

Mozaic.Fi xMozStaking
12/02/2024

Trust
Security

Smart Contract Audit

Trust Security Mozaic.Fi xMozStaking

Executive summary

Findings

Severity Total Fixed Acknowledged Open
High 1 1 0 0

Medium 7 5 2 0
Low 2 2 0 0

Centralization score

Centralized Decentralized

Signature

Category Staking

Audited file count 1

Lines of Code 277
Auditor MiloTruck

Time period 11/12/24 -
20/12/24

1, High

7,
Medium

2, Low

FINDINGS

Trust Security Mozaic.Fi xMozStaking

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 5

About Trust Security 5

About the Auditors 5

Disclaimer 5

Methodology 6

QUALITATIVE ANALYSIS 7

FINDINGS 8

High severity findings 8
TRST-H-1: Decreasing user balances in stakingInfo breaks the reward debt mechanism 8

Medium severity findings 10
TRST-M-1: Reward accounting breaks for tokens re-added using setRewardConfig() 10
TRST-M-2: Removing reward tokens causes stakers to lose part of their rewards 11
TRST-M-3: Rewards distributed per week will be smaller than rewardAmountsPerWeek 12
TRST-M-4: Accruing rewards weekly allows users to gain rewards without fully staking 13
TRST-M-5: Reentrancy risk in distributeReward() can lead to double claiming of rewards 15
TRST-M-6: Reentrancy risk in claimReward() and unstake() 15
TRST-M-7: Unsafe token transfers in safeRewardTransfer() 16

Low severity findings 19
TRST-L-1: distributeReward() breaks if one of the token transfers reverts 19
TRST-L-2: getClaimableAmounts() doesn’t synchronize the user’s balance 19

Additional recommendations 21
TRST-R-1: Use 10_000 for better readability 21
TRST-R-2: xMoz can be declared immutable 21
TRST-R-3: Duplicated rewardDebts logic should be in an internal function 21
TRST-R-4: Gas savings in accumulateReward() 21
TRST-R-5: Check if treasury fee is non-zero in safeRewardTransfer() 22

Centralization risks 23
TRST-CR-1: Missing maximum number of reward tokens in setRewardConfig() 23

Trust Security Mozaic.Fi xMozStaking

TRST-CR-2: xMozStaking risks 23

Trust Security Mozaic.Fi xMozStaking

Document properties

Versioning

Version Date Description

0.1 20/12/23 Client report

0.2 18/01/24 Mitigation review
0.3 12/02/24 Mitigation review #2

Contact

Trust

trust@trust-security.xyz

Trust Security Mozaic.Fi xMozStaking

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• contracts/xMozStaking.sol

Repository details

• Repository URL: https://github.com/Mozaic-fi/moz-staking

• Commit hash: 7c103f5921f5656c29861c3af68d0256cee75e5b

• Mitigation review commit hash: 1a6e718c9db748d30eb53988fafe29a6a60a2d3e

• Mitigation review #2 commit hash: f0acb279fbcf50495a9cae9029e6cb2224178db2

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Since its inception it has safeguarded over 30 clients

through private services and over 30 additional projects through bug bounty submissions.

About the Auditors

MiloTruck is a blockchain security researcher who specializes in smart contract security. Since

March 2022, he has competed in over 25 auditing contests on Code4rena and won several of

them against the best auditors in the field. He has also found multiple critical bugs in live

protocols on Immunefi and is an active judge on Code4rena.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

https://github.com/Mozaic-fi/moz-staking

Trust Security Mozaic.Fi xMozStaking

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security Mozaic.Fi xMozStaking

Qualitative analysis

Metric Rating Comments
Code complexity

Moderate Project is not complex, but

some code could have
been simplified.

Documentation

Mediocre Project currently has
limited documentation.

Best practices

Good

Project consistently
adheres to industry
standards.

Centralization risks

Good

Project has limited
centralization risks.

Trust Security Mozaic.Fi xMozStaking

Findings

High severity findings

TRST-H-1: Decreasing user balances in stakingInfo breaks the reward debt mechanism

• Category: Logical flaws

• Source: xMozStaking.sol

• Status: Fixed

Description

Whenever a user calls a state-changing function, synchronizeXMozBalance() is called to reduce

the user’s balance in stakingInfo to match their actual xMoz balance.

xMozStaking.sol#L221-L226

// Check if the staked xMoz balance is greater than the actual xMoz balance

if (stakingInfo[user] > userXMozBalance) {

 // Adjust the total staked amount and update the staking info

 totalStakedAmount -= (stakingInfo[user] - userXMozBalance);

 stakingInfo[user] = userXMozBalance;

}

However, decreasing the staker’s balance using synchronizeXMozBalance() breaks the reward

debt mechanism in accumulateReward().

rewardDebts is calculated for users based on their stakingInfo balance:

xMozStaking.sol#L119

rewardDebts[msg.sender][rewardTokens[i]] = stakingInfo[msg.sender]

 .mul(accUnitPerShare[rewardTokens[i]]).div(1e30);

It is then subtracted from the user’s accrued rewards in accumulateReward():

xMozStaking.sol#L161-L165

uint256 userStake = stakingInfo[msg.sender];

uint256 accPerShare = accUnitPerShare[token];

uint256 userRewardDebt = rewardDebts[msg.sender][token];

uint256 rewardAmount = userStake.mul(accPerShare).div(1e30).sub(userRewardDebt);

Since userRewardDebt is based on the user’s balance before it was decreased while userStake

is the decreased balance, it becomes possible for userRewardDebt to be greater than

userStake * accPerShare. For example:

• Assume accUnitPerShare = 1e30.

• Alice has 100e18 xMoz and she calls stake() for her entire balance:

o stakingInfo = 100e18

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L221-L226
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L119
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L161-L165

Trust Security Mozaic.Fi xMozStaking

o Therefore, rewardDebts = 100e18 * 1e30 / 1e30 = 100e18

• 50e18 of Alice’s xMoz balance is burnt.

• Now, if Alice calls unstake():

o synchronizeXMozBalance() reduces stakingInfo to 50e18.

o In accumulateReward(), userStake is 50e18 while userRewardDebt is 100e18.

o Thus, the rewardAmount calculation reverts with an arithmetic underflow.

Since accumulateReward() is called in stake(), unstake() and claimReward(), all three functions

will always revert for the user. These functions will only be callable when userStake *

accPerShare increases above userRewardDebt, which could take extremely long depending

on:

1. How much the user’s balance was decreased by synchronizeXMozBalance()

2. The speed at which rewards accrue for the user.

Recommended mitigation

Instead of calculating and storing the user’s reward amount as debt whenever stake(),

unstake() or claimReward() is called, consider storing accPerUnitShare at that point in time.

In accumulateReward(), the amount of rewards can be calculated with the difference between

the stored accPerUnitShare and the current accPerUnitShare.

For example:

• Assume accUnitPerShare = 1e30

• User calls stake() for 100e18 xMoz:

o stakingInfo = 100e18

o Store the current accUnitPerShare, which is 1e30.

• Some time passes, accUnitPerShare increases to 1.5e30.

• User calls claimReward():

o Their reward amount is calculated as 100e18 * (1.5e30 – 1e30) / 1e30, which

is 50e18.

This approach does not use the staker’s previous balance, as such, it will still work even if

synchronizeXMozBalance() decreases stakingInfo.

Team response

Fixed as recommended.

Mitigation review

Verified, the contract now tracks by the user’s accUnitPerShare instead of reward debt, which

removes the risk of an arithmetic underflow occurring.

Trust Security Mozaic.Fi xMozStaking

Medium severity findings

TRST-M-1: Reward accounting breaks for tokens re-added using setRewardConfig()

• Category: Logical flaws

• Source: xMozStaking.sol

• Status: Fixed

Description

In setRewardConfig(), if a reward token was previously in rewardTokens but is not in

_rewardTokens, it will be removed and staked users will no longer accrue it as rewards.

However, when reward tokens are removed, accUnitPerShare, which stores the accrued

amount of tokens per share, is not deleted.

This becomes a problem if a previously removed reward token is re -added to rewardTokens,

since accUnitPerShare contains an old value but rewardDebts will be 0 for newly staked users.

xMozStaking.sol#L118-L120

for(uint i = 0; i < rewardTokens.length; i++) {

 rewardDebts[msg.sender][rewardTokens[i]] = stakingInfo[msg.sender]

 .mul(accUnitPerShare[rewardTokens[i]]).div(1e30);

}

For example:

• Assume xMoz is a reward token and its accUnitPerShare is currently 1e30.

• Owner calls setRewardConfig() and removes xMoz from rewardTokens.

• Alice calls stake() to stake 100e18 xMoz:

o Since xMoz is not in rewardTokens, rewardDebts is not set for xMoz.

• Owner calls setRewardConfig() to add xMoz back to rewardTokens again.

• Alice calls claimReward(). In accumulateReward():

o userStake = 100e18, accPerShare = 1e48, userRewardDebt = 0

o Therefore, she gets 100e18 xMoz as rewards.

Due to xMoz’s old accUnitPerShare, Alice has gained 100 xMoz tokens although no time has

passed since she staked.

Recommended mitigation

Ensure that tokens are not removed and then added back to rewardTokens. This can be

achieved by refactoring the code to make it possible for tokens to be added to rewardTokens,

but not removed.

Team response

Fixed by removing the ability to remove reward tokens. setRewardConfig() can only be called

once to initialize rewardTokens, afterwards, only addRewardToken() can be used to add new

reward tokens.

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L118-L120

Trust Security Mozaic.Fi xMozStaking

Mitigation review

addRewardToken() currently does not call update() in its logic. This makes it possible for users

to accrue rewards from the newly added reward token instantly after addRewardToken() is

called, for example:

• Assume lastUpdateTime was two weeks ago.

• addRewardToken() is called to add USDC as a new token. Since update() is not called,

lastUpdateTime remains at two weeks ago.

• A user calls update() – this accrues two weeks’ worth USDC as rewards since

lastUpdateTime is two weeks ago, even though USDC was just added.

Consider calling update() before pushing the new reward token into rewardTokens:

xMozStaking.sol#L90-L92

 require(isExist == false, "XMozStaking: reward token already exist");

+ update();

 rewardTokens.push(_rewardToken);

 rewardAmountsPerWeek[_rewardToken] = _rewardAmountPerWeek;

Team response

Fixed as recommended.

Mitigation review #2

Verified, update() is now called in addRewardToken() before adding new reward tokens.

TRST-M-2: Removing reward tokens causes stakers to lose part of their rewards

• Category: Logical flaws

• Source: xMozStaking.sol

• Status: Fixed

Description

In setRewardConfig(), the owner has the ability to add and remove reward tokens from

rewardTokens.

accumulateReward() loops through rewardTokens to calculate rewards for users:

xMozStaking.sol#L158-L168

function accumulateReward() internal {

 for (uint256 i = 0; i < rewardTokens.length; i++) {

 // ...

 uint256 rewardAmount = userStake.mul(accPerShare)

 .div(1e30).sub(userRewardDebt);

 accumulatedRewardAmounts[msg.sender][token] += rewardAmount;

 }

}

https://github.com/Mozaic-fi/moz-staking/blob/1a6e718c9db748d30eb53988fafe29a6a60a2d3e/contracts/xMozStaking.sol#L81-L93
https://github.com/Mozaic-fi/moz-staking/blob/1a6e718c9db748d30eb53988fafe29a6a60a2d3e/contracts/xMozStaking.sol#L90-L92
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L158-L168

Trust Security Mozaic.Fi xMozStaking

Additionally, distributeReward() loops through rewardTokens when sending rewards to users:

xMozStaking.sol#L170-L181

function distributeReward() internal {

 for (uint256 i = 0; i < rewardTokens.length; i++) {

 // ...

 if (userRewardAmount > 0) {

 safeRewardTransfer(token, msg.sender, userRewardAmount);

 accumulatedRewardAmounts[msg.sender][token] = 0;

 }

 }

}

Once a reward token is removed from rewardTokens, users will no longer be able to accrue

or claim the token as rewards. This causes a loss of yield for stakers as they might have leftover

amounts from reward periods before the token was removed.

Recommended mitigation

Consider refactoring the code to ensure the owner cannot remove tokens from

rewardTokens.

Team response

Fixed by removing the ability to remove reward tokens. setRewardConfig() can only be called

once to initialize rewardTokens, afterwards, only addRewardToken() can be used to add new

reward tokens.

Mitigation review

Verified, the scenario described above is no longer possible as the owner cannot remove

reward tokens.

TRST-M-3: Rewards distributed per week will be smaller than rewardAmountsPerWeek

• Category: Logical flaws

• Source: xMozStaking.sol

• Status: Acknowledged

Description

In update(), the amount of rewards to distribute is divided by totalStakedAmount:

xMozStaking.sol#L208-L213

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L170-L181
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L208-L213

Trust Security Mozaic.Fi xMozStaking

uint256 supply = totalStakedAmount;

for (uint256 i = 0; i < rewardTokens.length; i++) {

 uint256 rewardInPeriod = durationInPeriods

 .mul(rewardAmountsPerWeek[rewardTokens[i]]);

 uint256 rewardPerShare = rewardInPeriod.mul(1e30).div(supply);

 accUnitPerShare[rewardTokens[i]] += rewardPerShare;

}

Since xMoz is not transferred to the contract when staking, a staker’s xMoz balance can

decrease while staked. Afterwards, when the user calls a state -changing function,

synchronizeXMozBalance() reduces the user’s staked amount and totalStakedAmount

accordingly.

However, since synchronizeXMozBalance() is only called when the user interacts with the

contract, totalStakedAmount will always be inflated above the actual total amount of

everyone’s stake.

For example:

• Alice calls stake() for 1000 xMoz tokens.

• 500 of her tokens are burnt.

• Before she calls any function in the contract, totalStakedAmount is 1000 but the

actual total amount staked is 500.

As such, dividing by totalStakedAmount as shown above will cause accUnitPerShare to be

smaller than what it should be, resulting in less rewards for stakers.

Recommended mitigation

Consider documenting that rewardAmountsPerWeek is not the exact amount of rewards

distributed to stakers weekly.

Team response

Acknowledged.

TRST-M-4: Accruing rewards weekly allows users to gain rewards without fully staking

• Category: Logical flaws

• Source: xMozStaking.sol

• Status: Acknowledged

Description

In update(), rewards only accrue when one or more weeks has passed since lastUpdateTime:

xMozStaking.sol#L199-L216

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L199-L216

Trust Security Mozaic.Fi xMozStaking

function update() internal {

 uint256 _delta = block.timestamp - lastUpdateTime;

 uint256 durationInPeriods = _delta / 1 weeks;

 if(durationInPeriods > 0) {

 // Code to update lastUpdateTime and accPerUnitShare here

 }

}

This makes it possible for users to stake without updating lastUpdateTime or

accPerUnitShare. An attacker can abuse this to earn rewards without staking for a prolonged

duration by doing the following:

• Wait until _delta is slightly below 1 week.

• Call stake(), and since durationInPeriods is 0, the update is skipped.

• Wait a short while until _delta increases above 1 week.

• Call unstake(), which updates accPerUnitShare and accumulates one week’s worth of

rewards.

By repeating this every week, an attacker can essentially earn the same amount of rewards as

other stakers without actually staking for any duration.

Recommended mitigation

Consider distributing rewards per block, instead of weekly.

Team response

Fixed by allowing users to call unstake() only after they have staked for a week with this check.

Mitigation review

This fix is not comprehensive. Users will still be able to gain one additional week’s worth of

rewards by staking right before durationInPeriods increases from zero to one. For example:

• Wait until timeSinceLastUpdate is slightly below 1 week.

• Call stake(), and since durationInPeriods is 0, the update is skipped.

• Wait a short while until _ timeSinceLastUpdate increases above 1 week.

• Call claimRewards(), which accumulates one week’s worth of rewards to the user.

• Wait another 1 week to unstake, which gives the user another week’s worth of

rewards.

• As such, the user receives 2 weeks’ worth of rewards although he has only staked for

1 week.

Consider implementing the fix recommended above instead.

Team response

Acknowledged. We are okay with this since users are still incentivized to convert Moz into

xMoz tokens.

https://github.com/Mozaic-fi/moz-staking/blob/1a6e718c9db748d30eb53988fafe29a6a60a2d3e/contracts/xMozStaking.sol#L147

Trust Security Mozaic.Fi xMozStaking

TRST-M-5: Reentrancy risk in distributeReward() can lead to double claiming of rewards

• Category: Reentrancy attacks

• Source: xMozStaking.sol

• Status: Fixed

Description

distributeReward() transfers tokens to users before resetting accumulatedRewardAmounts

in a loop:

xMozStaking.sol#L170-L181

function distributeReward() internal {

 for (uint256 i = 0; i < rewardTokens.length; i++) {

 // ...

 if (userRewardAmount > 0) {

 safeRewardTransfer(token, msg.sender, userRewardAmount);

 accumulatedRewardAmounts[msg.sender][token] = 0;

 }

 }

}

This is a violation of the Checks-Effects-Interaction pattern. If token happens to be one that

gives the receiver execution flow, such as an ERC-777 token, it becomes possible for an

attacker to drain all of the contract’s reward tokens by re -entering the claimReward()

function.

Recommended mitigation

Perform the token transfer after resetting accumulatedRewardAmounts:

 if (userRewardAmount > 0) {

- safeRewardTransfer(token, msg.sender, userRewardAmount);

 accumulatedRewardAmounts[msg.sender][token] = 0;

+ safeRewardTransfer(token, msg.sender, userRewardAmount);

 }

Team response

Fixed as recommended.

Mitigation review

Verified, accumulatedRewardAmounts is now updated before transferring tokens.

TRST-M-6: Reentrancy risk in claimReward() and unstake()

• Category: Reentrancy attacks

• Source: xMozStaking.sol

• Status: Fixed

Description

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L170-L181
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol

Trust Security Mozaic.Fi xMozStaking

claimReward() transfers tokens to users using distributeReward() before updating

lastAccUnitPerShare in a loop:

xMozStaking.sol#L171-L177

distributeReward();

// Update user's reward debts

for (uint256 i = 0; i < rewardTokens.length; i++) {

 address token = rewardTokens[i];

 lastAccUnitPerShare[msg.sender][token] = accUnitPerShare[token];

}

This is a violation of the Checks-Effects-Interaction pattern.

If one of the reward tokens happens to be one that gives the receiver execution flow, such as

an ERC-777 token, it becomes possible for an attacker to drain all of the contract’s reward

tokens by re-entering the claimReward() function.

This applies to unstake() as well since it follows the same pattern.

Recommended mitigation

In claimReward() and unstake(), consider calling distributeReward() after updating

lastAccUnitPerShare:

- distributeReward();

 // Update user's reward debts

 for (uint256 i = 0; i < rewardTokens.length; i++) {

 address token = rewardTokens[i];

 lastAccUnitPerShare[msg.sender][token] = accUnitPerShare[token];

 }

+ distributeReward();

Team response

Fixed by refactoring the logic that updates lastAccUnitPerShare into the

updateLastAccUnitPerShare() function, and calling it before distributeReward() in both

functions.

Mitigation review

Verified, distributeReward() is now called after lastAccUnitPerShare so exploiting reentrancy

is no longer possible.

TRST-M-7: Unsafe token transfers in safeRewardTransfer()

• Category: Logical flaws

• Source: xMozStaking.sol

• Status: Fixed

Description

https://github.com/Mozaic-fi/moz-staking/blob/1a6e718c9db748d30eb53988fafe29a6a60a2d3e/contracts/xMozStaking.sol#L171-L177
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol

Trust Security Mozaic.Fi xMozStaking

safeRewardTransfer() uses transfer() wrapped in a try-catch to transfer reward tokens:

xMozStaking.sol#L224-L234

// Use try-catch to handle transfer failures

if(rewardAmount > 0) {

 try IERC20(_rewardToken).transfer(_to, rewardAmount) {

 } catch {}

}

// Check if fee is greater than 0 before transferring to treasury

if (fee > 0) {

 try IERC20(_rewardToken).transfer(treasury, fee) {

 } catch {}

}

However, this will revert for ERC-20 tokens that do not return a bool when transfer() is called,

such as USDT, since the IERC20 interface expects a bool to be returned.

Additionally, the transfer() could silently fail when it is not supposed to – for example, if a user

calls distributeReward() with too little gas and transfer() reverts with an out-of-gas error,

distributeReward() would not revert. This results in a loss of rewards for users.

Recommended mitigation

Consider using the following function to perform token transfers in safeRewardTransfer():

function _safeTransfer(address token, address to, uint256 value) internal {

 require(token.code.length != 0, "token address has no code");

 (bool success, bytes memory data) = token.call(

 abi.encodeCall(IERC20.transfer, (to, value))

);

 for (uint256 i; i < skippedTokens.length; i++) {

 if (token == skippedTokens[i]) {

 return;

 }

 }

 require(success, "transfer reverted");

 require(data.length == 0 || abi.decode(data, (bool)), "transfer returned false");

}

Note that skippedTokens is an address[] state variable for the admin to specify which tokens

that are allowed to fail. For example, if USDC blacklisted the xMozStaking contract, its address

should be added to skippedTokens.

Team response

Fixed as recommended.

https://github.com/Mozaic-fi/moz-staking/blob/1a6e718c9db748d30eb53988fafe29a6a60a2d3e/contracts/xMozStaking.sol#L224-L234

Trust Security Mozaic.Fi xMozStaking

Mitigation review

Verified, reward token transfers are now performed using the _safeTransfer() function.

Trust Security Mozaic.Fi xMozStaking

Low severity findings

TRST-L-1: distributeReward() breaks if one of the token transfers reverts

• Category: Logical flaws

• Source: xMozStaking.sol

• Status: Fixed

Description

The only way for users to claim their rewards is through claimReward(), which sends reward

tokens to users using distributeReward() in a loop:

xMozStaking.sol#L170-L181

function distributeReward() internal {

 for (uint256 i = 0; i < rewardTokens.length; i++) {

 // ...

 if (userRewardAmount > 0) {

 safeRewardTransfer(token, msg.sender, userRewardAmount);

 accumulatedRewardAmounts[msg.sender][token] = 0;

 }

 }

}

If one of the token transfers happen to revert (e.g. reward token is USDC, the user becomes

blacklisted), the entire call to claimReward() will revert. This makes it impossible for the user

to claim rewards that are in other tokens.

Recommended mitigation

Consider adding a function to allow users to claim rewards by tokens individually:

function claimRewardForToken(address token) external {

 uint256 rewardAmount = accumulatedRewardAmounts[msg.sender][token];

 safeRewardTransfer(token, msg.sender, rewardAmount);

 accumulatedRewardAmounts[msg.sender][token] = 0;

}

Team response

Fixed by adding the recommended function.

Mitigation review

Verified, claimRewardForToken() now allows users to claim their rewards by tokens instead of

all at once.

TRST-L-2: getClaimableAmounts() doesn’t synchronize the user’s balance

• Category: Logical flaws

• Source: xMozStaking.sol

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L170-L181
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol

Trust Security Mozaic.Fi xMozStaking

• Status: Fixed

Description

getClaimableAmounts() is meant to calculate the amount of reward tokens a user will receive

if he calls claimReward().

However, the function does not synchronize the user’s balance when calculating reward

amounts, which claimReward() does. As such, getClaimableAmounts() might return reward

amounts higher than the actual claimable amount.

Recommended mitigation

Use the user’s actual xMoz balance instead of his staked amount if stakingInfo is larger:

xMozStaking.sol#L276-L278

+ uint256 xMozBalance = IERC20(xMoz).balanceOf(user);

+ uint256 stakedBalance = stakingInfo[user];

+ uint256 userStake = stakedBalance > xMozBalance ? xMozBalance : stakedBalance;

 for (uint256 i = 0; i < rewardTokens.length; i++) {

 address token = rewardTokens[i];

- uint256 userStake = stakingInfo[user];

Team response

Fixed as recommended.

Mitigation review

The recommended fix was not comprehensive, it did not decrease supply although the user’s

staked amount is decreased. This is what happens when synchronizeXMozBalance() is called,

as such, the calculated claimable amount will be different.

Consider applying the following fix instead:

xMozStaking.sol#L315-L316

 uint256 supply = totalStakedAmount;

+ uint256 stakedBalance = stakingInfo[user];

+ uint256 xMozBalance = IERC20(xMoz).balanceOf(user);

+ if (stakedBalance > xMozBalance) {

+ supply -= stakedBalance - xMozBalance;

+ stakedBalance = xMozBalance;

+ }

 for (uint256 i = 0; i < rewardTokens.length; i++) {

Team response

Fixed as recommended.

Mitigation review #2

Verified, supply is now decreased alongside the user’s stakedBalance.

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L276-L278
https://github.com/Mozaic-fi/moz-staking/blob/1a6e718c9db748d30eb53988fafe29a6a60a2d3e/contracts/xMozStaking.sol#L315-L316

Trust Security Mozaic.Fi xMozStaking

Additional recommendations

TRST-R-1: Use 10_000 for better readability

Consider using 10_000 for readability:

xMozStaking.sol#L14

- uint256 public constant BP_DENOMINATOR = 10000;

+ uint256 public constant BP_DENOMINATOR = 10_000;

TRST-R-2: xMoz can be declared immutable

Since xMoz is changed only in the constructor, it can be declared as immutable:

xMozStaking.sol#L32-L33

 // Address of the staked token

- address public xMoz;

+ address public immutable xMoz;

TRST-R-3: Duplicated rewardDebts logic should be in an internal function

The following code appears in three functions – stake(), unstake() and claimReward().

// Update user's reward debts

for (uint256 i = 0; i < rewardTokens.length; i++) {

 address token = rewardTokens[i];

 uint256 userRewardDebt = stakingInfo[msg.sender]

 .mul(accUnitPerShare[token]).div(1e30);

 rewardDebts[msg.sender][token] = userRewardDebt;

}

Consider moving the code above into an internal function, and using that internal function in

stake(), unstake() and claimReward().

TRST-R-4: Gas savings in accumulateReward()

In accumulateReward(), the following line can be moved outside the loop:

xMozStaking.sol#L158-L162

 function accumulateReward() internal {

+ uint256 userStake = stakingInfo[msg.sender];

 for (uint256 i = 0; i < rewardTokens.length; i++) {

 address token = rewardTokens[i];

- uint256 userStake = stakingInfo[msg.sender];

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L14
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L32-L33
https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L158-L162

Trust Security Mozaic.Fi xMozStaking

TRST-R-5: Check if treasury fee is non-zero in safeRewardTransfer()

In safeRewardTransfer(), consider checking if treasuryFeeBP is non-zero to prevent

performing any unnecessary transfers:

xMozStaking.sol#L188-L193

- if (treasury != address(0)) {

+ if (treasury != address(0) && treasuryFeeBP != 0) {

 // Code to transfer reward and treasury fee

 } else {

https://github.com/Mozaic-fi/moz-staking/blob/7c103f5921f5656c29861c3af68d0256cee75e5b/contracts/xMozStaking.sol#L188-L193

Trust Security Mozaic.Fi xMozStaking

Centralization risks

TRST-CR-1: Missing maximum number of reward tokens in setRewardConfig()

The owner of the xMozStaking contract sets rewardTokens using setRewardConfig(). All state-

changing functions in the contract, such as update() or stake(), iterate through rewardTokens

with a for-loop. However, if the owner ever adds too many addresses to rewardTokens, there

is a possibility of these functions consuming too much gas and reverting with an out-of-gas

error. This results in DOS for the contract as all user functions will not be callable.

Consider implementing a maximum length for rewardTokens, which determines the

maximum number of reward tokens for the contract.

TRST-CR-2: xMozStaking risks

xMozStaking.sol should be considered partially centralized.

The owner address can:

• Set rewardTokens and rewardAmountsPerWeek, which allows the owner to prevent

users from receiving rewards, even if they have already accrued.

• As mentioned in TRST-CR-1, the owner can also DOS all user functions in the contract.

		2024-02-12T13:53:26+0200
	Trust

