrary: code with no effect

Code with no effect in getReserves():

 function getReserves(...) internal view returns (...) {

 ...

 pairFor(factory, tokenA, tokenB);

 ...

 }

AcknowledgedInfoCe6I3a TangleseaFactory: fees distribution

Fee distribution differs from the documentation. 50% goes to the project owner instead of

25% going to the owner and 25% to the buyback of the LUM token.

Ce7. FarmUniV2Zap

Page 9 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://docs.uniswap.org/protocol/V2/introduction

Overview

Auxiliary contract for simplifying user interaction with the TangleSeaMasterChef contract.

Issues

ResolvedMediumCe7I3c zapOut() function doesn't perform safety
checks

The zap-out function doesn't perform security checks of output amounts after removing

liquidity. Any calls of these functions can be sandwiched.

 function zapOut(address lpToken, uint256 withdrawAmount) external {

 ...

 _removeLiqudity(address(pair), address(this));

 ...

 _returnAssets(tokens);

 }

 function _removeLiqudity(address pair, address to) private {

 IERC20(pair).safeTransfer(pair, IERC20(pair).balanceOf(address(this)));

 (uint256 amount0, uint256 amount1) = ITangleseaPair(pair).burn(to);

 require(amount0 >= minimumAmount, "UniswapV2Router: INSUFFICIENT_A_AMOUNT");

 require(amount1 >= minimumAmount, "UniswapV2Router: INSUFFICIENT_B_AMOUNT");

 }

Recommendation

Any interaction between a user and pair should include the safety limits in the parameters.

ResolvedInfoCe7I3d Typos

Typos reduce the code's readability.Typos in 'directy', 'liqudity'.

Page 10 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

Ce8. Interfaces

Overview

IMasterChef, IRewarder,

IRewardToken,IZap, IPermitToken, ITangleseaFactory, ITangleseaPair, ITangleseaRouter, and

IWETH interfaces. No issues were found.

Ce9. Misc contracts

Overview

FeeVault is a simple vault contract with 2 different withdrawal functions: one for the feeAddr

and the other for the owner.

Multicall and Multicall2 are well-known contracts for aggregated calls.

WETH9 is a wrapped ETH token contract.

No issues were found.

Cea. PearlToken

Overview

An implementation of EIP-20 token standard built on the ERC20Permit extension from

OpenZeppelin, which supports the EIP-712 signing. PearlToken is mintable by the owner

(supposedly, TangleSeaMasterChef). No issues were found.

Page 11 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-712

Ceb. LumToken

Overview

An implementation of the EIP-20 token standard built on the ERC20Permit extension from

OpenZeppelin, which supports the EIP-712 signing. LumToken is mintable by the owner

(supposedly, TangleSeaMasterChef). No issues were found.

Cec. RewardPool

Overview

A single pool contract inspired by MasterChefV2 from Sushiswap.

Issues

ResolvedMediumCecI3e External functions can be used for phishing

deposit(), withdrawAndHarvest(), and harvest() functions receive _to address in parameters

to deposit, withdraw or harvest reward. These functions can be used for phishing in case of

hacked front-end.

 function deposit(uint256 _amount, address _to) external nonReentrant {

 ...

 stakedToken.safeTransferFrom(address(msg.sender), address(this), _amount);

 ...

 }

 function harvest(address _to) public {

 ...

 rewardToken.safeTransfer(address(_to), _pending);

 ...

 }

 function withdrawAndHarvest(uint256 _amount, address _to) external nonReentrant {

Page 12 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-712
https://github.com/sushiswap/sushiswap/blob/archieve/master/contracts/MasterChefV2.sol

 ...

 stakedToken.safeTransfer(address(_to), _amount);

 rewardToken.safeTransfer(address(_to), _pending);

 ...

 }

Recommendation

Add 2 external functions: one with _to = msg.sender and other with require(msg.sender ==

desiredContract), alongside with the single internal function containing all the logic.

ResolvedLowCecI40 Gas optimizations

Several gas optimizations could be implemented:

1. stakedToken, rewardToken, PRECISION_FACTOR variables should be declared as immutable

2. unnecessary reads from storage: user.amount in deposit();user.amount, accTokenPerShare

 in withdrawAndHarvest();user.amount in emergencyWithdraw();bonusEndTime in
stopReward();poolLimitPerUser in updatePoolLimitPerUser();startTime in
updateStartAndEndTime();lastRewardTime in pendingRewards();lastRewardTime in
_updatePool();bonusEndTime in _getMultiplier();

3. In the updated code msg.sender is checked against trustee variable twice in the
harvestOnBehalf() function.

AcknowledgedInfoCecI3f Rewards aren't guaranteed

Several gas optimizations could be implemented:

1. stakedToken, rewardToken, PRECISION_FACTOR variables should be declared as immutable

2. unnecessary reads from storage: user.amount in deposit();user.amount, accTokenPerShare

 in withdrawAndHarvest();user.amount in emergencyWithdraw();bonusEndTime in
stopReward();poolLimitPerUser in updatePoolLimitPerUser();startTime in
updateStartAndEndTime();lastRewardTime in pendingRewards();lastRewardTime in
_updatePool();bonusEndTime in _getMultiplier().

Page 13 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

Ced. RestrictedLumPool

Overview

A single pool contract inspired by MasterChefV2 from Sushiswap. Accessible only for LUMI

NFT holders. Works closely with the single pool of TangleSeaMasterChef contract.

Issues

ResolvedHighCedI69 Staked funds may be transferred as reward

The contract's calculated reward from MasterChef may differ from actually pending. The

discrepancy will lead to the rewards payments including users' staked tokens. There are two

inaccuracies that can cause this discrepancy, i.e. accRewardPerShare being greater than it

should.

Firstly, rewardsPerSec and/or pool.allocPoint & totalAllocPoint could have been adjusted

between 2 _updatePool() calls.

Secondly, it's supposed all rewards from the masterChefPool are received by the

RestrictedLumPool contract, which is generally not true if masterChefPool has other stakes.

 function _updatePool() internal {

 IMasterChef.PoolInfo memory masterChefPool = MASTERCHEF.poolInfo(MASTERCHEF_PID);

 ...

 uint256 totalAllocPoint = MASTERCHEF.totalAllocPoint();

 uint256 masterChefRewardsPerSec = MASTERCHEF.rewardsPerSec();

 uint256 rewards = nbSeconds.mul(masterChefRewardsPerSec).mul(masterChefPool.allocPo

int).div(totalAllocPoint);

 accRewardPerShare =

accRewardPerShare.add(rewards.mul(PRECISION_FACTOR).div(lpSupply));

 ...

 }

 function harvest(address _to) public {

 ...

Page 14 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://github.com/sushiswap/sushiswap/blob/archieve/master/contracts/MasterChefV2.sol

 _updatePool();

 uint256 accRewards = (user.amount.mul(accRewardPerShare)).div(PRECISION_FACTOR);

 uint256 _pending = accRewards.sub(user.rewardDebt);

 safeTransfer(_to, _pending);

 ...

 }

Recommendation

We advise replacing pending reward amount estimation with

MASTERCHEF.pendingRewards(MASTERCHEF_PID, address(this)) and MASTERCHEF.harvest()

them:

 function _updatePool() internal {

 uint256 rewards = MASTERCHEF.pendingRewards(MASTERCHEF_PID, address(this));

 MASTERCHEF.harvest()

 accRewardPerShare =

accRewardPerShare.add(rewards.mul(PRECISION_FACTOR).div(lpSupply));

 ...

 }

Also, this solution requires adding pendingRewards() to IMasterChef interface, removing

harvestFromMasterChef(), modifying safeTransfer(), pendingRewards() and init().

ResolvedMediumCedI46 External functions can be used for phishing

deposit(), withdrawAndHarvest(), and harvest() functions receive _to address in parameters

to deposit, withdraw or harvest reward. These functions can be used for phishing in case of

hacked front-end.

function deposit(uint256 _amount, address _to) external nonReentrant {

 ...

 UserInfo storage user = userInfo[_to];

 user.amount = user.amount.add(_amount);

 ...

 }

Page 15 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

 function harvest(address _to) public {

 ...

 safeTransfer(_to, _pending);

 ...

 }

 function withdrawAndHarvest(uint256 _amount, address _to) external nonReentrant {

 ...

 safeTransfer(_to, _pending);

 safeTransfer(_to, _amount);

 ...

 }

Recommendation

Add 2 external functions: one with _to = msg.sender and other with require(msg.sender ==

desiredContract), alongside the single internal function containing all the logic.

ResolvedLowCedI44 Gas optimizations

Several gas optimizations could be implemented:

1. MASTERCHEF_PID and MASTERCHEF variables should be declared as immutable

2. PRECISION_FACTOR variable should be declared as constant

3. unnecessary reads from storage: user.amount in deposit();user.amount, accTokenPerShare

 in withdrawAndHarvest();lastRewardTime, accRewardPerShare in pendingRewards();
lastRewardTime, accRewardPerShare in _updatePool();

4. L229 and L232 transfers can be done in one transaction.

ResolvedInfoCedI43 Typos

Typos reduce the code's readability.Typos in 'alreay'.

Page 16 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

Cee. TangleSeaMasterChef

Overview

A contract inspired by MasterChefV2 from Sushiswap with additional optional Rewarder

contracts for each pool.

Issues

AcknowledgedMediumCeeI48 Unfair distribution of awards without
massUpdatePool()

The reward distribution for pools, where the updatePool() function is rarely called, can

become too small (unfair) if new pools are added or updated without the _withUpdate flag.

Recommendation

Force mass update without the flag.

ResolvedMediumCeeI47 External functions can be used for phishing

deposit(), withdrawAndHarvest(), and harvest() functions receive _to address in parameters

to deposit, withdraw or harvest reward. These functions can be used for phishing in case of

hacked front-end.

 function deposit(uint256 _amount, address _to) external nonReentrant {

 ...

 UserInfo storage user = userInfo[_pid][_to];

 user.amount = user.amount.add(_amount);

 ...

 }

 function harvest(address _to) public {

 ...

 safeRewardTransfer(_to, _pending);

Page 17 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://github.com/sushiswap/sushiswap/blob/archieve/master/contracts/MasterChefV2.sol
https://draculaprotocol.medium.com/sushiswap-smart-contract-bug-and-quality-of-audits-in-community-f50ee0545bc6

 ...

 }

 function withdrawAndHarvest(uint256 _amount, address _to) external nonReentrant {

 ...

 safeRewardTransfer(_to, _pending);

 pool.lpToken.safeTransfer(_to, _amount);

 ...

 }

Recommendation

Add 2 external functions: one with _to = msg.sender and other with require(msg.sender ==

desiredContract), alongside the single internal function containing all the logic.

ResolvedLowCeeI4d Gas optimizations

Several gas optimizations could be implemented:

1. checkPoolDuplicate() is inefficient: mapping address=>bool saves gas or even duplicated

pools could be allowed as pool.lpSupply is tracked

2. requirements in L145, L187 should be switched places, i.e. first check the address for zero

then its extcodesize

3. unnecessary reads from storage: startTime in add(); user.amount, pool.depositFeeBP in
deposit(); user.amount, pool.accRewardPerShare in withdrawAndHarvest();
pool.lastRewardTime in pendingRewards();pool.lastRewardTime,
pool.accRewardPerShare, pool.lpSupply in _updatePool();

ResolvedInfoCeeI4a Typos

Typos reduce the code's readability.Typos in 'PRECSION', 'vairables', 'FUNCIONS',

'FUNCIONTS'

Page 18 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

ResolvedInfoCeeI4c Lack of events

No events are emitted in the constructor section except for the contract's parameters being

changed.

ResolvedInfoCeeI49 emergencywithdraw() doesn't notify the rewarder

The emergencyWithdraw() function doesn't call the Rewarder.onNativeReward(). This may result

in users' loss of additional rewards and staked amounts inconsistency. Better to use try/catch

or .call() without success check to properly notify the Rewarder contract without

compromising the possibility of emergency withdrawal.

ResolvedInfoCeeI4b Tokens with fees on transfers aren’t supported

The deposit() function doesn't check the actual transferred amount, which is mandatory in the

case of tokens with fees on transfers. The owner must not add pools with such tokens.

ResolvedInfoCeeI4e Lack of safety checks on input values

Constructor setters aren’t subjected to max value filtering, unlike the separate set functions for

the same parameters.

There’s no validatePool() call in set() function.

Cef. MagicLum

Page 19 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

Overview

A governance token, an implementation of the EIP-20 token standard built on ERC20Permit

and ERC20Votes extensions from OpenZeppelin, which supports the EIP-712 signing and

snapshots for voting. MagicLum is mintable by the owner (supposedly, TangleSeaBooster). No

issues were found.

Cf0. TimeBasedMasterChefRewarder

Overview

A rewarder contract for additional optional rewards for users of TangleSeaMasterChef

contract. It can operate with multiple pools of MasterChef with the same reward token.

Issues

ResolvedCriticalCf0I4f Rewarder is exposed to emergencyWithdraw()
exploit

TangleSeaMasterChef.emergencyWithdraw() doesn't notify the rewarder about changed user

amount, making it possible to

TangleSeaMasterChef.deposit(pid, amount, aliceAddr);

emergencyWithdraw(pid);

deposit(pid, amount, bobAddr)

emergencyWithdraw(pid);

...

scheme to acquire additional rewards for the same amount of lpTokens. The problem with the

onNativeReward() function is it doesn't use the _pending input parameter but only the

newLpAmount.

Page 20 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-712

Recommendation

See the possible solutions in 'emergencywithdraw() doesn't notify the rewarder issue' in the

'C9.TangleSeaMasterChef' section.

ResolvedMediumCf0I50 Rewards aren't guaranteed

Rewards are calculated linearly in time with the rewardPerSecond parameter. However, the

actual reward balance of the contract is going to be replenished from an external source that

is out of the scope of this audit. But the onNativeReward() function cuts the rewarded amount

if the balance is low, so users may lose part of their rewards.

 function onNativeReward(

 uint256 pid,

 address userAddress,

 address recipient,

 uint256,

 uint256 newLpAmount

) external override onlyMasterChef {

 ...

 pending = userPoolInfo.amount.mul(pool.accRewardTokenPerShare).div(accTokenPrecisio

n).sub(userPoolInfo.rewardDebt);

 if (pending > rewardToken.balanceOf(address(this))) {

 pending = rewardToken.balanceOf(address(this));

 }

 rewardToken.safeTransfer(recipient, pending);

 ...

 }

Recommendation

Store the unpaid rewards for each user and allow claiming them later.

Page 21 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

ResolvedMediumCf0I6b Unfair distribution of awards without
massUpdatePool()

Changes in allocation points by calling the add() and set() functions also cause a re-

distribution of historical rewards from the last pool's update time. If a new pool is added, the

total allocation sum of existed pools usually becomes lower than total allocation points, so

historical rewards become partially locked.

Recommendation

Call massUpdatePools(masterchefPoolIds) in the add() and set() functions.

ResolvedLowCf0I52 Gas optimizations

Several gas optimizations should be implemented:

1. unnecessary reads from storage: userPoolInfo.amount, rewardToken in onNativeReward();

ResolvedInfoCf0I51 Typos

Typos reduce the code's readability.Typos in 'withdraaw', 'dont'.

Page 22 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

https://draculaprotocol.medium.com/sushiswap-smart-contract-bug-and-quality-of-audits-in-community-f50ee0545bc6
https://draculaprotocol.medium.com/sushiswap-smart-contract-bug-and-quality-of-audits-in-community-f50ee0545bc6

5. Conclusion

1 critical, 1 high, 7 medium, 5 low severity issues were found during the audit. 1 critical, 1 high,

6 medium, 5 low issues were resolved in the update.

The reviewed contracts are highly dependent on the owner’s account. Users using the project

have to trust the owner and that the owner's account is properly secured.

We strongly suggest adding documentation as well as increasing unit and functional tests

coverage for all contracts.

This audit includes recommendations on code improvement and the prevention of potential

attacks.

Page 23 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

Appendix A. Issues’ severity classification

Critical. Issues that may cause an unlimited loss of funds or entirely break the contract

workflow. Malicious code (including malicious modification of libraries) is also treated as a

critical severity issue. These issues must be fixed before deployments or fixed in already

running projects as soon as possible.

High. Issues that may lead to a limited loss of funds, break interaction with users, or other

contracts under specific conditions. Also, issues in a smart contract, that allow a privileged

account the ability to steal or block other users' funds.

Medium. Issues that do not lead to a loss of funds directly, but break the contract logic.

May lead to failures in contracts operation.

Low. Issues that are of a non-optimal code character, for instance, gas optimization tips,

unused variables, errors in messages.

Informational. Issues that do not impact the contract operation. Usually, informational

severity issues are related to code best practices, e.g. style guide.

Page 24 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

Appendix B. List of examined issue types

Business logic overview

Functionality checks

Following best practices

Access control and authorization

Reentrancy attacks

Front-run attacks

DoS with (unexpected) revert

DoS with block gas limit

Transaction-ordering dependence

ERC/BEP and other standards violation

Unchecked math

Implicit visibility levels

Excessive gas usage

Timestamp dependence

Forcibly sending ether to a contract

Weak sources of randomness

Shadowing state variables

Usage of deprecated code

Page 25 of 26HashEx Blockchain Security | hashex.org

 ShimmerSea

contact@hashex.org

@hashex_manager

blog.hashex.org

linkedin

github

twitter

mailto:contact@hashex.org
https://t.me/hashex_manager
https://blog.hashex.org
https://www.linkedin.com/company/hashex
https://github.com/HashEx
https://twitter.com/hashexofficial

