

Summary

 Audit Firm Guardian

 Prepared By Owen Thurm, Daniel Gelfand, Robert Rodriguez,

 Wafflemakr, 0xCiphky

 Client Firm Bracket

 Final Report Date January 20, 2025

Audit Summary

Bracket engaged Guardian to review the security of their LST management system. From the 18th of

December to the 23rd of December, a team of 5 auditors reviewed the source code in scope. All

findings have been recorded in the following report.

Issues Detected Throughout the engagement 4 High/Critical issues were uncovered and promptly

remediated by the Bracket team.

Security Recommendation Given the number of High and Critical issues detected as well as

additional code changes made after the main review, Guardian recommends that an independent

security review of the protocol at a finalized frozen commit is conducted before deployment.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/bracket-1
2

https://github.com/guardianaudits
https://github.com/GuardianAudits/bracket-1

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Findings & Resolutions …………..…………………………….……………………… 7

Addendum

Disclaimer …………………………………………………………………..…………..… 38

About Guardian Audits ………………………………..………………………………… 39

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Bracket

Language Solidity

Codebase https://github.com/bracket-fi/core-contracts

Commit(s) 727a7751260e155a88d539bc1af5a195a3c7da83

Delivery Date January 20, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 3 0 0 0 0 3

 ● High 1 0 0 0 0 1

 ● Medium 7 1 0 1 0 5

 ● Low 17 0 0 4 0 13

https://github.com/bracket-fi/core-contracts

5

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

6

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Findings & Resolutions

7

ID Title Category Severity Status

C-01 Incorrect Amount Of Collateral
Returned Logical Error ● Critical Resolved

C-02 Inaccurate Share Calculation On
Mint Logical Error ● Critical Resolved

C-03 Incorrect Collateral Calculation
During Burn Logical Error ● Critical Resolved

H-01 Missing lastNavUpdate Update Logical Error ● High Resolved

M-01 Incomplete Check In
calculateMint Function Validation ● Medium Resolved

M-02 Decreased NAV Frontrunning Frontrunning ● Medium Resolved

M-03 Manager Avoids Negative
Performance Fees

Unexpected
behavior ● Medium Pending

M-04 Wrong Index For
Whitelist/Blacklist Logical Error ● Medium Resolved

M-05 Incorrect Withdrawable Assets Logical Error ● Medium Resolved

M-06 totalValue DoS DoS ● Medium Acknowledged

M-07 Manager Fees Withdrawn By
Users Logical Error ● Medium Resolved

L-01 Swap Can Have Equal In And Out
Tokens Validation ● Low Resolved

L-02 Misvaluation Due To stETH-ETH
Peg Assumption Oracles ● Low Acknowledged

Findings & Resolutions

8

ID Title Category Severity Status

L-03 Fees Unavailable For Claim Logical Error ● Low Acknowledged

L-04 Lack Of Slippage Control Slipagge ● Low Resolved

L-05 Unused Params Optimization ● Low Resolved

L-06 Increased Gas Cost For Multiple
Collaterals Configuration ● Low Acknowledged

L-07 Adding Collateral Without Oracle
Support Validation ● Low Resolved

L-08 Vault Does Not Validate Zero
Amounts Validation ● Low Resolved

L-09 Missing Admin Functions Configuration ● Low Resolved

L-10 Unlicensed Smart Contracts Best practices ● Low Resolved

L-11 balanceOf Includes Pending
Amounts

Unexpected
behavior ● Low Acknowledged

L-12 Vanity Nav Updated In Epoch 0 Validation ● Low Resolved

L-13 Lacking Pause Mechanism Best practices ● Low Resolved

L-14 Unnecessary Address(0) Check Optimization ● Low Resolved

L-15 Excessive Wait For Manager
Withdrawals Logical Error ● Low Resolved

Findings & Resolutions

9

ID Title Category Severity Status

L-16 Collateral DoS Risk DoS ● Low Resolved

L-17 Lacking Slippage Check Allows
Griefing Griefing ● Low Resolved

C-01 | Incorrect Amount Of Collateral Returned

Description

The existing calculateBurn logic incorrectly calculates how much of the token should be returned to
the user for the given amount of brktETH value.

For example:
(1) User deposits 10 WSTETH and receives 10 brktETH. Assume this is the entire brktETH supply.
(2) ETH rate of WSTETH goes from 1 ETH to 1.1 ETH.
(3) User burns all 10 brktETH shares, but does not receive 10 WSTETH. Instead they get (1.1 ether *
11 ether / 1 ether) which is 12.1 WSTETH, more than the 10 WSTETH they put in.

This can be extremely detrimental to protocol as a user may extract more funds than appropriate, as
well as prevent a depositor from withdrawing all their shares.

Furthermore, this issue will occur every single time burn is called. To accurately calculate how much
token should be returned, instead the ETH value of the redeemed brktETH should be divided by the
ETH value of 1 token.

Recommendation

Change the calculation to return Math.mulDiv(value, 1 ether, oracle.getRate(token));

Resolution

Bracket Team: The issue was resolved in commit 4efa7d7.

10

Category Severity Location Status

Logical Error ● Critical BrktETH.sol Resolved

PoC

https://github.com/bracket-fi/core-contracts/commit/4efa7d75865b37e68150d357b10ce32aef1cfa6e
https://github.com/GuardianAudits/bracket-1/pull/1

C-02 | Inaccurate Share Calculation On Mint

Description

The mint function in the BrktETH contract currently deposits tokens into the contract—updating the
token’s totalDeposit—before calculating the amount to mint.

As a result, the user’s newly deposited tokens are included in the total value during the share
calculation, causing the user to receive fewer shares than intended.

For example:
(1) Alice deposits 10 WSTETH and mints 10 brktETH
(2) Bob deposits 10 WSTETH directly after, and mints 5 brktETH (10 brktETH * 10 ETH / 20 ETH),
although he should receive the same amount of brktETH as Alice due to 50-50% supply of the pool.

Consequently, this causes loss of assets for the depositor as they receive less shares than
necessary, and will occur each time after the first mint.

Recommendation

Modify the mint function so that it calculates the amount of tokens to be minted before depositing
them into the contract.

Resolution

Bracket Team: The issue was resolved in commit 4a2dc96.

11

Category Severity Location Status

Logical Error ● Critical BrktETH.sol: 64 Resolved

PoC

https://github.com/bracket-fi/core-contracts/commit/4a2dc962897855610b365e9869d23fde864445a5
https://github.com/GuardianAudits/bracket-1/blob/bc53b44611ee51f90ac0565d2abdeb4b3b2b75db/test/guardian/GuardianPoCs.sol#L48

C-03 | Incorrect Collateral Calculation During Burn

Description

The burn function currently burns the user’s brktETH tokens before calculating the amount of
collateral they are entitled to.

By doing so, the calculation for colAmount takes place after the user’s share has already been
removed from the supply, which may cause them to receive more collateral than they should or end
up with nothing at all if they are the only remaining shareholder.

Recommendation

Modify the burn function to calculate the collateral amount before burning the user’s brktETH.

Resolution

Bracket Team: The issue was resolved in commit 4a2dc96.

12

Category Severity Location Status

Logical Error ● Critical BrktETH.sol: 79 Resolved

PoC

https://github.com/bracket-fi/core-contracts/commit/4a2dc962897855610b365e9869d23fde864445a5
https://github.com/GuardianAudits/bracket-1/blob/Incorrect-Collateral-Calculation-During-Burn/test/guardian/IncorrectBurnCalcSharesPOC.t.sol

H-01 | Missing lastNavUpdate Update

Description

In the updateNav function there is no update to the lastNavUpdate variable, therefore the
confirmation period validation will never apply past the initial 1 day period after the vault starts.

Recommendation

Update the lastNavUpdate variable in the updateNav function

Resolution

Bracket Team: The issue was resolved in commit cce9ce5.

13

Category Severity Location Status

Logical Error ● High BracketVault.sol: 117 Resolved

https://github.com/bracket-fi/core-contracts/commit/cce9ce59f262f0e405b768012120d86d0427cf56

M-01 | Incomplete Check In calculateMint Function

Description

The current calculateMint implementation assumes that if totalSupply is zero, there is no existing
pool of assets and thus sets brktAmount = value:

However, in a very specific edge case scenario, it could be possible that totalSupply is non-zero but
getTotalValue is actually zero, for example, due to a sudden asset devaluation.

In that case, a division by zero would occur blocking any new deposits (once the issue where you
deposit before calculating the minted brktAmount is corrected).

Recommendation

Update the calculateMint function as shown below:

Resolution

Bracket Team: The issue was resolved in commit a7ed83f.

14

Category Severity Location Status

Validation ● Medium BrktETH.sol: 242 Resolved

function calculateMint(uint256 value)

public view returns (uint256 brktAmount) {uint256 supply = totalSupply(); if

(supply = 0) {brktAmount = Math.mulDiv(supply, value, getTotalValue());} else

{brktAmount = value;}}

function calculateMint(uint256 value)

public view returns (uint256 brktAmount) {uint256 supply = totalSupply();

uint256 totalValue = getTotalValue(); if ((supply = 0) & (totalValue = 0))

{brktAmount = Math.mulDiv(supply, value, totalValue);} else {brktAmount = value;}}

https://github.com/bracket-fi/core-contracts/commit/a7ed83faddbcc817b51715d66867fd830cdc7eeb

M-02 | Decreased NAV Frontrunning

Description

If the NAV_UPDATER calls updateNav with a newNav that is lower than the previous one, a user can
frontrun the update and trigger a withdrawal.

If the delay is only 1 epoch, then the user's shares will be valued at the previous epoch's NAV which
is higher, withdrawing more assets and avoiding the loss.

Recommendation

Consider enforcing that the delay is greater than 1 epoch, otherwise clearly document this risk and
using a private RPC.

Resolution

Bracket Team: The issue was resolved in commit 90315e6.

15

Category Severity Location Status

Frontrunning ● Medium BracketVault.sol Resolved

https://github.com/bracket-fi/core-contracts/commit/90315e607b28302f5da35df3d5bb3609a35576bd

M-03 | Manager Avoids Negative Performance Fees

Description

The claimManagerPerformanceFees function may be called once every 90 days and each time the
accruedManagerPerformanceFees are reset to zero.

This way a manager does not have to continue to pay down a large negative performance fee if it
has accrued and has been being paid off for a long duration of time.

However if a manager submits an updateNav call with a negative performance fee directly before the
90 period is over they can almost immediately avoid the negative performance fee by calling the
claimManagerPerformanceFees function again, whether on purpose or by accident.

Recommendation

Consider using a separate interval for clearing negative performance fees which resets every time a
new negative performance fee is added.

Resolution

Bracket Team: Pending.

16

Category Severity Location Status

Unexpected behavior ● Medium BracketVault.sol: 175 Pending

M-04 | Wrong Index For Whitelist/Blacklist

Description

Within functions whitelistCollateral and blacklistCollateral the index of the token is retrieved to
whitelist/blacklist the token respectively. The issue is that the collateralsIndex starts from 1, so the
whitelist/blacklist will be set for the wrong token: uint256 index = collateralsIndex[token];

Recommendation

Use function _getIndex instead since it subtracts the returned index by 1.

Resolution

Bracket Team: The issue was resolved in commit 6853354.

17

Category Severity Location Status

Logical Error ● Medium BrktEth.sol Resolved

https://github.com/bracket-fi/core-contracts/commit/6853354537c04b50d4f82193e489a0ce1d377cac

M-05 | Incorrect Withdrawable Assets

Description

The BracketVault.withdrawableAssets() should allow users to query the max amount of assets they
can withdraw from the vault.

However, this function will incorrectly subtract pending deposit shares when the lastDeposit has
occurred in a previous epoch.

The assets for a lastDeposit that occurred in a previous epoch should be represented as
withdrawable though since they will be minted to the user in the withdraw function.

Recommendation

Modify the withdrawableAssets view function such that the pendingDepositShares are only removed
from the withdrawable amount when the epoch of the lastDeposit is the same as the current epoch:

Resolution

Bracket Team: The issue was resolved in commit bf3f70b.

18

Category Severity Location Status

Logical Error ● Medium BracketVault.sol: 293 Resolved

PoC

function withdrawableAssets(address account)

external view returns (uint256) {uint256 lastNav = epoch = 0 ; 1e18 :

navs[epoch - 1]; Deposit memory _deposit = lastDeposit[user]; if

(_deposit.epoch == epoch) return convertToAssets(sharesOf(account) -

convertToShares(_deposit.assets, vanityNav), lastNav); else return

convertToAssets(sharesOf(account), lastNav);}

https://github.com/bracket-fi/core-contracts/commit/bf3f70b9580b631655df95be60a21219c4a916d9
https://github.com/GuardianAudits/bracket-2/blob/guardian/test/guardian/tests/GuardianTests.t.sol#L219

M-06 | totalValue DoS

Description

The BrktETH contract relies on the getTotalValue function to determine the total value of all
collateral denominated in ETH, which is critical for functions like minting and burning. The process
involves fetching each collateral’s value and summing the results.

However, if any one token’s price retrieval fails, the entire getTotalValue function reverts—causing all
dependent operations (e.g., minting, burning) to fail as well.

For instance, the EZETH token uses an external oracle that performs certain validations when
fetching its price, which could revert if those validations fail. This creates a single point of failure that
disrupts the contract’s functionality whenever a single token’s price feed encounters an issue.

Recommendation

Implement a fallback oracle for each token so that if the primary method reverts (e.g., due to
external validation errors), the contract can still fetch the token’s price.

This prevents the entire getTotalValue function—and consequently critical operations like minting or
burning—from halting when a single price feed fails.

Resolution

Bracket Team: Acknowledged.

19

Category Severity Location Status

DoS ● Medium BracketOracle.sol: 46 Acknowledged

M-07 | Manager Fees Withdrawn By Users

Description

In the _processDepositsWithdrawals function the available balance for withdrawal by the users is
based on the _getManagerAvailableBalance, which does not set aside the
accruedManagerPerformanceFees (if positive), accruedManagerTvlFees, and accruedBrktTvlFees.

If a manager has not claimed these fees in a significant amount of time, but then submits an
updateNav where they cannot fully cover all withdrawals for this epoch then the full manager
balance or approval amount is used up.

The fee amounts will still be tracked in the accruedBrktTvlFees, accruedManagerTvlFees, and
accruedManagerPerformanceFees variables, but the manager will not be able to claim these
amounts as the brktEth and brktEth approval has been removed from the manager address.

Recommendation

Consider reducing the available amount by the accruedManagerPerformanceFees (if positive),
accruedManagerTvlFees, and accruedBrktTvlFees in the _processDepositsWithdrawals function.

Resolution

Bracket Team: The issue was resolved in commit ffc20bb.

20

Category Severity Location Status

Logical Error ● Medium BracketVault.sol: 260 Resolved

https://github.com/bracket-fi/core-contracts/commit/ffc20bb03f8e66f396e3e4f9b43bee41855b1dbc

L-01 | Swap Can Have Equal In And Out Tokens

Description

Function swapCollateral lacks validation that tokenIn = tokenOut. In such a case, there could be an
early return not to waste gas on calculating the rebalance and transfers.

Recommendation

Early return if tokenIn = tokenOut

Resolution

Bracket Team: The issue was resolved in commit c78455d.

21

Category Severity Location Status

Validation ● Low BrktETH.sol: 155 Resolved

https://github.com/bracket-fi/core-contracts/commit/c78455d6b3bc6a36d9f9f856b160c119eda7233a

L-02 | Misvaluation Due To stETH-ETH Peg Assumption

Description

The _getWstethRate function calls the stEthPerToken() function in the WSTETH contract, which
returns the amount of stETH per wstETH.

This value is then treated as if stETH were pegged 1:1 to ETH. However, stETH can and has
previously depegged from ETH (Ref), making this assumption unreliable.

Recommendation

Use a reliable price feed, such as Chainlink’s stETH-ETH feed (Link), to accurately determine the ETH
value instead of assuming a one-to-one peg.

Resolution

Bracket Team: Acknowledged.

22

Category Severity Location Status

Oracles ● Low BracketOracle.sol: 58 Acknowledged

https://dune.com/LidoAnalytical/Curve-ETHstETH
https://data.chain.link/feeds/ethereum/mainnet/steth-eth

L-03 | Fees Unavailable For Claim

Description

Over time fees are accrued within the BracketVault: accruedManagerPerformanceFees,
accruedManagerTvlFees, and accruedBrktTvlFees.

However, there is no guarantee that there is sufficient brktETH balance for the fees to be claimed
because user withdrawals may decrease the manager's balance.

For example:
1. Nav is 1 ether,
2. Alice deposits 10 brktETH and gets 10 shares. She is the sole depositor.
3. Nav increases to 2 ether, with >0 fees accumulated.
4. Alice burns 10 shares to get 20 brktETH, which comes from the manager's balances.
5. Fee claim is attempted but manager does not have sufficient balance for the fee and causes a
ERC20InsufficientBalance revert.

Recommendation

Ensure managers are aware to set aside brktETH for fees.

Resolution

Bracket Team: Acknowledged.

23

Category Severity Location Status

Logical Error ● Low BracketVault.sol Acknowledged

L-04 | Lack Of Slippage Control

Description

The mint and burn functions in the BrktETH contract rely on the vault’s total collateral value to
determine the number of shares or collateral token a user will receive. Because the vault uses tokens
that can change in value at any time—for example, through rebases or slashings.

This can lead to unexpected outcomes, such as the user ending up with fewer shares minted, or
returning a different ratio of collateral when burning tokens.

Recommendation

Implement slippage control that allows users to specify acceptable thresholds.

Resolution

Bracket Team: The issue was resolved in commit b2c2c4a.

24

Category Severity Location Status

Slipagge ● Low BrktETH.sol: 64 Resolved

https://github.com/bracket-fi/core-contracts/commit/b2c2c4a176d4633dda724ad92eb3dddffbf10e36

L-05 | Unused Params

Description

The following param/error is not used in BracketVault contract:
• feeClaimer state variable
• DepositIsCurrentEpoch error

Recommendation

Remove unused code or consider adding it to the current implementation.

Resolution

Bracket Team: The issue was resolved in commit 8637d47.

25

Category Severity Location Status

Optimization ● Low BracketVault.sol Resolved

https://github.com/bracket-fi/core-contracts/commit/8637d47560a08313a1a552a3fd8fd07f163adb31

L-06 | Increased Gas Cost For Multiple Collaterals

Description

The BracketOracle currently supports 10 collateral tokens. In case all 10 are added and deposits are
non zero, the getTotalValue function will need to iterate through every token to fetch the rate, adding
around 270,000 gas, with Renzo's Staked ETH rate being the most gas intensive.

As a result, main actions will have an increased gas consumption:
• burn : 325671
• mint : 362535

As the protocol is deployed on the Ethereum mainnet , this gas cost can become a barrier for users
to invest in the BrktEth vault.

Recommendation

Consider this scenario when adding supported collaterals.

Resolution

Bracket Team: Acknowledged.

26

Category Severity Location Status

Configuration ● Low BrktETH.sol: 224 Acknowledged

L-07 | Adding Collateral Without Oracle Support

Description

There are ten collaterals currently supported in BracketOracle, but BrktETH.addCollateral does not
check if the collateral being added is currently supported. As the addCollateral is only called once, it
will be wise to make a call to getRate(token) to ensure its supported.

In the future, when new collaterals are added (i.e. apxETH, ETHx), this check will ensure
BracketOracle is updated first.

Recommendation

When adding a new collateral, consider executing getRate(token) to verify if the oracle supports it.

Resolution

Bracket Team: The issue was resolved in commit c7c0423.

27

Category Severity Location Status

Validation ● Low BrktETH.sol: 203 Resolved

https://github.com/bracket-fi/core-contracts/commit/c7c0423358773a5a919f6094f7ccd76942121685

L-08 | Vault Does Not Validate Zero Amounts

Description

During deposit and withdraw, the assets param is not validated, so it can be 0. Although there is no
major impact, the function does not revert and events are emitted, potentially causing issues in the
UI.

Recommendation

Consider validating for zero asset amount during deposit and withdraw.

Resolution

Bracket Team: The issue was resolved in commit 50e4814.

28

Category Severity Location Status

Validation ● Low BracketVault.sol: 198 Resolved

https://github.com/bracket-fi/core-contracts/commit/50e4814932bb76ba1dbbac9210d37c4f2dee895b

L-09 | Missing Admin Functions

Description

The manager address is set during vault initialization. However, if there is an issue with manager or
it's compromised, there is no admin function to update this address. Similarly, withdrawal delay is
set at initialization but can't be updated again.

Recommendation

Consider adding admin functions to update manager and withdrawalDelay.

Resolution

Bracket Team: The issue was resolved in commit c152859.

29

Category Severity Location Status

Configuration ● Low BracketVault.sol: 90 Resolved

https://github.com/bracket-fi/core-contracts/commit/c152859e08356daf76aab3776597b61f7c1589d5

L-10 | Unlicensed Smart Contracts

Description

The BracketVault, BracketOracle and BrktETH, contracts are currently marked as unlicensed, as
indicated by the SPDX license identifier at the top of the file: SPDX-License-Identifier: UNLICENSED

Using unlicensed contracts can lead to legal uncertainties and conflicts regarding the usage,
modification and distribution rights of the code.

Recommendation

It is recommended to choose and apply an appropriate open-source license to the smart contract.

Some options are:
1. MIT License: A permissive license that allows for reuse with minimal restrictions.
2. GNU General Public License (GPL): A copyleft license that ensures derivative works are also
open-source.
3. Apache License 2.0: A permissive license that provides an express grant of patent rights from
contributors to users.

Resolution

Bracket Team: Resolved.

30

Category Severity Location Status

Best practices ● Low Global Resolved

L-11 | balanceOf Includes Pending Amounts

Description

The balanceOf function relies on the sharesOf to determine the balance of a user.

The sharesOf function includes the pendingDepositShares which can include funds that the user has
not yet been minted from the lastDeposit and may not be able to presently mint in the case where
the lastDeposit.epoch = epoch.

As a result the balanceOf and sharesOf function reflects funds that are not available to the user and
may lead to confusion for users and integrators.

Recommendation

Be aware of this behavior, if it is expected then be sure to document this clearly for users and
integrators.

Resolution

Bracket Team: Acknowledged.

31

Category Severity Location Status

Unexpected behavior ● Low RebasingToken.sol: 17, 21 Acknowledged

L-12 | Vanity Nav Updated In Epoch 0

Description

The updateVanityNav function may be called to set the vanityNav to something other than 1e18
before the vault has been started with the startVault function. This may lead to unexpected behavior
and should not be a supported interaction.

Recommendation

Consider validating that the epoch is greater than 0 in the updateVanityNav function.

Resolution

Bracket Team: The issue was resolved in commit 664a697.

32

Category Severity Location Status

Validation ● Low BracketVault.sol: 154 Resolved

https://github.com/bracket-fi/core-contracts/commit/664a697224c2e9c6cba995402d784214e5d22792

L-13 | Lacking Pause Mechanism

Description

The owner of BrktETH is able to blacklist collaterals, preventing any further deposits. However, this
does not prevent collateral withdrawals. If one of the external protocols is compromised, it will
create a bank run, as users will try to withdraw the other collaterals not affected.

In this case, a pausing mechanism will help to address the situation and implement the appropriate
fixes. Pausing the protocol can also allow owner to prevent user actions during an upgrade or fix.

Recommendation

Consider adding a pausing mechanism, inheriting from OZ PausableUpgradeable and implement the
admin functions pause and unpause.

Resolution

Bracket Team: The issue was resolved in commit 003f154.

33

Category Severity Location Status

Best practices ● Low BrktETH.sol Resolved

https://github.com/bracket-fi/core-contracts/commit/003f154510a0eea3cb25c23ebe1befcd2cef0498

L-14 | Unnecessary Address(0) Check

Description

In the initialize function there is an address 0 check against all entries of the tokens array, however
the addCollateral function already implements such a check.

Recommendation

Remove the redundant address zero check in the initialize function for the tokens entries.

Resolution

Bracket Team: The issue was resolved in commit c519f90.

34

Category Severity Location Status

Optimization ● Low BrktEth.sol: 53 Resolved

https://github.com/bracket-fi/core-contracts/commit/c519f908a81f9d117454c39fa449beab7a1fd5f8

L-15 | Excessive Wait For Manager Withdrawals

Description

The manager will use brktETH from vault depositors for certain investment strategies. Therefore, the
brktETH tokens will need to be burned to extract the underlying collateral.

The issue relies on the withdrawal mechanism, as users will need to wait 5 days to be able to claim
the collateral. This creates a barrier for the manager and affects investments during this waiting
period.

Recommendation

Consider adding an exception for managers, either receiving the collateral immediately or reduce the
waiting period.

Resolution

Bracket Team: The issue was resolved in commit dcf04df.

35

Category Severity Location Status

Logical Error ● Low BrktETH.sol: 23 Resolved

https://github.com/bracket-fi/core-contracts/commit/dcf04df617a0e7745e433ec69458d331ef0a98ab

L-16 | Collateral DoS Risk

Description

The addCollateral function does not validate a maximum number of collateral tokens that can be
added to the array.

As a result the owner may on accident add too many collateral tokens over time which must all be
looped over in the getTotalValue function. This may cause operations to require more than the block
gas limit or at least be quite expensive to operate.

Recommendation

Consider adding a validation against a maximum number of supported collaterals. Additionally,
consider implementing functionality to be able to remove collateral tokens from the collaterals list
when they are blacklisted and have no deposits so that this does not become an issue over time.

Resolution

Bracket Team: The issue was resolved in commit 1bdc15e.

36

Category Severity Location Status

DoS ● Low BrktEth.sol: 203 Resolved

https://github.com/bracket-fi/core-contracts/commit/1bdc15e1d0eef2ab9bcda6db31601134475b1520

L-17 | Lacking Slippage Check Allows Griefing

Description

In the swapCollateral function there is no way for the caller to specify the worst rate they are willing
to accept for a swap.

There is no slippage at the bracket level, however the rate reported by some tokens may be
manipulated by a malicious actor who wishes to grief the owner who is making the swap through
bracket.

For example, the Renzo EZEth price may be manipulated by force sending Ether to the depositQueue
and withdrawQueue address.

Recommendation

Consider adding a maxAmountIn parameter to the swapCollateral function to allow the caller to
protect themselves from any potential griefing attacks that may apply to any arbitrary collateral
token.

Resolution

Bracket Team: The issue was resolved in commit d016167.

37

Category Severity Location Status

Griefing ● Low brktEth.sol: 155 Resolved

https://github.com/bracket-fi/core-contracts/commit/d016167010a3ccebaedb35fe915236ac44c181dd

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

38

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

39

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

