
Audit
Opentrade

Presented by:

OtterSec contact@osec.io

Nicholas R. Putra nicholas@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:nicholas@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-OTD-ADV-00 [crit] | Loan Address Validation . 6
OS-OTD-ADV-01 [high] | Incorrect Timestamp Calculation . 8
OS-OTD-ADV-02 [high] | Improper Access Control Modifier . 9
OS-OTD-ADV-03 [med] | Event ID Collision . 10
OS-OTD-ADV-04 [low] | Incorrect Function Usage . 11
OS-OTD-ADV-05 [low] | Invalid Account State . 12

05 General Findings 13
OS-OTD-SUG-00 | Inconsistent Receiver Check . 14
OS-OTD-SUG-01 | Code Refactoring . 15
OS-OTD-SUG-02 | Unauthorized Loan Assignment . 16

Appendices

A Vulnerability Rating Scale 17

B Procedure 18

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 18

01 | Executive Summary

Overview
Opentrade engaged OtterSec to perform an assessment of the ot-perimeter-protocol program.
This assessment was conducted between July 26th and September 4th, 2023. Follow-up reviews were
performed up until August 29th, 2024. Formore information on our auditingmethodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 9 findings in total.

In particular, we found a critical vulnerability relating to the lack of address validation during the loan
rollover process,where theargument containing theaddress for theprior loan is not adequately checked to
ensurewhether it indeed points to a valid loan contract or not. Thismay allow the pool admin to introduce
a custom contract capable of altering specific loan parameters, impacting the integrity of the rollover
process, and enabling the admin to benefit frommanipulating the distribution of assets (OS-OTD-ADV-00).

Additionally, we identified another issue concerning the formula employed to calculate a particular
timestamp, which specifies the deadline for requesting early redemption of assets from the loan (OS-OTD-
ADV-01) and also highlighted the lack of access control mechanism in a certain functionality (OS-OTD-
ADV-02).

We also provided recommendations concerning an inaccurate check in thewithdrawOperations for ERC-20
tokens (OS-OTD-SUG-00) and proposedminor code adjustments to the code base (OS-OTD-SUG-01).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 18

02 | Scope
The source codewas delivered to us in a git repository at github.com/tomniermann/ot-perimeter-protocol.
This audit was performed against branch OtterSecAudit and commit bf4f0fb. We did followup reviews up
until 792cba6.

A brief description of the programs is as follows.

Name Description

ot-perimeter-protocol The protocol is comprised of an open-source collection of standards designed
to facilitate the smooth transfer of stablecoin capital on secure, open, and
permissionless networks.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 18

https://github.com/tomniermann/ot-perimeter-protocol
https://github.com/tomniermann/ot-perimeter-protocol/tree/OtterSecAudit
https://github.com/opentrade-io/ot-perimeter/commit/bf4f0fb69babff000a2af64c279fc3e05e588a11
https://github.com/opentrade-io/ot-perimeter/commit/792cba68db7bab9bc31d273b3b2c8b9cbed2ae85

03 | Findings
Overall, we reported 9 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 1
High 2

Medium 1
Low 2

Informational 3

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 18

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-OTD-ADV-00 Critical Resolved Lack of address validation forpriorLoan contract address
before initiating the rollover process.

OS-OTD-ADV-01 High Resolved Erroneous calculation within Loan.

OS-OTD-ADV-02 High Resolved Improper Access Control Modifiers in some functions of
WithdrawControllerFlex and PoolFlex.

OS-OTD-ADV-03 Medium Resolved Generated Withdraw Event ID may experience collisions.

OS-OTD-ADV-04 Low Resolved Incorrect usage of updateNonBusinessDays in
PoolFlex results in constant reversion.

OS-OTD-ADV-05 Low Resolved An oversight in releaseWithdrawal causes an invalid
state to be stored in IPoolLenderTotals.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 18

Opentrade Audit 04 | Vulnerabilities

OS-OTD-ADV-00 [crit] | Loan Address Validation

Description

initiateRolloverwithin pool is responsible for initiating the rollover process for a loan within the
liquidity pool. As showcased in the code below, this method internally calls
PoolLib::calculateRollover, which takes in priorLoan to calculate the
assetsFromPriorToNextLoan value, which represents the assets that must be transferred from the
prior loan to the new one.

contracts/Pool.sol SOLIDITY

function initiateRollover(
address loan,
address priorLoan

) external onlyNotPaused onlyPoolController {
uint256 _outstandingLoanPrincipals;
uint256 assetsFromPool;
uint256 assetsFromPriorToNextLoan;
uint256 totalSupply;
uint256 assetToAReturnToPool;
(

_outstandingLoanPrincipals,
assetsFromPool,
assetsFromPriorToNextLoan,
totalSupply,
assetToAReturnToPool

) = PoolLib.calculateRollover(
priorLoan,
address(_liquidityAsset),
address(this),
_accountings.outstandingLoanPrincipals

);
[...]

}

The vulnerability arises due to initiateRollover not performing validation to confirm whether the
priorLoan address corresponds to a valid Loan contract. Consequently, this oversight may result in
a scenario where a malicious PoolAdminmanipulates the priorLoan contract, returning incorrect
values while calculating the rollover parameters.

Thus, the malicious PoolAdminmay provide their own address as the priorLoan contract, possess-
ing custom behavior that is intentionally crafted tomanipulate the values returned during the rollover
calculation; this subsequently results in an inaccurate distribution of assets and shares between the old
and new loans, ultimately favoring the admin’s interests.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 18

Opentrade Audit 04 | Vulnerabilities

Proof of Concept

1. A malicious PoolAdmin calls initiateRolloverwith priorLoan set to an address which
points to a custom contract made by them.

2. This address for priorLoan is passed to PoolLib::calculateRollover alongside other
required parameters.

3. In PoolLib::calculateRollover, while calculating assetsFromPriorToNextLoan, it
recieves the values for principal and interest from the priorLoan contract.

4. The priorLoan contract returns incorrect values of principal and interest, resulting in
assetsFromPriorToNextLoan being significantly higher than expected, ultimately benefiting
the PoolAdmin.

Remediation

Ensure initiateRollover includes adequate validation checks to confirm that the priorLoan
address points to a valid Loan contract with the expected behavior.

contracts/Pool.sol SOLIDITY

function initiateRollover(
address loan,
address priorLoan

) external onlyNotPaused onlyPoolController {
require(loan == requestedLoan && priorLoan == activeLoan, "Pool: invalid
loan");↪→

uint256 _outstandingLoanPrincipals;
uint256 assetsFromPool;
uint256 assetsFromPriorToNextLoan;
uint256 totalSupply;
uint256 assetToAReturnToPool;
(

_outstandingLoanPrincipals,
assetsFromPool,
assetsFromPriorToNextLoan,
totalSupply,
assetToAReturnToPool

) = PoolLib.calculateRollover(
priorLoan,
address(_liquidityAsset),
address(this),
_accountings.outstandingLoanPrincipals

);
[...]

}

Patch

Fixed in e20b41a.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 18

https://github.com/tomniermann/ot-perimeter-protocol/commit/e20b41a526f6f64b9b451cd11c527fd405a8b595

Opentrade Audit 04 | Vulnerabilities

OS-OTD-ADV-01 [high] | Incorrect Timestamp Calculation

Description

calculateSchedulewithinLoan is crucial in determining and configuring several critical timestamps
that delineate different phases within the loan life cycle.

contracts/Loan.sol SOLIDITY

function calculateSchedule() internal {
[...]
earlyRedeemRequestClosingTimestamp =

accrualStartTimestamp +
(settings.durationDays -

settings.transferInWindowDurationDays -
settings.transferInWindowDurationDays) *

(1 days);
[...]

}

The vulnerability emerges from a calculation of earlyRedeemRequestClosingTimestampwithin
calculateSchedule. This timestamp represents the deadline for requesting early redemption of
assets from the loan. The issue is present in the flawed formula utilized for calculations. Specifically,
it subtracts transferInWindowDurationDays from itself, as shown in the above code snippet,
resulting in a redundant operation and assigning an incorrect value to the timestamp.

Remediation

Change the formula utilized for the calculation of earlyRedeemRequestClosingTimestamp such
that transferInWindowDurationDays is added to transferOutWindowDurationDays.

contracts/Loan.sol SOLIDITY

function calculateSchedule() internal {
[...]
earlyRedeemRequestClosingTimestamp =

accrualStartTimestamp +
(settings.durationDays -

settings.transferInWindowDurationDays -
settings.transferOutWindowDurationDays) *

(1 days);
[...]

}

Patch

Fixed in 6249748.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 18

https://github.com/tomniermann/ot-perimeter-protocol/commit/6249748e07d66eb43e66195db17778544a688354

Opentrade Audit 04 | Vulnerabilities

OS-OTD-ADV-02 [high] | Improper Access Control Modifier

Description

WithdrawControllerFlex and PoolFlex define public functions intended to manage the flow of
the Flexible Term USD Vault. However, the implementation of some of these functions exhibits a similar
oversight. Specifically, this oversight relates to the lack of appropriate access control modifiers on certain
functions within these components. Below is the list of functions where this issue was identified:

• PoolFlex.sol

– feesPaidDown

• WithdrawControllerFlex.sol

– drawDownToBorrowerWallet
– deposit
– repayLoans
– releaseWithdrawal

As a result, any user may call these functions at any time, regardless of their authentication status or
permission levels. Unauthorized access to these functions may result in unauthorized actions and manip-
ulation of the contracts’ stored state.

Remediation

Add the correct modifiers to the functions.

Patch

Fixed in a6873ca and 58a65db.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 18

https://github.com/opentrade-io/ot-perimeter/commit/a6873ca2d2f9a14a1e55cb4ac3d3d842c1d5a43e
https://github.com/opentrade-io/ot-perimeter/commit/58a65dbec6dbd20ac058069c0fdbfc8d4036a27b

Opentrade Audit 04 | Vulnerabilities

OS-OTD-ADV-03 [med]| Event ID Collision

Description

When a lender wants to request the borrower to repay some of the loan, they will call requestRedeem,
which eventually calls performRequest defined in WithdrawControllerFlex. This action will
store the request event asIPoolLenderWithdrawEvent and save it in the contract’s state. This event
is identified with an ID called eventId, generated by generateWithdrawEventId.

contracts/controller/WithdrawDepositControllerFlex.sol SOLIDITY

function generateWithdrawEventId() internal view returns (uint256) {
return

uint256(keccak256(abi.encodePacked(block.timestamp, msg.sender)));
}

However, this generation code does not guarantee a unique eventId each time it is called, especially
when the same lender executes multiple performRequest actions within a single block. This may
result in an ID collision.

Remediation

Change the generation parameters by adding a new parameter guaranteed to be unique for each call.

Patch

Fixed in 3cee443.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 18

https://github.com/opentrade-io/ot-perimeter/commit/3cee443e333ab467f747b6e44b56084227bc9944

Opentrade Audit 04 | Vulnerabilities

OS-OTD-ADV-04 [low] | Incorrect Function Usage

Description

BusinessDayRegistry contains a mapping called _isHolidaywhich stores non-business days of
theprotocol. Adminsmayupdate thesebycallingupdateNonBusinessDaysdefined inPoolFlex.sol,
whicheventuallywill call the function inWithdrawControllerFlex.solnamedupdateNonBusinessDays.

contracts/PoolFlex.sol SOLIDITY

function updateNonBusinessDays(uint64[] memory _timestamps) external {
updatePoolData();
return businessDayRegistry.updateNonBusinessDays(_timestamps);

}

contracts/BusinessDayRegistry.sol SOLIDITY

function updateNonBusinessDays(
uint64[] memory _timestamps

) public onlyPoolAdmin {
[...]

}

However, updateNonBusinessDays in BusinessDayRegistry.sol has amodifier that restricts
its execution to the pool’s admin. This call will invariably revert since PoolFlex is not an admin.

Remediation

Change the modifier of updateNonBusinessDays in BusinessDayRegistry to onlyPool, and
add the onlyPoolAdminmodifier to updateNonBusinessDays in PoolFlex.

Patch

Fixed in f360fe8.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 18

https://github.com/opentrade-io/ot-perimeter/commit/f360fe823d5e3e6496bd6f255609390691bf8d2e

Opentrade Audit 04 | Vulnerabilities

OS-OTD-ADV-05 [low] | Invalid Account State

Description

When a lender requests the borrower to repay their loans, the contract updates certain states related to
the request and stores them in the mapping of IPoolLenderTotals. These states should be cleared
via releaseWithdrawal once the request is resolved.

contracts/controller/WithdrawDepositControllerFlex.sol SOLIDITY

function releaseWithdrawal(
uint256 eventId

) public returns (IPoolLenderWithdrawEvent memory ev) {
ev = findEventAndRemove(eventId);

_dailyWithdrawTotals[ev.transferOutDayTimestamp].requestedAssets -= ev
.requestedAssets;

_dailyWithdrawTotals[ev.transferOutDayTimestamp].requestedShares -= ev
.requestedShares;

_poolWithdrawTotals.requestedAssets -= ev.requestedAssets;

_poolWithdrawTotals.requestedShares -= ev.requestedShares;

_lenderTotals[ev.lender].requestedAssets -= ev.requestedAssets;

_lenderTotals[ev.lender].requestedShares -= ev.requestedShares;
_lenderTotals[ev.lender].assetsWithdrawn += ev.requestedAssets;

}

However, releaseWithdrawal currently omits to update the state variables
assetsDueForWithdrawsandsharesDueForWithdraws, resulting in inconsistency in the stored
state.

Remediation

Update releaseWithdrawal to properly adjust the assetsDueForWithdraws and
sharesDueForWithdraws.

Patch

Fixed in ea45c91.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 18

https://github.com/opentrade-io/ot-perimeter/commit/ea45c91f1a75fc2596cd29fe3bd4e20c5a41fd6b

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-OTD-SUG-00 withdrawERC20 implements an incorrect check while verifying the receiver
address.

OS-OTD-SUG-01 Recommendations regarding minor modifications to the code.

OS-OTD-SUG-02 LoanCreated is set to external, and lacks any restrictions allowing anyone to
set createdLoan.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 18

Opentrade Audit 05 | General Findings

OS-OTD-SUG-00 | Inconsistent Receiver Check

Description

In withdrawERC20, if the vaultType is equal to BorrowerVault, it checks if receivermatches
the borrower vault specified in the associated pool’s withdraw controller.

contracts/Vault.sol SOLIDITY

function withdrawERC20(
address asset,
uint256 amount,
address receiver

) external override onlyOwner onlyNotPaused {
require(receiver != address(0), "Vault: 0 add");
if (vaultType == IVaultType.BorrowerVault) {

require(
receiver == IWithdrawController(_owner).borrowerVault(),
"Vault: Invalid receiver"

);
}
IERC20Upgradeable(asset).safeTransfer(receiver, amount);
emit WithdrewERC20(asset, amount, receiver);

}

The check compares with the borrower vault’s address, but in the context of withdrawing ERC-20 tokens,
receivermay be the vault itself (when withdrawing to the vault rather than the borrower wallet). This
suggests that the current check considers the receiver valid if it is the vault itself instead of checking for
borrowerWallet, resulting in unintended behavior.

Remediation

Ensure the require statement in withdrawERC20 checks the borrowerWallet address.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 18

Opentrade Audit 05 | General Findings

OS-OTD-SUG-01 | Code Refactoring

Description

1. The _pool variable in Vault is declared, but not initialized. When isBorrowerVault is called,
the attempt to access IPool(_pool)will result in an uninitialized variable, eventually reverting.

2. In PoolAccessControl, there is a typographical error in the name of the onlyTOSAccpeted
modifier where Accepted is incorrectly spelled as Accpeted.

3. Reconsider the purpose of withdrawERC721 in Vault, as the code base does not utilize ERC721
tokens anywhere.

4. WithdrawDepositControllerFlex contains duplicated functions, namely repayLoans
and repayLoan.

5. ThetransferOutDayTimestampofdailyWithdrawTotal is assigned the samevalue twice
in the function performRequest.

Remediation

1. Ensure that _pool is properly initialized, either through the constructor or a separate initialization
function.

2. Correct the typographical error in PoolAccessControl.

3. Remove withdrawERC721 from Vault if it is unnecessary.

4. Remove one of the duplicated functions.

5. Remove the if block containing the redundant assignment.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 18

Opentrade Audit 05 | General Findings

OS-OTD-SUG-02 | Unauthorized Loan Assignment

Description

LoanCreatedwithin pool lacks any access control mechanism andmay be called by anyone, enabling
them to set the createdLoan variable to any address. The only check performed in LoanCreated
is if (loan != msg.sender), which is insufficient to ensure the caller has permission to set the
createdLoan variable.

contracts/Pool.sol SOLIDITY

function loanCreated(address loan) external {
if (loan != msg.sender) revert InvalidAccess();
emit LoanCreated(loan);
createdLoan = loan;

}

Thus, an attacker may abuse this vulnerability to manipulate the createdLoan state. The value of
createdLoan is crucial for tracking the state of the contract, especially in the context of loans. Unautho-
rized modifications may result in a loss of data integrity and compromise the reliability of the contract’s
state.

Remediation

Implement an access restriction for LoanCreated, such that only the authorized addresses are able to
invoke it.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 18

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 18

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 18

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-OTD-ADV-00 [crit] | Loan Address Validation
	OS-OTD-ADV-01 [high] | Incorrect Timestamp Calculation
	OS-OTD-ADV-02 [high] | Improper Access Control Modifier
	OS-OTD-ADV-03 [med] | Event ID Collision
	OS-OTD-ADV-04 [low] | Incorrect Function Usage
	OS-OTD-ADV-05 [low] | Invalid Account State

	General Findings
	OS-OTD-SUG-00 | Inconsistent Receiver Check
	OS-OTD-SUG-01 | Code Refactoring
	OS-OTD-SUG-02 | Unauthorized Loan Assignment

	Appendices
	Vulnerability Rating Scale
	Procedure

