
Page of 1 47 Paladin Blockchain Security

Smart Contract
Security Assessment

For WINR Protocol
20 February 2023

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents 2

Disclaimer 4

1 Overview 5

1.1 Summary 5

1.2 Contracts Assessed 6

1.3 Findings Summary 7

1.3.1 Global Issues 8

1.3.2 Vesting 8

1.3.3 Winr 9

1.3.4 VestedWinr 9

1.3.5 DateTime 9

1.3.6 RoleBasedAccessControl 10

1.3.7 Governable 10

2 Findings 11

2.1 Global Issues 11

2.1.1 Issues & Recommendations 12

2.2 Vesting 14

2.2.1 Privileged Functions 15

2.2.2 Issues & Recommendations 16

2.3 Winr 24

2.3.1 Privileged Functions 24

2.3.2 Issues & Recommendations 25

2.4 VestedWinr 30

2.4.1 Privileged Functions 30

2.4.2 Issues & Recommendations 31

2.5 DateTime 37

2.5.1 Issues & Recommendations 38

Page of 2 47 Paladin Blockchain Security

2.6 RoleBasedAccessControl 40

2.6.1 Privileged Functions 40

2.6.2 Issues & Recommendations 41

2.7 Governable 42

2.7.1 Privileged Functions 42

2.7.2 Issues & Recommendations 43

Page of 3 47 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains full rights over all intellectual property (including expertise and new attack or
exploit vectors) discovered during the audit process. Paladin is therefore allowed and expected to
re-use this knowledge in subsequent audits and to inform existing projects that may have similar
vulnerabilities. Paladin may, at its discretion, claim bug bounties from third-parties while doing so.

Page of 4 47 Paladin Blockchain Security

1 Overview
This report has been prepared for WINR Protocol on the Arbitrum network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1 Summary
Project Name WINR Protocol

URL https://winr.games/

Platform Arbitrum

Language Solidity

Preliminary
Contracts

https://github.com/JustbSerbia/winr-protocol/tree/
a202240a729538f7681b9cf5c707717fc3aaa1cf

Final Contracts https://github.com/WINRLabs/winr-protocol/tree/
985b2b5a37eb41c5538dacf1950810c375e28166

Page of 5 47 Paladin Blockchain Security

https://winr.games/
https://github.com/JustbSerbia/winr-protocol/tree/a202240a729538f7681b9cf5c707717fc3aaa1cf
https://github.com/WINRLabs/winr-protocol/tree/985b2b5a37eb41c5538dacf1950810c375e28166

1.2 Contracts Assessed

Name Contract
Live Code
Match

Vesting

Winr

VestedWinr

DateTime

RoleBasedAccessControl

Governable

Page of 6 47 Paladin Blockchain Security

1.3 Findings Summary

Classification of Issues

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

0 - - -

1 1 - -

10 8 1 1

15 14 1 -

Total 26 23 2 1

 Low

 Informational

 High

 Medium

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 High

 Medium

 Low

 Informational

Page of 7 47 Paladin Blockchain Security

1.3.1 Global Issues

1.3.2 Vesting

ID Severity Summary Status

01 Governance risk: The tokens can be minted by governance wallets
up to the configured maximum caps

LOW PARTIAL

ID Severity Summary Status

02 The same investor can be added twice by governance which will
cause supply to be locked away

03 Investor start and end times do not align with the actual vest start
and end times

04 Lack of explicit maximum supply handling can cause certain vesters
to never receive their tokens

05 Recurring rewards are sometimes slightly reduced due to
unnecessary rounding

06 Typographical errors

07 Gas optimizations

08 Lack of validation

INFO

RESOLVED

PARTIAL

MEDIUM

RESOLVED

RESOLVED

RESOLVED

LOW

INFO

LOW

RESOLVED
LOW

RESOLVED

INFO

Page of 8 47 Paladin Blockchain Security

1.3.3 Winr

1.3.4 VestedWinr

1.3.5 DateTime

ID Severity Summary Status

09 BURNER_ROLE seems to impose excessive privileges as users should
not need a privilege to burn their own tokens

10 Typographical errors

11 mint will implicitly not mint any tokens once the maximum supply
has been reached, which could lead to bugs within contracts which
do not handle this case

12 The amount of tokens that can be minted can exceed MAX_SUPPLY as
the cap does not take into consideration that burned tokens are
removed from the supply

13 Initialization of DEFAULT_ADMIN_ROLE is redundant with Governable

RESOLVED

INFO

RESOLVED

RESOLVED

INFO

INFO

RESOLVED

INFO

LOW

RESOLVED

ID Severity Summary Status

14 BURNER_ROLE seems to impose excessive privileges as users should
not need a privilege to burn their own tokens

15 Typographical errors

16 mint will implicitly not mint any tokens once the maximum supply
has been reached, which could lead to bugs within contracts which
do not handle this case

17 The amount of tokens that can be minted can exceed MAX_SUPPLY
as the cap does not take into consideration that burned tokens are
removed from the supply

18 Initialization of DEFAULT_ADMIN_ROLE is redundant with Governable

LOW

INFO

INFO

RESOLVED

INFO RESOLVED

RESOLVED

RESOLVED

RESOLVED

INFO

ID Severity Summary Status

19 DateTime days will eventually start shifting compared to calendar
days

20 Typographical errorsINFO

RESOLVED

RESOLVED

INFO

Page of 9 47 Paladin Blockchain Security

1.3.6 RoleBasedAccessControl

1.3.7 Governable

ID Severity Summary Status

21 Lack of enumerability on role holders makes it difficult for people to
inspect which accounts have privileges

RESOLVED
LOW

ID Severity Summary Status

22 Using the DEFAULT_ADMIN_ROLE for governance is a role
management risk as this role wields much more power than a
custom role

23 Governance can accidentally renounce their role by calling setGov to
their own address

24 Inconsistent usage of msgSender() and msg.sender

25 OpenZeppelin’s _setupRole is deprecated in favour of _grantRole

26 Gas optimization

INFO RESOLVED

LOW

RESOLVED

ACKNOWLEDGED

LOW

RESOLVED

RESOLVED

LOW

INFO

Page of 10 47 Paladin Blockchain Security

2 Findings

2.1 Global Issues

The issues listed in this section apply to the protocol as a whole.

Page of 11 47 Global Issues Paladin Blockchain Security

2.1.1 Issues & Recommendations

Issue #01 Governance risk: The tokens can be minted by governance wallets
up to the configured maximum caps

Severity

Description Both the Winr and VestedWinr tokens can be minted by any
governance wallet which has the MINTER_ROLE. This means that if
the governance team decides to give this role to EOAs (normal
wallets), there is a risk that these wallets end up in the wrong hands
who can start over-minting and dumping the two tokens.

It is crucial for the team to be extremely prudent with who has
access to the minter role.

Additionally, both of these tokens define an emergency feature to
burn tokens on any address. This feature can solely be called by
wallets with the BURNER_ROLE. Although this seems less risky, it in
fact has the same impact as the MINTER_ROLE as the burner can
burn all tokens from the liquidity pool and then drain the pool with a
small swap.

Recommendation Consider being extremely prudent with the roles: the
DEFAULT_ADMIN_ROLE should be strictly wielded by a single well-
defined and multi-party multi-signature wallet (ideally at least a 3
independent party minimum quorum). The MINTER_ROLE should
ideally be solely wielded by clearly defined smart contracts with
strict emission rates, or not at all. The BURNER_ROLE should remain
undefined until needed, or be solely in the hands of the multisig and
smart contracts.

The tokens should finally also use AccessControlEnumerable
instead of AccessControl to allow for users to more easily inspect
who has these roles.

LOW SEVERITY

Page of 12 47 Global Issues Paladin Blockchain Security

Resolution
The team understands this concern. This issue will be updated after
deployment once the team moves to an adequate governance
setup.

The team has resolved some portions of this issue directly:
- BURNER_ROLE has been removed
- AccessControlEnumerable has been added

PARTIALLY RESOLVED

Page of 13 47 Global Issues Paladin Blockchain Security

2.2 Vesting

Vesting defines all of the initial vesting schedules for the Winr and VestedWinr
tokens. The contract defines various schedules:

- Winr Labs

- Start: After 180 days

- Duration: 3 years

- Allocation: 150m Winr

- Marketing

- Start: Instant

- Duration: 2 years

- Allocation: 70m Winr

- Advisors

- Start: Instant

- Duration: 3 years

- Allocation: 15m Winr

- Previous Holders

- Start: Instant

- Duration: 2 years

- Allocation: 10m Winr

- Core Contributors

- Start: Instant

- Duration: 2 years

- Allocation: 175m Winr

The contract governance can at any point in time add in new vesting wallets using
the addInvestor and addInvestorBatch functions. However, they cannot allocate
more tokens than the aforementioned allocations to these investors, as the Vesting
contract keeps track of the total allocated amounts and reverts any investor
additions which would cause the allocation to exceed the cap.

Page of 14 47 Vesting Paladin Blockchain Security

Once wallets have been added to the different categories, these wallets can call
withdrawTokens periodically to claim their vested tokens. With any claim, the
tokens will get minted as either Winr or VestedWinr depending on the investor’s
configuration by the governance, which means that the Vesting contract has minting
privileges. Tokens unlock on a day-by-day basis (every 24 hours) at the exact same
time for everyone. Tokens also start vesting at the exact same time for everyone,
starting from the (one-time) governance-configurable initial timestamp.

There is also a recover function which allows the contract owner to recover any
tokens that may have been sent to the contract by mistake. Note that Winr and
VestedWinr tokens are minted directly to investors and are therefore not at risk.

2.2.1 Privileged Functions
• setInitialTimestamp [DEFAULT_ADMIN_ROLE / Configurable once]

• addInvestorBatch [DEFAULT_ADMIN_ROLE]

• addInvestor [DEFAULT_ADMIN_ROLE]

• removeInvestor [DEFAULT_ADMIN_ROLE]

• withdrawTokens [vesters]

• recoverToken [DEFAULT_ADMIN_ROLE]

• setGov [DEFAULT_ADMIN_ROLE]

• grantRole [DEFAULT_ADMIN_ROLE / role’s admin]

• revokeRole [DEFAULT_ADMIN_ROLE / role’s admin]

• renounceRole [anyone with a role]

Page of 15 47 Vesting Paladin Blockchain Security

2.2.2 Issues & Recommendations

Issue #02 The same investor can be added twice by governance which will
cause supply to be locked away

Severity

Description The Vesting contract defines a number of categories, where each
category has a limited allocation for investors. Any time an investor
is added, a part of this supply is marked as allocated and cannot be
re-allocated.

However, the vesting contract has an error as it allows the same
investor to be registered multiple times but with each registration,
this investor’s vest resets to the new configuration.

Another side effect of this, which does not necessarily need to be
fixed, is that each investor address can only subscribe to one
category. If an investor is a part of multiple categories, they will
need to use multiple addresses.

Recommendation Consider checking that the investor does not exist yet within
addInvestor. The secondary side-effect does not need to be
resolved if it is acceptable.

Resolution

MEDIUM SEVERITY

The recommended check has been added.

RESOLVED

Page of 16 47 Vesting Paladin Blockchain Security

Issue #03 Investor start and end times do not align with the actual vest start
and end times

Severity

Description The contract exposes view functions which allow the frontend to
display when an investor’s vest starts and ends. However, this does
not align with the actual vesting business logic as the actual
business logic uses the initial timestamp instead of the vest creation
timestamp as the “start time”.

Recommendation Consider removing these two variables as they might be confusing.

Resolution

LOW SEVERITY

The variables have been removed.

RESOLVED

Issue #04 Lack of explicit maximum supply handling can cause certain vesters
to never receive their tokens

Severity

Description Both tokens have a maximum supply. If this supply is reached while
vesters do not have their tokens yet, these vesters could never
receive their tokens.

Recommendation Consider carefully taking this into account with setting the
emissions of other system components. The contract could also
pre-mint its whole supply but this might be seen as a tokenomical
downside as certain applications would show this value as the
circulating supply.

Resolution
The client has indicated they will take this into account with a
management contract in the future.

RESOLVED

LOW SEVERITY

Page of 17 47 Vesting Paladin Blockchain Security

Issue #05 Recurring rewards are sometimes slightly reduced due to
unnecessary rounding

Severity

Location Line 311-316

uint256 everyRecurrenceReleaseAmount = vestingDistroAmount /

 investor.categoryDetail.recurrence;

[...]

uint256 vestingUnlockedAmount = occurence *

everyRecurrenceReleaseAmount;

Description The reward logic does a division before multiplication at some
point, which causes a bit of precision to be lost due to Solidity
strictly using integers.

Recommendation Consider using the mul-div pattern:

uint256 vestingUnlockedAmount = occurence *

vestingDistroAmount /

 investor.categoryDetail.recurrence;

Resolution RESOLVED

LOW SEVERITY

Page of 18 47 Vesting Paladin Blockchain Security

Issue #06 Typographical errors

Severity

Description We have consolidated the typographical issues into a single issue to
keep the report brief and readable.

Line 4

import “@openzeppelin/contracts/governance/

TimelockController.sol";

Line 10

import "hardhat/console.sol";

The imports are unused and can be removed.

Line 7

import "../../interfaces/tokens/IWINR.sol";

An IMintable interface would be cleaner here.

Line 56

uint256 private _initialTimestamp;

This variable should be marked as public to improve readability.
Both _initialTimestamp and _totalAllocatedAmount can then be
renamed without an underscore as is best practice for public
variables.

Lines 57-58

IWINR public WINR;

IWINR public vWINR;

Line 59

investors

An investorsLength() function should be added.

INFORMATIONAL

Page of 19 47 Vesting Paladin Blockchain Security

Line 95

/// @dev Checks that the contract is initialized.

This function in fact checks that the contract has not yet been
initialized.

Line 106

constructor(address _Winr, address _vWinr, address _gov)

Governable(_gov) {

The two first arguments can be marked as IWINR to avoid casting
them later on.

Line 176

/// @param _timestamp The initial timestamp, this timestap

should be used for vesting

This should say “timestamp”.

Line 211

function addInvestor(

The comments above this function appear to be outdated.

Line 230

(_tokensAllotment *

(categoryDetails[_category]._initialUnlockPercentage)) /

This line contains unnecessary sets of brackets. Especially the inner
one seems rather silly, the outer one might help with readability.

Line 241

_totalAllocatedAmount = _totalAllocatedAmount +

_tokensAllotment;

It might be cleaner to use +=.

Page of 20 47 Vesting Paladin Blockchain Security

Line 253

investor.tokensAllotment >= tokensAvailable,

This should likely be an assertion as it seems to be unfailable within
the current contract.

Line 254

"You can't take withdraw more than allocation"

Consider rewording this sentence to “You can’t withdraw more than
your allocation”.

Line 289

investor.withdrawnTokens < investor.tokensAllotment

This requirement should likely be an early return which simply
returns the tokensAllotment early.

Line 327

function recoverToken(address _token, uint256 amount)

external onlyRole(DEFAULT_ADMIN_ROLE) {

_token can be provided as IERC20 to avoid having to cast it
explicitly later on.

Finally, many variables are accessed multiple times from storage
within the withdrawal logic — these variables could be cached to
save gas.

We do understand that the client wants to keep their contract as is
with minimal changes. Acknowledging these gas optimizations is
fine as the old contract has apparently run in production in the past
and optimizing gas is therefore not necessarily more beneficial than
having a production tested contract.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

Page of 21 47 Vesting Paladin Blockchain Security

Issue #07 Gas optimizations

Severity

Description The whole contract is extremely gas inefficient with regards to
storage usage. Several immutables are unnecessarily stored within
storage, and are often redundantly stored. Ideally, not a single
immutable variable needs to be stored in storage. Instead, pure
function can be used to store the vesting type and category
information. A simple approach could be a function
categoryInformation(Category category) which returns the
CategoryDetails struct. In our opinion, VestingType is redundant
and can simply be an integer representing the frequency although it
is always set to daily within this contract.

Line 53

event RecoverToken(address indexed token, uint256 indexed

amount);

Indexing amounts has no benefit. Consider removing the secondary
index to save gas.

Lines 73-75

uint256 afterCliffUnlockAmount;

uint256 startTime;

uint256 endTime;

These variables are all no longer in use. afterCliffUnlockAmount
is never set, while the startTime and endTime do not actually relate
to actionable business logic as the _initialTimestamp variable is
used consistently as the actual startTime. All three should
therefore in our opinion probably be removed to save gas.

Line 77

CategoryDetail categoryDetail;

This is already stored within a mapping and gas is wasted to store it
redundantly as it can be easily fetched.

INFORMATIONAL

Page of 22 47 Vesting Paladin Blockchain Security

Lines 189-191

address[] memory _investors,

uint256[] memory _tokensAllotments,

Category[] memory _categories

All arrays can be marked as calldata to save gas.

Line 215

) public onlyRole(DEFAULT_ADMIN_ROLE) {

This role check is redundant for the batch function. Consider using
an internal function which is called by both external functions
instead. The role check is then only done on the external functions.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution
Some of these recommendations have been implemented.

PARTIALLY RESOLVED

Issue #08 Lack of validation

Severity

Location Line 177

function setInitialTimestamp(

Description Having unvalidated parameters could allow the governance or users
to provide variable values which are unexpected and incorrect. This
could cause side-effects or worse exploits in other parts of the
codebase.

It would be wise to validate that the initial timestamp is in the future
to avoid an accidental unlocking of all tokens.

Recommendation Consider validating the function parameters mentioned above.

Resolution
The timestamp must now be in the future.

RESOLVED

INFORMATIONAL

Page of 23 47 Vesting Paladin Blockchain Security

2.3 Winr

Winr is the main ERC20 token within the WINR Protocol. It extends the Governable
dependency (see its section lower within this report) for governance functionality.
Tokens can be minted by any governance address with the MINTER_ROLE.

The maximum supply of the token is determined during deployment and is stored
as a constant state variable called MAX_SUPPLY which can be inspected by users.
The amount of tokens in circulation cannot exceed MAX_SUPPLY.

Finally, the contract allows governance addresses with the BURNER_ROLE to also
burn Winr tokens from any address. We have spoken about this to the team and
they explained that they gave themselves this priviledge in case of emergencies,
though they plan to have various tokenomical reasons to also burn tokens like
“buyback and burn” and certain types of sales with the requirement that the
purchasor burn their Winr.

2.3.1 Privileged Functions
• mint [MINTER_ROLE]

• burn [BURNER_ROLE]

• setGov [DEFAULT_ADMIN_ROLE]

• grantRole [DEFAULT_ADMIN_ROLE / role’s admin]

• revokeRole [DEFAULT_ADMIN_ROLE / role’s admin]

• renounceRole [anyone with a role]

Page of 24 47 Winr Paladin Blockchain Security

2.3.2 Issues & Recommendations

Issue #09 BURNER_ROLE seems to impose excessive privileges as users should
not need a privilege to burn their own tokens

Severity

Description The only way to burn one’s Winr tokens is by acquiring the
governance BURNER_ROLE. This means that contracts whose only
purpose is to burn their own Winr balance will have this role.

However, it would be much cleaner if there was an alternative
function burn(uint256 amount) which allows a user to burn their
own balance without the required priviledged role. This would
reduce the number of wallets which can potentially maliciously burn
tokens from users without their consent, as the BURNER_ROLE is
exceptionally powerful in that regard and could even be used to
drain the LP pair (by burning most of the Winr within this pair and
then swapping out all the actually valuable tokens inside of the pair.

Recommendation Consider being very strict with who receives the burner (and minter)
roles as they are both equally risky from a governance risk
perspective.

Consider tightening the privileges as follows:

- burn(uint256 amount) function to burn your own tokens without
any role.

- BURNER_ROLE is not granted on deployment if _admin is an EOA.
Burner and minter roles should strictly never be granted to EOAs.

- burnFrom can work without a role if msg.sender has received
allowance from the from wallet — it might make sense to
incorporate such behavior into burnFrom to avoid needing the
BURNER_ROLE even further outside of emergencies. By using
allowances, that role would be almost never needed. This is by
far the recommended pattern.

Resolution
The BURNER_ROLE has been removed in favour of the recommended
changes. Governance can no longer burn any tokens from wallets
other than their own.

RESOLVED

LOW SEVERITY

Page of 25 47 Winr Paladin Blockchain Security

Issue #10 Typographical errors

Severity

Description We have consolidated the typographical issues into a single issue to
keep the report brief and readable.

Line 6

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

This import appears unused and redundant. It can therefore be
removed.

Lines 11-12

event Mint(address to, uint256 amount);

event Burn(address from, uint256 amount);

The addresses within these events can be indexed to allow for more
easy off-chain lookups.

Lines 30 and 38

function mint(address account, uint256 amount) external

virtual onlyRole(MINTER_ROLE) {

function burn(address from, uint256 amount) external virtual

onlyRole(BURNER_ROLE) {

The virtual keyword seems to be unnecessary within these function
definitions.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

INFORMATIONAL

Page of 26 47 Winr Paladin Blockchain Security

Issue #11 mint will implicitly not mint any tokens once the maximum supply
has been reached, which could lead to bugs within contracts which
do not handle this case

Severity

Description Once the maximum supply has been reached, mint will continue
functioning. This has its advantages as any location calling mint will
not start reverting suddenly. We have seen many bugs in contracts
by our other clients where mint suddenly reverts and the reward
contract’s withdrawal method breaks.

The Winr team envisioned this by not having mint revert, preventing
such cases. We commend them for this.

However, by not returning any information about whether the mint
succeeded or failed, the rewarder contracts would have trouble
figuring out what actually happened and whether they received any
tokens. Such a function is therefore extremely prone to causing its
calling contracts to forget to handle the case where the maximum
supply is reached.

Recommendation Consider instead either returning a boolean about whether any mint
occurred or not, or returning the actually minted amount. The latter
case could allow you to mint and return the “remaining” supply if
not enough supply remains. Either works equally well from our
perspective and is a subjective choice.

Resolution
The data is now returned.

RESOLVED

INFORMATIONAL

Page of 27 47 Winr Paladin Blockchain Security

Issue #12 The amount of tokens that can be minted can exceed MAX_SUPPLY
as the cap does not take into consideration that burned tokens are
removed from the supply

Severity

Description The Winr token defines a maximum supply. However, in theory,
more tokens than this cap can be minted over time as tokens will be
taken out of circulation again through burning.

This might be all right depending on the tokenomics of the project,
therefore this issue has been rated as informational.

Specifically, the following could occur:

1. The maximum supply is minted

2. 100 tokens are burned by the project

3. 100 tokens can be minted again

This would result in a total minted supply of maximum supply +
100, as the cap only checks the circulating supply.

Recommendation Consider whether this is desired. If not, consider keeping track of
the total number of minted tokens and basing the cap on this
number instead of the totalSupply().

Resolution
The MAX_SUPPLY now decreases on burns.

RESOLVED

INFORMATIONAL

Page of 28 47 Winr Paladin Blockchain Security

Issue #13 Initialization of DEFAULT_ADMIN_ROLE is redundant with
Governable

Severity

Description During initialization of the WINR contract, DEFAULT_ADMIN_ROLE is
granted to the _admin. This however already occurs during the
initialization of the Governable library which this contract extends.

The admin role is therefore unnecessarily granted twice which
wastes gas and makes the contract more verbose.

Recommendation Consider removing the _setupRole call within this contract while
leaving it in the Governable contract.

Resolution RESOLVED

INFORMATIONAL

Page of 29 47 Winr Paladin Blockchain Security

2.4 VestedWinr

VestedWinr is the secondary token within the Winr ecosystem. The team has
explained that VestedWinr will be granted as rewards to ecosystem participants as
rewards on bets, emissions to WLP holders and token stakers.

Though the vesting mechanism has not been included in this initial audit, the team
has explained that VestedWinr will be vestable back to Winr through a linear
vesting mechanism of 180 days. People can opt to vest for a shorter period but
must then give up a part of their tokens. The minimum will be a 15 day vesting
period by forfeiting half of the tokens.

A subsequent Paladin audit will dive more deeply into this mechanism, and we
recommend carefully reading through that audit to fully understand the Winr/
VestedWinr dynamic.

VestedWinr is not transferable. The contract solely allows it to be transferred by
whitelisted addresses, eg. the staking contract.

2.4.1 Privileged Functions
• mint [MINTER_ROLE]

• burn [BURNER_ROLE]

• setGov [DEFAULT_ADMIN_ROLE]

• grantRole [DEFAULT_ADMIN_ROLE / role’s admin]

• revokeRole [DEFAULT_ADMIN_ROLE / role’s admin]

• renounceRole [anyone with a role]

Page of 30 47 VestedWinr Paladin Blockchain Security

2.4.2 Issues & Recommendations

Issue #14 BURNER_ROLE seems to impose excessive privileges as people
should not need a privilege to burn their own tokens

Severity

Description The only way to burn one’s VestedWinr tokens is by acquiring the
governance BURNER_ROLE. This means that many contracts whose
only purpose is to burn their own VestedWinr balance will have this
role.

However, it would be much cleaner if there was an alternative
function burn(uint256 amount) which allows a user to burn their
own balance without the required priviledged role. This would
reduce the number of wallets which can potentially BURNER_ROLE
burn tokens from users without their consent, as the BURNER_ROLE is
exceptionally powerful in that regard and could even be used to
drain the LP pair (by burning most of the VestedWinr within this pair
and then swapping out all the actually valuable tokens inside of the
pair.

Recommendation Consider being very strict with who receives the burner (and minter)
roles as they are both equally dangerous from a governance risk
perspective.

Consider tightening the privileges as follows:

- burn(uint256 amount) function to burn your own tokens without
any role.

- BURNER_ROLE is not granted on deployment if _admin is an EOA.
Burner and minter roles should strictly never be granted to EOAs.

- burnFrom can work without a role if the msg.sender has received
allowance from the from wallet, it might make sense to
incorporate such behavior into burnFrom to avoid needing the
BURNER_ROLE even further outside of emergencies. By using
allowances, that role would be almost never needed. This is by
far the recommended pattern.

LOW SEVERITY

Page of 31 47 VestedWinr Paladin Blockchain Security

Resolution
The BURNER_ROLE has been removed in favour of the recommended
changes. Governance can no longer burn any tokens from wallets
other than their own.

RESOLVED

Issue #15 Typographical errors

Severity

Description We have consolidated the typographical issues into a single issue to
keep the report brief and readable.

Line 10-11

event Mint(address to, uint256 amount);

event Burn(address from, uint256 amount);

The addresses within these events can be indexed to allow for more
easy off-chain lookups.

Line 14

mapping(address => bool) public wlAddresses;

This mapping could be replaced with a private EnumerableSet with
appropriate getter methods (length, index and potentially a
paginated/multi-fetch getter) to allow for users and partners to
more easily inspect which contracts have been whitelisted. We
strongly recommend such enumerability, similar to our
AccessControl concerns.

INFORMATIONAL

Page of 32 47 VestedWinr Paladin Blockchain Security

Line 37

function setWlAccount(address _account) external

onlyGovernance {

This function lacks an event, consider emitting one. We also wonder
whether there should be functionality to remove accounts from the
whitelist again, though we do see the decentralization benefit of not
being allowed to do this. A final perfection of this method could be
a requirement to prevent the status from being set to the already
configured status.

Lines 45 and 56

* @dev this function restricted about whitelisted accounts

Consider rewriting it to “transfers can only be made by whitelisted
accounts”.

Line 71

* @dev min function restricted about MAX_SUPPLY

This should say “mint function will not mint if it causes the total
supply to exceed MAX_SUPPLY”.

Lines 73 and 86

function mint(address account, uint256 amount) external

virtual onlyRole(MINTER_ROLE) {

function burn(address from, uint256 amount) external virtual

onlyRole(BURNER_ROLE) {

The virtual keyword seems to be unnecessary within these function
definitions.

We recommend removing the transfer and transferFrom
overrides and instead adding the override to _transfer, which
overrides both functions at the same time.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

Page of 33 47 VestedWinr Paladin Blockchain Security

Issue #16 mint will implicitly not mint any tokens once the maximum supply
has been reached, which could lead to bugs within contracts which
do not handle this case

Severity

Description Once the maximum supply has been reached, mint will continue
functioning. This has its advantages as any location calling mint will
not start reverting suddenly. We have seen many bugs in contracts
by our other clients where mint suddenly reverts and the reward
contract’s withdrawal method breaks.

The Winr team envisioned this by not having mint revert, preventing
such cases. We commend them for this.

However, by not returning any information about whether the mint
succeeded or failed, the rewarder contracts would have trouble
figuring out what actually happened and whether they received any
tokens. Such a function is therefore extremely prone to causing its
calling contracts to forget to handle the case where the maximum
supply is reached.

Recommendation Consider instead either returning a boolean about whether any mint
occurred or not, or returning the actually minted amount. The latter
case could allow you to mint and return the “remaining” supply if
not enough supply remains. Either works equally well from our
perspective and is a subjective choice.

Resolution
The data is now returned.

RESOLVED

INFORMATIONAL

Page of 34 47 VestedWinr Paladin Blockchain Security

Issue #17 The amount of tokens that can be minted can exceed MAX_SUPPLY
as the cap does not take into consideration that burned tokens are
removed from the supply

Severity

Description VestedWinr defines a maximum supply. However, in theory, more
tokens than this cap can be minted over time as tokens will be taken
out of circulation again through burning.

This might be all right depending on the tokenomics of the project,
hence why this has been rated as informational.

Specifically, the following could occur:

1. The maximum supply is minted

2. 100 tokens are burned by the project

3. 100 tokens can be minted again

This would result in a total minted supply of maximum supply +
100, as the cap only checks the circulating supply.

Recommendation Consider whether this is desired. If not, consider keeping track of
the total number of minted tokens and basing the cap on this
number instead of the totalSupply().

Resolution

INFORMATIONAL

The team has indicated that this is desired. No changes were made.

RESOLVED

Page of 35 47 VestedWinr Paladin Blockchain Security

Issue #18 Initialization of DEFAULT_ADMIN_ROLE is redundant with
Governable

Severity

Description During initialization of the VestedWINR contract,
DEFAULT_ADMIN_ROLE is granted to the _admin. This however
already occurs during the initialization of the Governable library
which this contract extends.

The admin role is therefore unnecessarily granted twice which
wastes gas and makes the contract more verbose.

Recommendation Consider removing the _setupRole call within this contract while
leaving it in the Governable contract.

Resolution

INFORMATIONAL

RESOLVED

Page of 36 47 VestedWinr Paladin Blockchain Security

2.5 DateTime

The DateTime library provides a single utility function, diffDays. This function
calculates the difference in days between two timestamps represented by
fromTimestamp and toTimestamp.

The function requires fromTimestamp to be less than or equal to toTimestamp and
returns the difference in days as a number. This is calculated by having a constant
SECONDS_PER_DAY that represents the number of seconds in a day. The number of
days passed is therefore simply the number of times the SECONDS_PER_DAY number
fits within the seconds elapsed. This constant is set to 24 * 60 * 60 for now which
means that slowly the DateTime days will shift from calendar days through things
like leap-seconds.

Page of 37 47 DateTime Paladin Blockchain Security

2.5.1 Issues & Recommendations

Issue #19 DateTime days will eventually start shifting compared to calendar
days

Severity

Description Days within the DateTime library are defined as 86,400 seconds.
Due to the existence of things like leap-seconds, this will eventually
cause these days to shift relative to a timezone.

Eg. if this year a day started exactly at 00:00 UTC, it might start at a
slightly different time in 100 years.

Recommendation Consider whether this is a concern. This issue can simply be
resolved on the note that it is of no concern as we agree that this
logic is by far desired compared to more advanced DateTime logic.
If calendar consistent DateTime logic is desired, we can help
explore options as well, but the function will be significantly more
complicated.

Resolution
The team has stated that this is acceptable. No changes were made.
We agree that this is fine and keeps the business logic simple.

RESOLVED

INFORMATIONAL

Page of 38 47 DateTime Paladin Blockchain Security

Issue #20 Typographical errors

Severity

Description We have consolidated the typographical issues into a single issue to
keep the report brief and readable.

Line 6

uint256 constant SECONDS_PER_DAY = 24 * 60 * 60;

The visibility of this line is implicit. Consider explicitly marking it as
private or internal to better communicate the visibility to readers.

Line 13

require(fromTimestamp <= toTimestamp);

This line lacks an explicit reversion message. it might be valuable to
add such a message to better communicate the failure reason to
whoever uses the library.

Recommendation Consider fixing the typographical errors.

Resolution RESOLVED

INFORMATIONAL

Page of 39 47 DateTime Paladin Blockchain Security

2.6 RoleBasedAccessControl

RoleBasedAccessControl implements a role-based access control system using
OpenZeppelin’s AccessControl contract. This extension defines three additional
roles with the MINTER_ROLE, BURNER_ROLE, and BRIDGE_ROLE constants, which are
represented as the keccak256 hashes of strings. These roles can be used to enforce
access restrictions on certain functions within the contract.

The following additional roles have been added in this extension:

- MINTER_ROLE

- BURNER_ROLE

- BRIDGE_ROLE

2.6.1 Privileged Functions
• grantRole [DEFAULT_ADMIN_ROLE / role’s admin]

• revokeRole [DEFAULT_ADMIN_ROLE / role’s admin]

• renounceRole [anyone with a role]

Page of 40 47 RoleBasedAccessControl Paladin Blockchain Security

2.6.2 Issues & Recommendations

Issue #21 Lack of enumerability on role holders makes it difficult for people to
inspect which accounts have privileges

Severity

Description It is often useful for users and partners to be able to inspect which
accounts have certain roles. This way users can confirm that for
example the MINTER_ROLE is solely limited to the multi-signature
address.

However, users can only check address by address whether an
address has a role or not. To figure out the total list of addresses
which have been assigned a role, there is no other way to go over all
past events/historical transactions.

Recommendation Consider moving to the OpenZeppelin extension
AccessControlEnumerable. This is as simple as replacing the
AccessControl dependency with the enumerable alternative.

Resolution
The client has replaced the RoleBasedAccessControl and
Governable dependencies with an Access dependency. This new
dependency inherits the enumerable alternative.

RESOLVED

LOW SEVERITY

Page of 41 47 RoleBasedAccessControl Paladin Blockchain Security

2.7 Governable

Governable is a governance dependency which extends RoleBasedAccessControl
with logic to setup a single account which bears the most powerful
DEFAULT_ADMIN_ROLE.

The contract defines the onlyGovernance modifier, which can be used to restrict
access to a function to solely the current governance address. The function setGov
is defined to allow the governance address to be changed by the current governance
address, but only if they have the DEFAULT_ADMIN_ROLE. After the change, the old
governance address loses the DEFAULT_ADMIN_ROLE.

All issues from RoleBasedAccessControl apply to this dependency as well, since
this contract inherits the former.

2.7.1 Privileged Functions
• setGov [DEFAULT_ADMIN_ROLE]

• grantRole [DEFAULT_ADMIN_ROLE / role’s admin]

• revokeRole [DEFAULT_ADMIN_ROLE / role’s admin]

• renounceRole [anyone with a role]

Page of 42 47 Governable Paladin Blockchain Security

2.7.2 Issues & Recommendations

Issue #22 Using the DEFAULT_ADMIN_ROLE for governance is a role
management risk as this role wields much more power than a
custom role

Severity

Description Right now the contract seems to attempt to define the following
requirement:

Define a single role bearer, “governance”, which is the sole account
that can access functions protected by the onlyGovernance
modifier. When this role bearer account wants to make another
account “governance”, it must pass on the role via setGov and
remove itself from the role.

However, due to the DEFAULT_ADMIN_ROLE being used for the
“governance” role, the governance can also call grantRole and
revokeRole to fully bypass the setGov logic.

We also think that it is a dubious use of RBAC to have a holistic
governance role which is incidentally also the default admin. Instead
it might make more sense to have specific roles for specific tasks,
similar to minting and burning.

Recommendation Consider, if desired, for now instead having a GOVERNANCE role. This
role can then be granted to addresses without them having to
become default admins and have extreme amounts of privilege over
the role management.

This issue can also be resolved on the note that it is in fact desired
to have this governance role be the DEFAULT_ADMIN_ROLE and that
bypassing setGov is not a breakage of the requirements (as this
might be fine potentially depending on the requirements).

Resolution
The client has replaced the RoleBasedAccessControl and
Governable dependencies with an Access dependency. The team
has indicated they understand this issue and will be careful with the
role.

ACKNOWLEDGED

LOW SEVERITY

Page of 43 47 Governable Paladin Blockchain Security

Issue #23 Governance can accidentally renounce their role by calling setGov
to their own address

Severity

Description Governance could potentially accidentally renounce their privileges
by calling setGov with their own address. This would cause the
_setupRole call to do nothing while the revokeRole call still
effectively renounces the role. It is best to block this behavior to
protect the governance against accidental misuse, and instead
require them to explicitly use the already existing renounceRole
function in case they wish to renounce their role.

Recommendation Consider adding the following requirement:

require(_gov != msg.sender, “VM: Already set”);

Consider also whether it might make sense to work with an
acceptance-based (proposeGov, acceptGov) function set as this
function still bears the risk that setGov was accidentally called to a
non-existent address, which would effectively renounce the
governance as well by accident.

Resolution

LOW SEVERITY

The client has replaced the RoleBasedAccessControl and
Governable dependencies with an Access dependency. setGov has
been removed.

RESOLVED

Page of 44 47 Governable Paladin Blockchain Security

Issue #24 Inconsistent usage of msgSender() and msg.sender

Severity

Description The contract inconsistently uses both msgSender() and
msg.sender. This could be a serious risk if ever dependencies
decide to enable meta transaction usage. In that case, the meta
transaction logic would malfunction and potentially call revokeRole
on the wrong wallet.

It should be noted that within the current codebase we audited, this
has no side-effects or negative consequences.

Recommendation Consider being consistent with the use of msgSender() — it is
typically acceptable to not use it at all if there is no plan to ever
support meta transactions. If used, however, it should be used
consistently throughout the codebase to allow for integration of
eventual meta-transactions.

Consider replacing all occurrences of msg.sender with msgSender()
throughout the codebase.

Resolution

LOW SEVERITY

The client has replaced the RoleBasedAccessControl and
Governable dependencies with an Access dependency. msg.sender
is now used exclusively.

RESOLVED

Page of 45 47 Governable Paladin Blockchain Security

Issue #25 OpenZeppelin’s _setupRole is deprecated in favour of _grantRole

Severity

Description Although identical in functionality, OpenZeppelin has deprecated
_setupRole since a few releases in favor of _grantRole. It is
therefore best practice to no longer use the deprecated function
and instead move to the recommended function.

There is no functional difference between the two for now.

Recommendation Consider using _grantRole instead.

Resolution

INFORMATIONAL

The client has replaced the RoleBasedAccessControl and
Governable dependencies with an Access dependency. _grantRole
is now used.

RESOLVED

Issue #26 Gas optimization

Severity

Location Line 19

revokeRole(DEFAULT_ADMIN_ROLE, msg.sender);

Description This function is an external function which means it wastes
additional gas on doing a role check on msg.sender. Consider using
revokeRole instead.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution
The client has replaced the RoleBasedAccessControl and
Governable dependencies with an Access dependency. This logic
has been removed.

RESOLVED

INFORMATIONAL

Page of 46 47 Governable Paladin Blockchain Security

Page of 47 47 Governable Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Global Issues
	1.3.2 Vesting
	1.3.3 Winr
	1.3.4 VestedWinr
	1.3.5 DateTime
	1.3.6 RoleBasedAccessControl
	1.3.7 Governable

	2 Findings
	2.1 Global Issues
	2.1.1 Issues & Recommendations

	2.2 Vesting
	2.2.1 Privileged Functions
	2.2.2 Issues & Recommendations

	2.3 Winr
	2.3.1 Privileged Functions
	2.3.2 Issues & Recommendations

	2.4 VestedWinr
	2.4.1 Privileged Functions
	2.4.2 Issues & Recommendations

	2.5 DateTime
	2.5.1 Issues & Recommendations

	2.6 RoleBasedAccessControl
	2.6.1 Privileged Functions
	2.6.2 Issues & Recommendations

	2.7 Governable
	2.7.1 Privileged Functions
	2.7.2 Issues & Recommendations

