

Mozaic HopliteNFT
01/02/24

Trust
Security

Smart Contract Audit

Trust Security Mozaic HopliteNFT

Executive summary

Findings

Severity Total Fixed Acknowledged

High 0 - -

Medium 1 1 -

Low 0 - -

Centralization score

Centralized Decentralized

Signature

Category NFT

Audited file count 1

Lines of Code 82

Auditor Trust

Time period 27-30/01/24

0, High

1,
Medium

0, Low

FINDINGS

Trust Security Mozaic HopliteNFT

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 3

Versioning 3

Contact 3

INTRODUCTION 4

Scope 4

Repository details 4

About Trust Security 4

About the Auditors 4

Disclaimer 4

Methodology 5

QUALITATIVE ANALYSIS 6

FINDINGS 7

Medium severity findings 7

TRST-M-1 HopliteNFTs do not support per-token royalties 7

Additional recommendations 8

TRST-R-1 Refactor unchecked blocks 8

TRST-R-2 Remove unused code 8

TRST-R-3 Improve synchronization of data 8

TRST-R-4 Improve validation of input 8

TRST-R-5 Improve protocol visibility 9

Centralization risks 10

TRST-CR-1 Censorship-related risks 10

TRST-CR-2 LayerZero-related risks 10

Systemic risks 11

TRST-SR-1 Royalty mechanism assumes marketplace honors it 11

TRST-SR-2 Layer Zero integration risks 11

Trust Security Mozaic HopliteNFT

Document properties

Versioning

Version Date Description

0.1 30/01/24 Client report

0.2 01/02/24 Mitigation review

Contact

Trust

trust@trust-security.xyz

Trust Security Mozaic HopliteNFT

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• HopliteNFT.sol

Repository details

• Repository URL: https://github.com/Mozaic-fi/Hoplite-NFT

• Commit hash: b6d3dc2b90974846415493f06064eb5f3c56af53

• Mitigation commit hash: a8599dbf7955c7d72c7c741d55f5bda43a58851e

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Since its inception it has safeguarded over 30 clients

through private services and over 30 additional projects through bug bounty submissions.

About the Auditors

Trust has established a dominating presence in the smart contract security ecosystem since

2022. He is a resident on the Immunefi, Sherlock and C4 leaderboards and is now focused in

auditing and managing audit teams under Trust Security. When taking time off auditing & bug

hunting, he enjoys assessing bounty contests in C4 as a Supreme Court judge.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Trust Security Mozaic HopliteNFT

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security Mozaic HopliteNFT

Qualitative analysis

Metric Rating Comments
Code complexity

Excellent

Project kept code as
simple as possible,
reducing attack risks

Documentation

Good Project is mostly very well

documented.

Best practices

Good

Project mostly adheres to
industry standards.

Centralization risks

Moderate The owner is able to affect
significant functionality of
the protocol.

Trust Security Mozaic HopliteNFT

Findings

Medium severity findings

TRST-M-1 HopliteNFTs do not support per-token royalties

• Category: Logical flaws

• Source: HopliteNFT.sol

• Status: Fixed

Description

HopliteNFTs conform to the ERC2981 and inherit from Open Zeppelin’s ERC2981 contract. By

design, it allows NFTs to set the default royalty fee through _setDefaultRoyalty() and specific

tokenID royalties through _setTokenRoyalty().

Both functions are internal, the first one is exposed by Hoplite to the owner’s control through

the function below:

function adjustRoyalty(uint96 newRoyalty) public onlyOwner {

 require(newRoyalty <= MAX_ROYALTY, "Too high royalty");

 require(royaltyHandler != address(0), "Set the royaltyHandler");

 _setDefaultRoyalty(royaltyHandler, newRoyalty);

 emit NewRoyalty(newRoyalty);

}

The issue is that per-token royalty is never exposed. As a result, all tokens will have the same

fee. Through discussions with the client this was highlighted to be a requirement of the NFT.

Recommended mitigation

Introduce an onlyOwner function which will perform the _setTokenRoyalty() call.

Team response

Fixed.

Mitigation review

Additional functions like setTokenRoyalty() from ERC2981.sol are now exposed correctly.

Trust Security Mozaic HopliteNFT

Additional recommendations

TRST-R-1 Refactor unchecked blocks

The code uses unchecked blocks when there are no arithmetic operations. In these instances,

there is no effect to wrapping a line in such blocks.

unchecked {

 whiteList[_whiteListUsers[i]] = false;

}

TRST-R-2 Remove unused code

The code snippets below were observed to never be used. It is recommended to remove them.

error TooHigh();

modifier onlyRoyaltyHandler() {

 require(msg.sender == royaltyHandler, "caller must be

royaltyHandler.");

 _;

}

TRST-R-3 Improve synchronization of data

The owner can change the royaltyHandler, which will receive royalties for the NFT.

function setRoyaltyHandler(address _handler) public onlyOwner {

 require(_handler != address(0), "Invalid handler address");

 royaltyHandler = _handler;

}

Despite the handler being updated, it will not actually have an effect until adjustRoyalty() is

called, which triggers the underlying _setDefaultRoyalty() function. It would be easy for

developers to assume the second call is unnecessary when the royalty fee percentage remains

unchanged.

TRST-R-4 Improve validation of input

The whitelist is managed by the two functions below.

function updateWhiteList(address[] memory _whiteListUsers) external

onlyOwner {

 require(_whiteListUsers.length > 0, "Invalid Param");

 for(uint i=0; i<_whiteListUsers.length; i++) {

 require(_whiteListUsers[i] != address(0), "Invalid Address");

 unchecked {

Trust Security Mozaic HopliteNFT

 whiteList[_whiteListUsers[i]] = true;

 }

 }

}

function removeWhiteList(address[] memory _whiteListUsers) external

onlyOwner {

 require(_whiteListUsers.length > 0, "Invalid Param");

 for(uint i=0; i<_whiteListUsers.length; i++) {

 require(_whiteListUsers[i] != address(0), "Invalid Address");

 unchecked {

 whiteList[_whiteListUsers[i]] = false;

 }

 }

}

It is observed that it never validates that each operation actually flips the status of the target

user. Presumably it would be an error to do so, so it is recommended to check for it to detect

configuration mistakes.

TRST-R-5 Improve protocol visibility

Consider emitting additional events to improve the transparency of the protocol, for the

following functions:

function setBaseURI(string memory baseURI) public onlyOwner {

 baseTokenURI = baseURI;

}

function setRoyaltyHandler(address _handler) public onlyOwner {

 require(_handler != address(0), "Invalid handler address");

 royaltyHandler = _handler;

}

function updateGoLiveDate(uint256 _newLiveDate) external onlyOwner {

 goLiveDate = _newLiveDate;

}

Trust Security Mozaic HopliteNFT

Centralization risks

TRST-CR-1 Censorship-related risks

The transfer of NFTs can be restricted by the owner through two vectors:

- Adding and removing of users from the whitelist

- Setting the goLiveDate timestamp

A possible improvement would be to only be able to set the goLiveDate before the protocol

is live.

TRST-CR-2 LayerZero-related risks

The ONFT owner has significant permissions relating to the bridging-layer properties. In case

of a compromised account, many issues can manifest, not limited to:

- Shutdown of the cross-chain functionality.

- Rogue minting of NFTs on the local chain by forging of incoming cross-chain messages.

Trust Security Mozaic HopliteNFT

Systemic risks

TRST-SR-1 Royalty mechanism assumes marketplace honors it

The NFT contract does not actually enforce the payment of royalties. This property is similar

to most ERC2981-conforming contracts, but it should still be noted that the operation relies

on the good faith of marketplaces and possible peer-to-peer exchanges.

TRST-SR-2 Layer Zero integration risks

The NFT contract relies on the underlying Layer Zero network to relay messages between

chains. In the event a Layer Zero compromise or hack occurs, it could enable malicious minting

of tokens.

		2024-02-01T22:34:57+0200
	Trust

