

Summary
 Audit Firm Guardian

 Prepared By Roberto Reigada, Zdravko Hristov, Kiki,

 Nicholas Chew, 0xCiphky, Vladimir Zotov

 Client Firm Bracket

 Final Report Date March 22, 2025

Audit Summary

Bracket engaged Guardian to do a 2nd review of their LST management system. From the 19th of

February to the 25th of February, a team of 6 auditors reviewed the source code in scope. All findings

have been recorded in the following report.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianOrg/bracketfi-fuzz 2

https://github.com/guardianaudits
https://github.com/GuardianOrg/bracketfi-fuzz

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Invariants Assessed …………………………………………………………………... 7

Findings & Resolutions …………..…………………………….……………………… 9

Addendum

Disclaimer …………………………………………………………………..…………..… 37

About Guardian Audits ………………………………..………………………………… 38

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Bracket (Rd.2)

Language Solidity

Codebase https://github.com/bracket-fi/core-contracts

Commit(s) Initial commit: 5a39d21032ae6afa7613b18f5cf2de11d0ce34d1
Final commit: c0636a03652e7d6a24a484c0fcf6df73bf4e9987

Delivery Date March 22, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 0 0 0 0 0 0

 ● High 2 0 0 0 0 2

 ● Medium 1 0 0 0 0 1

 ● Low 23 0 0 14 0 9

https://github.com/bracket-fi/core-contracts

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

 Invariants Assessed

7

During Guardian’s review of Bracket contracts, fuzz-testing with Echidna was performed on
the protocol’s main functionalities. Given the dynamic interactions and the potential for
unforeseen edge cases in the protocol, fuzz-testing was imperative to verify the integrity of
several system invariants.

Throughout the engagement the following invariants were assessed for a total of
20,000,000+ runs with a prepared Echidna fuzzing suite.

ID Description Tested Passed Remediation Run Count

GLOB_01 Contract balance should never be less than
total accrued fees ✅ ✅ ✅ 20M+

GLOB_02 If epoch = 0 then totalNonMintedShares = 0 ✅ ✅ ✅ 20M+

GLOB_03 If epoch = 0 then totalMintedShares = 0 ✅ ✅ ✅ 20M+

GLOB_04 If epoch = 0 then totalShares = 0 ✅ ✅ ✅ 20M+

GLOB_05 If epoch = 0 then activeSupply = 0 ✅ ✅ ✅ 20M+

GLOB_06 If epoch = 0 then inactiveSupply = totalDeposits ✅ ✅ ✅ 20M+

GLOB_07 Token balance should never be less than
inactiveSupply ✅ ✅ ✅ 20M+

GLOB_08 totalShares should equal totalMintedShares +
totalNonMintedShares ✅ ✅ ✅ 20M+

GLOB_09 If epoch = 0 then the vault is always unlocked ✅ ✅ ✅ 20M+

https://github.com/crytic/echidna

Invariants Assessed

8

ID Description Tested Passed Remediation Run Count

GLOB_10 After startVault() the vault should be
immediately unlocked ✅ ✅ ✅ 20M+

GLOB_11 If lastDeposit[user].epoch = epoch,
lastDeposit[user].pendingAssets after calling
deposit() or withdraw() should be updated

✅ ✅ ✅ 20M+

GLOB_12 Withdrawals must never be executed when the
vault is locked ✅ ✅ ✅ 20M+

ERR_01 Unexpected error ✅ ✅ ❌ 20M+

Findings & Resolutions

9

ID Title Category Severity Status

H-01 Incorrect Calculation Of
totalFees In updateNav Logical Error ● High Resolved

H-02 Incorrect Subtraction Of
totalFees Logical Error ● High Resolved

M-01 Front-Running Risk In startVault
Function Validation ● Medium Resolved

L-01 Missing Input Validation In
deployVault Function

Code Best
Practices ● Low Acknowledged

L-02 Inefficient Removal Logic In
removeCollateral Gas Optimization ● Low Acknowledged

L-03 Variable Duration Of Locked And
Unlocked Periods

Code Best
Practices ● Low Acknowledged

L-04 Incompatibility With
Fee-On-Transfer Tokens

Code Best
Practices ● Low Acknowledged

L-05
Potential Reentrancy In
claimBrktTvlFees And
claimManagerFees

Code Best
Practices ● Low Acknowledged

L-06 Undesirable Delay When
Manager Has Insufficient Funds Logical Error ● Low Acknowledged

L-07 Zero Share Withdrawals Possible Code Best
Practices ● Low Resolved

L-08 Unnecessary Check And Casting Gas Optimization ● Low Resolved

L-09 Missing Validation In
setNextLock Validation ● Low Resolved

L-10 _clearDeposit Return Values
Never Used Gas Optimization ● Low Resolved

Findings & Resolutions

10

ID Title Category Severity Status

L-11 Mismatch Between
Documentation And Code

Code Best
Practices ● Low Resolved

L-12 Vault Lacking Pause Mechanism Code Best
Practices ● Low Resolved

L-13 Multisig Admin Role Can Be
Maliciously Revoked Logical Error ● Low Resolved

L-14 Asset Imbalance Through
Cross-Token Actions Validation ● Low Acknowledged

L-15 Incomplete NatSpec Code Best
Practices ● Low Resolved

L-16 Wrong Event Emission Code Best
Practices ● Low Resolved

L-17 Users Can Claim Withdrawals
When The Contract Is Paused

Code Best
Practices ● Low Acknowledged

L-18 Slight totalSupply() Discrepancy Code Best
Practices ● Low Acknowledged

L-19 The nextLock Variable Is Not
Properly Updated Logical Error ● Low Acknowledged

L-20 Changing Multisig Won't Affect
The Vault

Code Best
Practices ● Low Acknowledged

L-21 claimWithdrawal Overestimates
Available Balance Validation ● Low Acknowledged

L-22 Oracle Does Not Validate
Fetched Price Validation ● Low Acknowledged

L-23 Inactive Balance Doesn't Include
Claimable Withdrawals Logical Error ● Low Acknowledged

H-01 | Incorrect Calculation Of totalFees In updateNav

Description
The totalFees variable is intended to represent the total fees affecting the asset flow between the
vault and the manager during an NAV update. However, the calculation is inconsistent:

• accruedManagerPerformanceFees and accruedManagerTvlFees are cumulative (including fees
from all previous epochs plus the current epoch's managerPerformanceFee and managerTvlFee).

• brktTvlFee is the new fee for the current epoch only, not the cumulative accruedBrktTvlFees.

This inconsistency leads to an incorrect totalFees value. Since totalFees is used in totalDebit =
withdrawalAssets + totalFees within _processDepositsWithdrawals, it determines how much the
manager must transfer to the vault (or receive from it). Using cumulative fees for manager fees is
incorrect.

Expected Behavior: As the fees are now "locked on the vault's balance" the vault should retain all
accrued fees and the manager should only need to cover the net asset flow (withdrawalAssets -
depositAssets) plus the new fees for the current epoch. The previously accrued fees are already in
the vault and can be used to pay withdrawals or claimed fees.

Example:

• Epoch 1: brktTvlFee = 5, so accruedBrktTvlFees = 5.

• Epoch 2: brktTvlFee = 3, so accruedBrktTvlFees = 8. Current code computes totalFees =
accruedManagerFees + accruedManagerTvlFees + 3, ignoring the prior 5 in accruedBrktTvlFees. It
should use only new fees (managerPerformanceFee + managerTvlFee + brktTvlFee).

Recommendation
Use only the new fees for consistency and logical correctness:

uint256 totalFees = managerPerformanceFee + managerTvlFee + brktTvlFee;

This ensures the manager transfers funds to cover withdrawals and new fees, while the vault retains
previously accrued fees, aligning with the locking mechanism.

Resolution
Bracket Team: The issue was resolved in commit 4d9c92f. 11

Category Severity Location Status

Logical Error ● High BracketVault.sol: 133 Resolved

https://github.com/bracket-fi/core-contracts/commit/4d9c92f04ae959d94d5d265a4da0b4821f300bbb

H-02 | Incorrect Subtraction Of totalFees

Description

The _getManagerAvailableBalance function calculates the manager's available balance for
transferring funds to the vault when depositAssets < totalDebit. It subtracts totalFees (all accrued
fees) from the minimum of the manager's balance and allowance.

However, this is illogical because:

• The accrued fees are locked in the vault's balance, not the manager's. The manager's
token.balanceOf(manager) does not include these fees.

• Subtracting totalFees underestimates the manager's ability to transfer funds, potentially causing
unnecessary reverts with InsufficientManagerFunds.

The manager's available balance should be the full amount it can transfer to the vault, limited only by
its balance and allowance. Since fees are held in the vault and claimed separately
(claimManagerFees, claimBrktTvlFees), they do not reduce the manager's available balance.

Example:

• Manager balance = 100, allowance = 100, accruedFees = 10 in the vault.

• Current code: available = min(100, 100) - 10 = 90.

• Actual: Manager can transfer up to 100, as the 10 in fees is in the vault.

Recommendation

Remove the fee subtraction from the _getManagerAvailableBalance function. This accurately reflects
the manager's capacity to support the vault.

Resolution

Bracket Team: The issue was resolved in commit a5c9e2f.
12

Category Severity Location Status

Logical Error ● High BracketVault.sol: 493 Resolved

https://github.com/bracket-fi/core-contracts/commit/a5c9e2f857da8864eda0ee49be51cc5b758dd974

M-01 | Front-Running Risk In startVault Function

Description

The startVault function in the BracketVault contract is susceptible to front-running. This function is
designed to move the vault from its initial state (Epoch 0) to an active state (Epoch 1), transferring all
deposited assets to the manager to kick off operations.

During Epoch 0, users can deposit tokens and withdraw them instantly via the _withdrawEpoch0
function, which does not impose delays or penalties.

An attacker can exploit this setup by depositing a large quantity of tokens right before the startVault
transaction, ensuring their deposit is recorded, and then withdrawing those tokens using
_withdrawEpoch0 front-running the startVaultcall.

As a result, when startVault executes, it transfers only the remaining deposits, excluding the
attacker’s withdrawn amount, to the manager. This reduces the capital available to the manager,
disrupting the vault’s intended starting liquidity.

Recommendation

Consider updating the startVault function to include an additional parameter, minTotalDeposits,
which specifies the minimum amount of deposits required to proceed with starting the vault. The
function should check the current total deposits against this threshold and revert if the amount is
insufficient.

This ensures that the vault only transitions to Epoch 1 when a predefined level of funding is secured,
limiting the impact of last second withdrawals.

Resolution

Bracket Team: The issue was resolved in commit 8c1e877.

13

Category Severity Location Status

Validation ● Medium BracketVault.sol: 100 Resolved

https://github.com/bracket-fi/core-contracts/commit/8c1e877ad855b294bf923d406e580dc29a44c9eb

L-01 | Missing Input Validation In deployVault Function

Description

The deployVault function accepts name, symbol, and withdrawDelay parameters but lacks validation
for reasonable ranges or formats. For example, an excessively long name or symbol could cause
issues in downstream systems.

Recommendation

Add input validation for name and symbol (e.g., maximum length).

Resolution

Bracket Team: Acknowledged.

14

Category Severity Location Status

Code Best Practices ● Low VaultFactory.sol: 32 Acknowledged

L-02 | Inefficient Removal Logic In removeCollateral

Description

Inside the removeCollateral function, the code always does a “swap and pop” technique to remove
the collateral from the array. However, if the item being removed (token) is already the last element in
the collaterals array (index = collaterals.length - 1), the swap is unnecessary: you can simply pop().
The swap in that scenario wastes gas and can be avoided.

Recommendation

Add a condition to check whether index is already the last element. If so, simply pop() the last
element without performing the swap. Otherwise, do the usual “swap and pop” logic.

Resolution

Bracket Team: Acknowledged.

15

Category Severity Location Status

Gas Optimization ● Low BrktETH.sol: 143 Acknowledged

L-03 | Variable Duration Of Locked And Unlocked Periods

Description
In the BracketVault contract, each epoch aligns with a nominal 7-day cycle defined by the
LOCK_FREQUENCY constant, featuring alternating unlocked and locked periods dictated by the
nextLock timestamp.

The unlocked period begins when nextLock is set and lasts until block.timestamp exceeds nextLock,
at which point the vault becomes locked as determined by the isVaultLocked function
(block.timestamp > nextLock epoch = 0).

The locked period then persists until updateNav is called by an address with the
NAV_UPDATER_ROLE, which advances nextLock by 7 days and transitions the vault into the next
epoch’s unlocked period.

However, the exact durations of these periods within the 7-day cycle are not fixed and depend heavily
on when updateNav is executed relative to nextLock.

• If updateNav is called as soon as block.timestamp surpasses nextLock (e.g., at nextLock + 1
second), the unlocked period lasts nearly the full 7 days (e.g., 6 days, 23 hours, 59 minutes, and 59
seconds), and the locked period is minimal (e.g., 1 second), though it cannot be zero due to the
onlyLocked modifier requiring block.timestamp > nextLock.

• If updateNav is delayed by 3 days after nextLock, the unlocked period shortens to approximately 4
days, and the locked period extends to 3 days.

• If updateNav is never called, the vault remains locked indefinitely beyond nextLock, halting critical
operations such as withdrawals (restricted by the onlyUnlocked modifier) and delaying the
processing of queued deposits.

This variability in period lengths introduces significant unpredictability into user interactions, such as
deposit and withdrawal timing, and vault management, as the duration of access to key functions
depends on the timing of updateNav calls by the NAV_UPDATER_ROLE.

Recommendation
Consider introducing a stricter scheduling mechanism for epoch transitions by enforcing a
maximum locked period duration.

Resolution
Bracket Team: Acknowledged.

16

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol Acknowledged

L-04 | Incompatibility With Fee-On-Transfer Tokens

Description

The BracketVault contract does not explicitly support fee-on-transfer tokens, which are ERC20
tokens that deduct a fee from the transferred amount during operations like transfer or transferFrom,
resulting in the recipient receiving less than the specified amount.

In the current implementation, the contract uses SafeERC20.safeTransferFrom and
SafeERC20.safeTransfer for asset movements in functions such as deposit, withdraw, startVault,
updateNav and claimWithdrawal.

These operations assume that the full specified amount is transferred to the intended recipient (e.g.,
the vault, manager, or user). However, with fee-on-transfer tokens, the actual amount received is
reduced by the fee (e.g., if a 1% fee is applied to a 100-token transfer, only 99 tokens arrive).

The contract does not account for this discrepancy, as it records the full assets amount in state
variables like totalDeposits, totalQueuedDeposits or lastDeposit[user].assets without verifying the
actual received balance.

For example, in the deposit function, token.safeTransferFrom(msg.sender, address(this), assets) is
called and assets is directly added to totalDeposits or totalQueuedDeposits, but if a fee reduces the
received amount, the vault’s internal accounting overstates the assets held, leading to
inconsistencies.

Recommendation

Merely informative, avoid using Fee-On-Transfer tokens.

Resolution

Bracket Team: Acknowledged.

17

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol Acknowledged

L-05 | Potential Reentrancy In claimBrktTvlFees And claimManagerFees

Description

The claimBrktTvlFees and claimManagerFees functions transfers tokens to msg.sender before
updating the contract’s internal accounting.

If a token with on-transfer hooks was used, it could invoke a callback (reentrancy) that call the
respective function again, leading to multiple payouts before the state is reset.

In the current order, the manager could potentially re-enter and claim fees repeatedly if the token’s
transfer call trigger external code.

While this is unlikely with standard ERC20 tokens, it still poses a theoretical risk given the absence of
reentrancy protections.

Recommendation

Consider applying the the Check‐Effects‐Interactions (CEI) pattern or add the nonReentrant modifier
to the claimBrktTvlFees and claimManagerFees functions.

Resolution

Bracket Team: Acknowledged.

18

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol: 174 Acknowledged

L-06 | Undesirable Delay When Manager Has Insufficient Funds

Description

The updateNav function is critical for updating the NAV and advancing the epoch. However, it
currently reverts when withdrawals exceed deposits and the manager lacks sufficient funds.

Insufficient funds can occur if assets are time-locked in a yield strategy or being bridged across
chains. However, this should not prevent updateNav from executing.

Failing to call updateNav can delay the start of a new epoch and potentially exceed nextLock,
causing overlaps with subsequent epochs. This could disrupt accounting and lead to delays in
deposits and withdrawals.

Since a mechanism for partial withdrawals already exists, updateNav should be allowed to proceed
even if the manager temporarily lacks sufficient funds.

Recommendation

Modify updateNav to proceed even when the manager has insufficient funds to transfer to the vault

Resolution

Bracket Team: Acknowledged.

19

Category Severity Location Status

Logical Error ● Low BracketVault.sol: 469 Acknowledged

L-07 | Zero Share Withdrawals Possible

Description

If a small assets value is passed into the withdraw function while nav is greater than 1e18, the
calculated number of shares to be burned may round down to zero.

As a result, claimWithdraw can still be called with zero shares, and the transaction will succeed.
Although no direct risk to funds has been identified, this behavior is unexpected and should be
prevented.

Recommendation

In the withdraw function, ensure that if the calculated shares amount is zero, the transaction reverts
to prevent unintended withdrawals.

Resolution

Bracket Team: The issue was resolved in commit d54f629.

20

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol: 239 Resolved

https://github.com/bracket-fi/core-contracts/commit/d54f6296e26bd9535175580433b56a230adbeb73

L-08 | Unnecessary Check And Casting

Description

In the latest commit, accruedManagerPerformanceFees was changed from an int256 to uint256.
Therefore, it's no longer necessary to check that it is > 0 and re-cast it to a uint256.

Recommendation

Update the accruedManagerPerformanceFees function removing the redundant check and type cast.

Resolution

Bracket Team: The issue was resolved in commit a5c9e2f.

21

Category Severity Location Status

Gas Optimization ● Low BracketVault.sol: 484 Resolved

https://github.com/bracket-fi/core-contracts/commit/a5c9e2f857da8864eda0ee49be51cc5b758dd974

L-09 | Missing Validation In setNextLock

Description

The function setNextLock should check that the new nextLock is not less than the current
timestamp. An erroneous update could disrupt vault accounting.

Recommendation

Validate that _nextLock > block.timestamp.

Resolution

Bracket Team: The issue was resolved in commit e8fa0d3.

22

Category Severity Location Status

Validation ● Low BracketVault.sol: 184 Resolved

https://github.com/bracket-fi/core-contracts/commit/e8fa0d3638fadc3cfd7e570192bedea4c75a3113

L-10 | _clearDeposit Return Values Never Used

Description

The internal function _clearDeposit returns bool, Deposit memory newLastDeposit. However, these
values are never used.

Recommendation

Consider removing the return values if there is no need for them.

Resolution

Bracket Team: The issue was resolved in commit dbe079c.

23

Category Severity Location Status

Gas Optimization ● Low BracketVault.sol: 373 Resolved

https://github.com/bracket-fi/core-contracts/commit/dbe079c81373affa9145dd6fd672b99938ad9aa4

L-11 | Mismatch Between Documentation And Code

Description

The protocol documentation states that “In the case of a fund closing, every user will be processed
automatically for a full withdrawal.” However, the current code only allows users to process their own
withdrawals.

Consequently, during a fund closing, the protocol will not be able to execute the intended automatic
full withdrawal process for all users.

Recommendation

If the documentation is outdated, update it to reflect the actual behaviour of the code. Otherwise,
modify the code to implement the automatic full withdrawal functionality as described in the
documentation.

Resolution

Bracket Team: Resolved.

24

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol: 221 Resolved

L-12 | Vault Lacking Pause Mechanism

Description

After a strategy vault is shut down, users may still unknowingly deposit into it. Since the vault is no
longer active, their funds remain stuck until an admin manually calls updateNav to trigger
withdrawals.

Additionally, without a mechanism to halt operations, users could continue interacting with the vault
during an exploit

Recommendation

Consider adding a pausing mechanism and implement the admin functions pause and unpause.

Resolution

Bracket Team: The issue was resolved in commit a5b662a.

25

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol Resolved

https://github.com/bracket-fi/core-contracts/commit/a5b662ab8f9e0e225138fb00ada60c2551d20327

L-13 | Multisig Admin Role Can Be Maliciously Revoked

Description

In the initialize function, the contract grants DEFAULT_ADMIN_ROLE to the multisig parameter.
However, there is no validation preventing DEFAULT_ADMIN_ROLE from being included in the roles
array during initialization.

This means the vault creator could include DEFAULT_ADMIN_ROLE in the roles array and assign it to
themselves or another address.

Since DEFAULT_ADMIN_ROLE is its own admin (as per OpenZeppelin's AccessControl), any address
with this role can revoke it from other addresses. This creates a vulnerability where:

1. Vault creator includes DEFAULT_ADMIN_ROLE in roles array during initialization

2. Both multisig and creator now have DEFAULT_ADMIN_ROLE

3. Creator can call revokeRole(DEFAULT_ADMIN_ROLE, multisig) to remove multisig's admin access

4. Creator now has sole control of admin functions

Recommendation

Add validation in the initialize function to prevent DEFAULT_ADMIN_ROLE from being included in the
roles array.

Resolution

Bracket Team: The issue was resolved in commit d584be9.

26

Category Severity Location Status

Logical Error ● Low BracketVault.sol: 86 Resolved

https://github.com/bracket-fi/core-contracts/commit/d584be9ca1bcf63e4ffb41ae981e35a11f2c790c

L-14 | Asset Imbalance Through Cross-Token Actions

Description

The burn function allows users to withdraw a different collateral token than the one they initially deposited,
which can lead to asset imbalance issues in the protocol. Here's how this can impact the system:

1. A user deposits Token A into the protocol using the mint function

2. Next, they call burn to withdraw Token B instead of Token A

3. This cross-token withdrawal can:

• Create imbalances in individual token reserves

• Potentially prevent swapCollateral operations due to insufficient balances

• Impact yield generation if certain assets become depleted and the current ratio between assets is far off
from the optimal ratio that is typically maintained.

While the 5-day withdrawal delay (WITHDRAWAL_DELAY) provides some protection by giving time for
rebalancing, the core issue remains that users can systematically drain specific collateral tokens, affecting
the protocol's ability to maintain balanced reserves and optimal yield generation.

The impact is particularly concerning because:

• It affects the protocol's yield generation capabilities

• It can create scenarios where other users cannot withdraw their preferred tokens

• The swapCollateral function may fail due to insufficient balances

Recommendation

Consider implementing one of these solutions:

1. Require users to withdraw the same token type they deposited by tracking individual deposits

2. Add a fee mechanism for cross-token withdrawals to discourage imbalancing behavior

At minimum, document this behavior in the protocol specifications so users understand the associated risks.

Resolution

Bracket Team: Acknowledged. 27

Category Severity Location Status

Validation ● Low BrktETH.sol: 83 Acknowledged

L-15 | Incomplete NatSpec

Description

The NatSpec for the IBracketVault.Deposit struct lacks description of the queuedAssets parameter.

Recommendation

Describe the queuedAssets parameter as well.

Resolution

Bracket Team: The issue was resolved in commit fc72b46.

28

Category Severity Location Status

Code Best Practices ● Low IBracketVault.sol Resolved

https://github.com/bracket-fi/core-contracts/commit/fc72b461ed4ec374094255ba9d35291ec0338eaa

L-16 | Wrong Event Emission

Description

The data used for the NavUpdated event in updateNav() is the data for the updated epoch, but the
epoch param is passed after it has been increased. This will lead to the event being emitted with
epoch n + 1 and the nav data for epoch n.

Recommendation

Consider correcting the NavUpdated event.

Resolution

Bracket Team: The issue was resolved in commit e24e55f.

29

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol Resolved

https://github.com/bracket-fi/core-contracts/commit/e24e55f8bdce0cdacd9bf2bacda8ef0cbb7d7563

L-17 | Users Can Claim Withdrawals When The Contract Is Paused

Description

BrktETH.claimWithdrawal() can be called when the contract is paused.

Recommendation

Be aware of this behavior.

Resolution

Bracket Team: Acknowledged.

30

Category Severity Location Status

Code Best Practices ● Low BrktETH.sol Acknowledged

L-18 | Slight totalSupply() Discrepancy

Description

totalPendingShares in BracketVault are increased with the total deposited assets converted to
shares in _processDepositsWithdrawals. They are then reduced by the amount of shares being
minted in _clearDeposit().

Because of rounding issues, the sum of the shares minted to each user may not be equal to the sum
of the shares added in _processDepositsWithdrawals.

Because of that, BracketVault.totalNonMintedShares() will return slightly inflated value, therefore
RebalancingToken.totalShares(), RebalancingToken.activeSupply() and
RebalancingToken.totalSupply() as well.

Recommendation

Document this discrepancy so integrators can avoid issues related to it.

Resolution

Bracket Team: Acknowledged.

31

Category Severity Location Status

Code Best Practices ● Low BracketVault.sol Acknowledged

L-19 | The nextLock Variable Is Not Properly Updated

Description

Whenever updateNav() is called, LOCK_FREQUENCY is being added to nextLock instead of setting
nextLock to block.timestamp + LOCK_FREQUENCY.

This will result in new epoch being shorter than they should be, depending on the delay between the
expiry of the previous lock and the update of the nav.

The update of the nav can be delayed due to several different factors - offchain calculation is not so
straightforward, network congestion, the updateNav() reverting because of
InsufficientManagerFunds(), etc…

Let's take a look at a simplified example:

• nextLock = 100

• LOCK_DURATION = 100

• updateNav() is called at 150

• nextLock = 100 + 100 = 200

• The new epoch will be locked after LOCK_DURATION / 2.

If the updateNav() was called after 200, the new epoch would have been instantly locked.

Recommendation

Update nextLock as follows:

nextLock = LOCK_FREQUENCY; + nextLock = block.timestamp + LOCK_FREQUENCY;

Resolution

Bracket Team: Acknowledged.
32

Category Severity Location Status

Logical Error ● Low BracketVault.sol Acknowledged

L-20 | Changing Multisig Won't Affect The Vault

Description

In the VaultFactory there is a setMultisig() function which allows the DEFAULT_ADMIN_ROLE to
change the multisig. However, all the previously deployed vaults will still have the old multisig set.

Recommendation

Document this to avoid unexpected behaviors.

Resolution

Bracket Team: Acknowledged.

33

Category Severity Location Status

Code Best Practices ● Low VaultFactory.sol Acknowledged

L-21 | claimWithdrawal Overestimates Available Balance

Description

In the BracketVault contract, the claimWithdrawal function checks the vault’s entire token balance via
token.balanceOf(address(this)) to determine how much can be paid out for a user withdrawal.

This raw balance includes:

• Queued deposits: User funds transferred during locked epochs, recorded as totalQueuedDeposits,
which are slated to be converted to shares in the next updateNav call.

• Unclaimed fees: Manager or bracket fees stored in the vault’s balance
(accruedManagerPerformanceFees, accruedManagerTvlFees, accruedBrktTvlFees) that remain
physically in the contract but are not intended to fund user withdrawals.

Because claimWithdrawal does not subtract these queued deposits or outstanding fees from the
vault’s “available” funds, a user can withdraw more than the true liquid balance the vault should be
able to commit.

Once updateNav processes queued deposits (or fees get claimed), the vault may find itself short of
tokens to fulfill its obligations.

Recommendation

In claimWithdrawal, adjust the availability check so it excludes both totalQueuedDeposits and any
unclaimed fees that should not fund user withdrawals.

Resolution

Bracket Team: Acknowledged.

34

Category Severity Location Status

Validation ● Low BracketVault.sol: 259 Acknowledged

L-22 | Oracle Does Not Validate Fetched Price

Description

In BracketOracle.sol, the getRate function retrieves price from each LST/LRT oracle but does not
validate whether the fetched price is zero.

If an oracle returns a zero price, BrktETH's getTotalValue would calculate an incorrect total collateral
value, potentially enabling opportunistic attacks that exploit the mispriced collateral.

Recommendation

For all functions used to fetch the LST/LRT price (e.g. _getWstethRate), validate that the fetched
price is not zero.

Resolution

Bracket Team: Acknowledged.

35

Category Severity Location Status

Validation ● Low BracketOracle.sol Acknowledged

L-23 | Inactive Balance Doesn't Include Claimable Withdrawals

Description

BracketVault.balanceOf(address) aims to return the underlying token's value of the provided address
parameter. It currently returns the activeBalance + inactiveBalance, where the active balance is the
amount of minted shares + the amount of pending shares that we know the NAV for.

The inactive balance are the rest of the assets (deposited and queued) which we don't know the NAV
for. This calculation doesn't include the current claimable assets that can be withdrawn. In result, the
balanceOf() will report lower value in this cases.

Recommendation

Consider tracking individual withdrawals per epoch and account for them in the balanceOf()
function.

Resolution

Bracket Team: Acknowledged.

36

Category Severity Location Status

Logical Error ● Low BracketVault.sol Acknowledged

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

37

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

38

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

