
Page of 1 26 Paladin Blockchain Security

Smart Contract
Security Assessment

For WINR Protocol
(GensisWlpStaking)
26 April 2023

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents 2

Disclaimer 3

1 Overview 4

1.1 Summary 4

1.2 Contracts Assessed 5

1.3 Findings Summary 6

1.3.1 GenesisWlpStaking 7

2 Findings 8

2.1 GenesisWlpStaking 8

2.1.1 Privileged Functions 9

2.1.1 Issues & Recommendations 10

Page of 2 26 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains the right to re-use any and all knowledge and expertise gained during the audit
process, including, but not limited to, vulnerabilities, bugs, or new attack vectors. Paladin is
therefore allowed and expected to use this knowledge in subsequent audits and to inform any third
party, who may or may not be our past or current clients, whose projects have similar
vulnerabilities. Paladin is furthermore allowed to claim bug bounties from third-parties while doing
so.

Page of 3 26 Paladin Blockchain Security

1 Overview
This report has been prepared for WINR Protocol’s Genesis WLP Staking contract
on the Arbitrum network. Paladin provides a user-centred examination of the smart
contracts to look for vulnerabilities, logic errors or other issues from both an
internal and external perspective.

1.1 Summary
Project Name WINR Protocol

URL https://winr.games/

Platform Arbitrum

Language Solidity

Preliminary
Contracts

https://github.com/WINRLabs/winr-protocol/blob/
45effb06c8e92e579b4a1f9ea5f6466d0863b263/contracts/stakings/
gWLPStaking/GenesisWlpStaking.sol

Resolution 1 https://github.com/WINRLabs/winr-protocol/blob/
0be8f291a76deb9077492faa6f540d1c6a563b04/contracts/stakings/
gWLPStaking/GenesisWlpStaking.sol

Resolution 2 https://github.com/WINRLabs/winr-protocol/blob/
1a7294f5d91181213eee5bbf0510034b08c0fcb1/contracts/stakings/
gWLPStaking/GenesisWlpStaking.sol

Resolution 3 https://github.com/WINRLabs/winr-protocol/blob/
03acc0efc5092806442ab2044a0f0503f8ba2b69/contracts/stakings/
gWLPStaking/GenesisWlpStaking.sol

Resolution 4 https://github.com/WINRLabs/winr-protocol/blob/
c69b7ba8f6d46760c674b7ca793f16027a293ca8/contracts/stakings/
gWLPStaking/GenesisWlpStaking.sol

Resolution 5 https://github.com/WINRLabs/winr-protocol/blob/
d47ded79df8900bdd9227ffb08669a21262e8f25/contracts/stakings/
gWLPStaking/GenesisWlpStaking.sol

Page of 4 26 Paladin Blockchain Security

https://winr.games/
https://github.com/WINRLabs/winr-protocol/blob/45effb06c8e92e579b4a1f9ea5f6466d0863b263/contracts/stakings/gWLPStaking/GenesisWlpStaking.sol
https://github.com/WINRLabs/winr-protocol/blob/0be8f291a76deb9077492faa6f540d1c6a563b04/contracts/stakings/gWLPStaking/GenesisWlpStaking.sol
https://github.com/WINRLabs/winr-protocol/blob/1a7294f5d91181213eee5bbf0510034b08c0fcb1/contracts/stakings/gWLPStaking/GenesisWlpStaking.sol
https://github.com/WINRLabs/winr-protocol/blob/03acc0efc5092806442ab2044a0f0503f8ba2b69/contracts/stakings/gWLPStaking/GenesisWlpStaking.sol
https://github.com/WINRLabs/winr-protocol/blob/c69b7ba8f6d46760c674b7ca793f16027a293ca8/contracts/stakings/gWLPStaking/GenesisWlpStaking.sol
https://github.com/WINRLabs/winr-protocol/blob/d47ded79df8900bdd9227ffb08669a21262e8f25/contracts/stakings/gWLPStaking/GenesisWlpStaking.sol

1.2 Contracts Assessed

Name Contract
Live Code
Match

GensisWlpStaking

Page of 5 26 Paladin Blockchain Security

1.3 Findings Summary

Classification of Issues

Severity Found Resolved
Partially
Resolved

Acknowledged (no
change made)

5 5 - -

0 - - -

4 3 - 1

3 1 1 1

Total 12 9 1 2

 Medium

 Informational

 High

 Low

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Medium

 High

 Low

 Informational

Page of 6 26 Paladin Blockchain Security

1.3.1 GenesisWlpStaking

ID Severity Summary Status

01 Governance risk: Governance can break the contract in multiple
ways and take out the underlying tokens

02 Users can lose deposits if they deposit a second time

03 Pool reward logic is fundamentally flawed resulting in wrong and
excessive rewards

04 It is possible that the firstBlock value resets after everyone
withdraws, restarting reward emissions

05 rewardPerBlock is incorrectly calculated in fundReward and
updateMaxBlock

06 withdraw does not adhere to checks-effects-interactions which
means if harvest were to allow for reentrancy, the WLP balance
could be drained

07 Contract business logic can break significantly if deposits are re-
enabled on the gWLP

08 withdraw does not reset wlpPerToken which prevents a secondary
deposit after withdrawal from accumulating WLP rewards

09 Arbitrum L2 block frequency might be quite irregular

10 Typographical errors

11 Lack of validation

12 Gas optimizations

HIGH

RESOLVED

LOW

RESOLVED

LOW

RESOLVED

HIGH

LOW

LOW

RESOLVED

RESOLVED

RESOLVED

INFO

HIGH

INFO

PARTIAL

HIGH

ACKNOWLEDGED

HIGH

RESOLVED

ACKNOWLEDGED

RESOLVED

INFO

RESOLVED

Page of 7 26 Paladin Blockchain Security

2 Findings

2.1 GenesisWlpStaking

GenesisWlpStaking is a staking contract which implements a staking pool for the
Genesis WINR LP (gWLP) token. This token represents the initial contributions to the
genesis WINR LP pool. These contributions by early backers will eventually be
redeemable to WINR LP through this contract, when the contributors withdraw.

Users can deposit gWLP tokens into the pool, and receive rewards in return. The
rewards are given in vWINR and WLP tokens, which can be claimed by calling the
harvest() function. The vWINR token rewards are based on time passed and
emitted gradually to all active stakers in the pool. The WLP reward amount is
however not based on time, but instead based on collected fees. These collected
fees can be pulled into the genesis staking contract through calling claimWLP.
Whenever a user harvests, it grants any unclaimed rewards.

The contract also has a few other functions for setting addresses and variables. The
team can also change the duration of the genesis emissions freely, and adjust the
vWINR amount and therefore the reward rate.

Although users stake gWLP, they will not be able to withdraw it. Instead, they can
eventually withdraw real WLP tokens once the team activates this.

It should also be noted that the WINR team is capable of removing any token from
this contract except for the gWLP token. This might be a risk for investors, especially
when the team turns malicious or the keys become compromised.

Page of 8 26 GenesisWlpStaking Paladin Blockchain Security

2.1.1 Privileged Functions
• setAddresses [DEFAULT_ADMIN_ROLE]

• setWithdrawable [DEFAULT_ADMIN_ROLE]

• fundReward [DEFAULT_ADMIN_ROLE]

• updateMaxBlock [DEFAULT_ADMIN_ROLE]

• fundWLP [DEFAULT_ADMIN_ROLE]

• recoverToken [DEFAULT_ADMIN_ROLE]

• grantRole [DEFAULT_ADMIN_ROLE]

• revokeRole [DEFAULT_ADMIN_ROLE]

• renounceRole [role bearer]

Page of 9 26 GenesisWlpStaking Paladin Blockchain Security

2.1.1 Issues & Recommendations

Issue #01 Governance risk: Governance can break the contract in multiple
ways and take out the underlying tokens

Severity

Description It is important for users to trust the governance wallets. This is
because the Winr team has given themselves significant privileges
within this contract. Such privileges are often acceptable if the team
is trusted, but they do come with risks for the users. Even if the
team is trusted, their keys might get compromised (stolen) and user
funds could still get lost.

Users should assume that their deposits are fully in the hands of the
Winr team, and trusting said team is critical.

Line 82

function setAddresses(IERC20 _WLP, IClaimWlp _claimWlp)

external onlyGovernance {

The team can change the withdrawable WLP token and claim-
address at any time. Changing these addresses to bad ones has a
significant impact: It would break all withdrawals. Furthermore, not
setting them would also prevent withdrawals. Setting WLP to vWINR
or gWLP would furthermore break critical assumptions within the
contract.

We recommend at the very least that the team prevents setting this
address to gWLP and vWINR, and recommend that it can only be
set once.

Line 92

function setWithdrawable(bool _isWithdrawable) external

onlyGovernance {

We do not understand why withdrawals should be able to be
disabled again. It might make sense to only ever allow this boolean
to be set (eg. remove the input boolean and just set it to true).

HIGH SEVERITY

Page of 10 26 GenesisWlpStaking Paladin Blockchain Security

Line 274

function recoverToken(IERC20 _token, uint256 _amount)

external onlyGovernance {

Every token except for gWLP can be withdrawn using recoverToken.
However, even gWLP can be stolen through advanced governance
exploits by setting WLP = gWLP. This might be an acceptable
privilege however given that the governance is needed to be trusted
anyway within this contract.

—

It is often assumed that there are enough balances of all tokens
within the contract. This is presently not strictly enforced due to the
various governance functions. This means that withdraw might start
reverting even if there is just insufficient reward tokens.

—

It should be noted that even if all governance risks are mitigated,
users would still need to place some trust in the team given that the
gWLP token represents a promise from the team to make it
exchangeable to WLP. This means that it might be acceptable to
leave in some flexibility as there is no way to make this contract
“trustless”.

Recommendation Consider patching up any unnecessary governance risks. We
understand that being able to pull contract value is a desired
feature in case of emergencies. Consider placing all roles that are
able to do this behind a carefully chosen multi-signature wallet.

Page of 11 26 GenesisWlpStaking Paladin Blockchain Security

Resolution
The recommended steps to improve input validation for governance
functions were implemented. However, it should be noted that a
burnAddress was introduced and the gWLP tokens are no longer
locked in the contract, but instead are directly sent to the
burnAddress upon deposit. If the burnAddress is set to an active
account address (i.e., someone has access to the private key of this
account), then the burnAddress will be able to drain the entire
staking contract WLP balance because of the standard double-
spending problem. We recommend making the burnAddress a
constant instead of immutable and set it to a value like address(0).

Finally, we would like to remind the users that this contract will
always have inherent governance risks due to the reliance on the
team for supplying WLP tokens.

It should be noted that the client made a few more fixes to the
contract, in which some logic was redesigned and a new governance
risk was introduced. The governance can drain the vWinr balance by
calling fundReward with an incorrect emission rate. Users should
would therefore still need to place their trust in the team, especially
if the vWinr contract balance is a concern to them.

RESOLVED

Page of 12 26 GenesisWlpStaking Paladin Blockchain Security

Issue #02 Users can lose deposits if they deposit a second time

Severity

Location Line 106

staker.amount = _amount;

Description Within the GenesisWlpStaking contract, users can stake their
whole gWLP token balance at once by calling the deposit()
function. The Winr team clearly envisions that everyone will only
ever call this function once.

However, it is possible that a user purchased gWLP with multiple
addresses and decides to stake the balance of their first address,
then transfer in the secondary balance and stake it as well under the
first address. In this scenario, they call deposit twice.

The issue is that as the developer did not envision this scenario, the
second deposit will in fact override the first one. Instead, it should
add it to the first one. This means that in our example the user
completely loses their first deposit and any accumulated rewards.

Recommendation Consider incrementing the amount:
staker.amount += _amount;

It might also make sense to do a harvest before the second deposit
to avoid losing accumulated rewards. However, we understand if
this is not done because this secondary deposit is an unlikely
scenario and it might be acceptable to void rewards in favor of
keeping the code simple.

Resolution

HIGH SEVERITY

An exist boolean flag was added to the StakerInfo struct to check
if the same user tries to deposit more than once. The deposit
function will revert if this is the case.

RESOLVED

Page of 13 26 GenesisWlpStaking Paladin Blockchain Security

Issue #03 Pool reward logic is fundamentally flawed resulting in wrong and
excessive rewards

Severity

Description updatePoolRewards and _computevWINRAmount are fundamentally
flawed. They make various assumptions which do not hold:

- rewardPerBlock does not change

- maxBlock does not change

- It is desired to do a subtracting logic as is currently implemented

Specifically, users may suddenly receive surges of disproportionate
rewards if the governance reconfigures rewardPerBlock for
example.

It is much cleaner to simply stop accruing rewards within the
updatePoolRewards function.

Recommendation Consider adding the cap logic to updatePoolRewards instead:
function updatePoolRewards() private {

 if (pool.tokensStaked == 0) {

 pool.lastRewardedBlock = arbSys.arbBlockNumber();

 firstBlock = arbSys.arbBlockNumber();

 return;

 }

 uint256 nextBlock = arbSys.arbBlockNumber();

 uint256 maxNextBlock = firstBlock + maxBlock;

 if (nextBlock > maxNextBlock) nextBlock = maxNextBlock;

 uint256 blocksSinceLastReward = nextBlock -

pool.lastRewardedBlock;

 uint256 rewards = blocksSinceLastReward * rewardPerBlock;

 pool.accumulatedRewardsPerShare += ((rewards *

ACC_REWARD_PRECISION) / pool.tokensStaked);

 pool.lastRewardedBlock = nextBlock;

}

HIGH SEVERITY

Page of 14 26 GenesisWlpStaking Paladin Blockchain Security

and adjust _computevWINRAmount to:
function _computevWINRAmount(

 StakerInfo memory staker,

 uint256 blockNumber

) internal view returns (uint256 vWINRProfit) {

 vWINRProfit = (staker.amount *

pool.accumulatedRewardsPerShare) / ACC_REWARD_PRECISION;

 uint256 nextBlock = arbSys.arbBlockNumber();

 uint256 maxNextBlock = firstBlock + maxBlock;

 if (nextBlock > maxNextBlock) nextBlock = maxNextBlock;

 uint256 blocksSinceLastReward = nextBlock -

pool.lastRewardedBlock;

 if (blocksSinceLastReward > 0) {

 uint256 rewards = ((blocksSinceLastReward *

ACC_REWARD_PRECISION) * rewardPerBlock) /

 pool.tokensStaked;

 vWINRProfit += (staker.amount * rewards) /

ACC_REWARD_PRECISION;

 }

if (vWINRProfit < staker.rewardDebt) {

 return 0;

 } else {

 vWINRProfit -= staker.rewardDebt;

 }

}

This code section should be extremely carefully tested and vetted.
The above is just example code meant to help get the team started
and has not been tested.

Note that if the maxBlock is adjusted, rewards might still occur.

Resolution
_getNextBlock() was implemented as recommended above. The
recommended fix was implemented as well, at first with an error but
this was later resolved.

RESOLVED

Page of 15 26 GenesisWlpStaking Paladin Blockchain Security

Issue #04 It is possible that the firstBlock value resets after everyone
withdraws, restarting reward emissions

Severity

Location Lines 203-207

if (pool.tokensStaked == 0) {

 pool.lastRewardedBlock = arbSys.arbBlockNumber();

 firstBlock = arbSys.arbBlockNumber();

 return;

}

Description The gWLP contract stops emissions after firstBlock + maxBlock
has been reached. The first block is essentially denoted as the block
of the first deposit, as can be seen in the logic mentioned above.

However, this logic is flawed since it resets the firstBlock
whenever there are no tokens inside the pool.

This has multiple flaws:

- This logic can be called multiple times before any deposits come
in through harvest.

- More severely, once everyone withdraws, a subsequent deposit
will reset the first block!

As the first block can be reset once everyone withdraws, this might
have severe implications on the reward logic as rewards would
potentially re-enable. If there are still any reward tokens in the
contract, these might be claimable by a malicious actor, even
though this actor should not be able to claim them.

Recommendation Consider whether it makes sense to add this logic to deposit
instead of harvest. Consider whether it makes sense to instead
check if the firstBlock is zero in the if-statement.

Resolution
firstBlock is now only updated if the previous firstBlock value is
0.

RESOLVED

HIGH SEVERITY

Page of 16 26 GenesisWlpStaking Paladin Blockchain Security

Issue #05 rewardPerBlock is incorrectly calculated in fundReward and
updateMaxBlock

Severity

Location Line 129

rewardPerBlock = _balance / _maxBlock;

Description fundReward and updateMaxBlock are called by the governance to
set the maxBlock variable which determines over how many blocks
the vWinr token rewards will be distributed. The rewardPerBlock is
correspondingly updated by distributing the current contract
balance of vWinr tokens among all users that have some stake.

The problem is that this calculation assumes that all the previously
accounted vWinr rewards have already been claimed by stakers and
therefore excluded from _balance. This leads to an incorrect
calculation of rewardPerBlock, which leads to the wrong amount of
vWinr tokens being sent as reward to the users, and the function
will start reverting at some point when the contract’s balance is
insufficient.

Recommendation Consider tracking the received vWinr rewards using a state variable
e.g. allocatedRewards which should be incremented in
updatePoolRewards and decremented in harvest.

The formula should therefore change as follows:
rewardPerBlock = (_balance - allocatedRewards) /

(_firstBlock + _maxBlock - arbSys.arbBlockNumber());

Note that a requirement should be added to ensure that the
arbBlockNumber is still before the last emission block.

Secondly, the new reward rate is granted retroactively when the
rewardPerBlock is updated. Consider adding a updatePoolRewards
call before any rewardPerBlock adjustment to avoid retroactive
updates.

Consider re-using updateMaxBlock within fundReward to follow the
DRY principle. Ideally an internal function is re-used.

Resolution
The updateMaxBlock logic has been fully resolved in a secondary
iteration. The reward rate logic now needs to be manually governed
and retroactive checks are still not present.

RESOLVED

HIGH SEVERITY

Page of 17 26 GenesisWlpStaking Paladin Blockchain Security

Issue #06 withdraw does not adhere to checks-effects-interactions which
means if harvest were to allow for reentrancy, the WLP balance
could be drained

Severity

Location Line 129

harvest();

Description The harvest function is called early on within withdraw, however,
the withdraw amount (the full user balance) is cached at that time.
This means that if an exploiter were to be able to reenter into
withdraw at this point, they would be able to potentially withdraw
their balance twice.

This issue is marked as low given that the interactions within
harvest are unlikely to allow for reentrancy.

Additionally, the body of harvest body does not adhere to checks-
effects-interactions internally as well.

Recommendation Consider adding reentrancy guards to deposit, withdraw, claimWLP
and harvest. Note that by adding a guard to harvest, the contract
will start reverting as deposit calls it. It is therefore necessary to
create an internal _harvest function without a guard.

Resolution

LOW SEVERITY

The recommendation was implemented.

RESOLVED

Page of 18 26 GenesisWlpStaking Paladin Blockchain Security

Issue #07 Contract business logic can break significantly if deposits are re-
enabled on the gWLP

Severity

Description The contract assumes that no further deposits can be made on
gWLP. However, this is not strictly the case. It is possible for the gWLP
governance to re-enable deposits by calling the following function:

https://arbiscan.io/address/
0x2798419F2Db8ea5F0f3A9b405313801e052B9cA7#code#F14#
L56

If this function is called, the GenesisWlpStaking contract will start
emitting excessive rewards to gWLP stakers and will likely fully
break.

Recommendation Consider locking out the possibility of calling this function, eg. by
renouncing the role after the genesis USDC has been taken out.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 19 26 GenesisWlpStaking Paladin Blockchain Security

Issue #08 withdraw does not reset wlpPerToken which prevents a secondary
deposit after withdrawal from accumulating wlp rewards

Severity

Description The withdraw function does not revert the wlpPerToken variable.
This is not critical but it does mean that a secondary deposit after a
withdrawal will not accumulate any of the previously accumulated
wlp tokens. However, this secondary deposit should have been
eligible for these rewards.

This last statement can be intuitively verified by having the user
transfer their secondary deposit to a second wallet and stake via
that second wallet.

Recommendation Consider resetting wlpPerToken within withdraw. We are
comfortable with the other reward debt not being reset since there
does not appear to be any impact from that.

Consider extremely carefully validating these changes, look for any
potential impact and add test coverage since they have significant
impact.

Resolution
Secondary deposits are no longer possible so this case is also
caught.

RESOLVED

LOW SEVERITY

Page of 20 26 GenesisWlpStaking Paladin Blockchain Security

Issue #09 Arbitrum L2 block frequency might be quite irregular

Severity

Description The time-based rewards are granted based on the L2 block number.
Eg. every block minted, some rewards unlock. However, since L2
blocks are so frequent, this might be quite variable with regards to a
reward rate in seconds.

Recommendation Consider moving to timestamp based block counts or
block.number which is supposed to increment every 12 seconds
since the PoS update.

Resolution
block.number is now used.

RESOLVED

LOW SEVERITY

Page of 21 26 GenesisWlpStaking Paladin Blockchain Security

Issue #10 Typographical errors

Severity

Description Line 13

event LogUpdatePool(uint256 lastRewardBlock, uint256

lpSupply, uint256 accRewardPerShare);

This event is unused and should be removed. If the client decides to
keep it, we recommend renaming it and removing the word “log”
since that is implicitly understood.

Line 29

uint256 accumulatedRewardsPerShare;

This is accumulated rewards per share times REWARDS_PRECISION.

Line 69

require(address(_gov) != address(0), "gov address zero");

 _gov is already of the address type. The casting can therefore be
removed.

Line 80

* @notice funtion to set wlp and claimWlp addresses

This should say “function”.

Line 112

gWLP.safeTransferFrom(address(msg.sender), address(this),

_amount);

Consider using msg.sender instead since it is already an address.

Line 142

WLP.safeTransfer(address(msg.sender), WLPAmount);

Consider using msg.sender instead since it's already an address.

INFORMATIONAL

Page of 22 26 GenesisWlpStaking Paladin Blockchain Security

Line 210

pool.accumulatedRewardsPerShare += ((rewards *

ACC_REWARD_PRECISION) / pool.tokensStaked);

Consider removing the extra brackets.

Line 196

pool.wlpPerToken += (_amount * PRECISION) / totalGWlp;

This will revert claims if no one is staking (all supply has been
withdrawn). Perhaps there might still be a small claim remaining and
the team might still want to claim it. Since this small amount is likely
going to be insignificant we just highlight the possibility here and
nothing needs to be done if the team agrees with it being
insignificant.

Both the onlyGovernance and onlyRole(DEFAULT_ADMIN_ROLE)
modifiers are in use. Consider sticking to onlyGovernance.

pendingRewards and claimWLP can be made external.

setAddresses, setWithdrawable, fundReward, updateMaxBlock ,
updateRatio, fundWLP and recoverToken should have events.

Recommendation Consider fixing the typographical errors.

Resolution
All typographical issues except for the division by zero concern has
been addressed.

RESOLVED

Page of 23 26 GenesisWlpStaking Paladin Blockchain Security

Issue #11 Lack of validation

Severity

Description The contract contains functions with parameters which are not
properly validated. Having unvalidated parameters could allow the
governance or users to provide variable values which are
unexpected and incorrect. This could cause side-effects or worse
exploits in other parts of the codebase.

Consider validating the following function parameters:

Line 243

function updateRatio(uint256 _ratio) external

onlyRole(DEFAULT_ADMIN_ROLE) {

Consider doing a rough check on the _ratio to validate that it is
within an expected value range as to prevent any typos.

Line 253

function fundWLP(uint256 _amount) external

onlyRole(DEFAULT_ADMIN_ROLE) {

If this is called twice, the second call will wrongly update the ratio.
Consider only allowing to call this function once.

Recommendation Consider validating the function parameters mentioned above.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 24 26 GenesisWlpStaking Paladin Blockchain Security

Issue #12 Gas optimizations

Severity

Description vWINR, gWLP and arbSys can be made immutable. Note that within
the constructor, line 71 needs to be adjusted to use _gWLP to avoid a
compiler error.

Line 161-162

staker.wlpRewardDebt += wlpAmount;

pool.totalWlpProfit -= wlpAmount;

This can be moved within the if statement to save some gas in the
zero reward scenario.

Line 202

function updatePoolRewards() private

A lot of gas can be saved by caching arbSys.arbBlockNumber().

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

The block number is now efficient as the client has moved to a
native call instead of the sys call. The variables have also been
made immutable. However, the gas optimization with regards to the
if statement was not implemented.

PARTIALLY RESOLVED

Page of 25 26 GenesisWlpStaking Paladin Blockchain Security

Page of 26 26 GenesisWlpStaking Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 GenesisWlpStaking

	2 Findings
	2.1 GenesisWlpStaking
	2.1.1 Privileged Functions
	2.1.1 Issues & Recommendations

