

Mozaic Token
20/09/2023

Trust
Security

Smart Contract Audit

Trust Security Mozaic Token

Executive summary

Findings

Severity Total Fixed Acknowledged

High 1 1 -

Medium 6 3 3

Low 2 2 -

Centralization score

Centralized Decentralized

Signature

Category Tokens

Audited file count 1

Lines of Code 341

Auditor Trust

Time period 27/08-09/01

1, High

6,
Medium

2, Low

FINDINGS

Trust Security Mozaic Token

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 3

Versioning 3

Contact 3

INTRODUCTION 4

Scope 4

Repository details 4

About Trust Security 4

Disclaimer 4

Methodology 4

QUALITATIVE ANALYSIS 5

FINDINGS 6

High severity findings 6

TRST-H-1 Once minted, a Uniswap position can never be withdrawn 6

Medium severity findings 6

TRST-M-1 Funds allocated for liquidity will stay in the token contract 6

TRST-M-2 The swapTokensForEth() function is vulnerable to a sandwich attack 7

TRST-M-3 Liquidity minting functions are vulnerable to sandwich attacks 8

TRST-M-4 The swapping functionality is incorrectly paired to transfers, which creates DOS concerns

 9

TRST-M-5 The swapBack() function is not functional due to failing to unwrap WETH 9

TRST-M-6 ETH transfer to the treasury is not validated 10

Low severity findings 11

TRST-L-1 withdrawStuckMoz() uses deprecated transfer() 11

TRST-L-2 Popular ERC20 tokens could be stuck in the contract 11

Centralization risks 13

TRST-CR-1 Owner has control of all funds in MozToken 13

TRST-CR-2 Owner can control fees up to 10% 13

Trust Security Mozaic Token

Document properties

Versioning

Version Date Description

0.1 20/09/2023 Client report

Contact

Trust

trust@trust-security.xyz

Trust Security Mozaic Token

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• MozToken.sol

Repository details

• Repository URL: https://github.com/Mozaic-fi/moz-staking

• Commit hash: 83e18e86e9487376388c68b51acee881bcf4701d

• Mitigation review hash: 05ea1c85182d77f019a7119482222ec8c82e2f70

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Trust is the leading auditor at competitive auditing

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is

currently a Code4rena judge.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

https://github.com/Mozaic-fi/moz-staking

Trust Security Mozaic Token

Qualitative analysis

Metric Rating Comments
Code complexity

Good

Project kept code as
simple as possible,
reducing attack risks

Documentation

Good Project is mostly well

documented.

Best practices

Good

Project is aware of
industry standards and
mostly follows them.

Centralization risks

Moderate The owner possesses some
concerning privileges

Trust Security Mozaic Token

Findings

High severity findings

TRST-H-1 Once minted, a Uniswap position can never be withdrawn

• Category: Logical flaws

• Source: MozToken.sol

• Status: Fixed

Description

In Mozaic token, the tax income is used to hold a Uniswap Mozaic/WETH LP position.

function addLiquidity(uint256 tokenAmount, uint256 wethAmount)

private {

 // Create new position if positionTokenId is not set

 if(positionTokenId == type(uint256).max) {

 positionTokenId = mintNewPosition(tokenAmount, wethAmount);

 } else {

 // Claim fee for the position

 collectAllFees(positionTokenId);

 // Add liquidity

 increaseLiquidityCurrentRange(positionTokenId, tokenAmount,

wethAmount);

 }

}

An issue arises as the tax contract does not support burning of the minted LP liquidity. This

means governance is never able to cash out an ever-increasing amount of value.

Recommended mitigation

Incorporate a burning mechanism, only callable through governance.

Team response

Fixed.

Mitigation review

The code now has a decreaseLiquidityCurrentRange() function, callable by governance.

Medium severity findings

TRST-M-1 Funds allocated for liquidity will stay in the token contract

• Category: Logical flaws

• Source: MozToken.sol

• Status: Acknowledged

Trust Security Mozaic Token

Description

In the swapBack() function, Moz tokens are split to treasury tokens and liquidity tokens.

Treasury tokens are all converted to ETH and sent to the treasury, while the liquidity tokens

are partially swapped to ETH and deposited as liquidity.

if (liquidityTokens > 0 && ethForLiquidity > 0) {

 addLiquidity(liquidityTokens, ethForLiquidity);

 emit SwapAndLiquify(

 amountToSwapForETH,

 ethForLiquidity,

 tokensForLiquidity

);

}

The issue is that when depositing liquidity to Uniswap-v3, it's unlikely that all the liquidity

tokens will be consumed. Anything that stays in the contract will not be marked as pending

for future liquidity. This applies to both the ETH and Moz portions of the liquidity.

The effect is potentially a much lower distribution of funds sent to liquidity than intended.

Recommended mitigation

Store amount of liquidity owed in state variables and attempt to dispatch them on the next

call to swapBack().

Team response

Acknowledged. Funds not used for adding liquidity will be available in the MozToken contract.

TRST-M-2 The swapTokensForEth() function is vulnerable to a sandwich attack

• Category: MEV attacks

• Source: MozToken.sol

• Status: Acknowledged

Description

The swapTokensForEth() function will swap the input amount of Moz for Eth at spot price.

ISwapRouter.ExactInputSingleParams memory params = ISwapRouter

.ExactInputSingleParams({

tokenIn: address(this),

tokenOut: WETH,

fee: 3000,

recipient: address(this),

deadline: block.timestamp,

amountIn: tokenAmount,

amountOutMinimum: 0,

sqrtPriceLimitX96: 0

});

ISwapRouter(SwapRouter).exactInputSingle(params);

Note that the amountOutMinimum parameter provided to Uniswap is 0, allowing unlimited

slippage.

Trust Security Mozaic Token

An attacker can perform the following sandwich attack on a swapBack() call:

1. Perform a large Moz to WETH trade, dropping the value of Moz

2. Insert the victim TX, which would receive close to zero WETH for the trade

3. Perform a large WETH to Moz trade with the WETH from trade (1), pocketing a large

amount of Moz which were traded at unfair pricing.

Note that this attack is easily performable on public mempool blockchains, but as Arbitrum

has a centralized sequencer as of now, severity is reduced to medium. As the MozToken is

planned to be deployed on other chains, and Arbitrum sequencer will eventually be

decentralized, we highly recommend the issue to be addressed.

Recommended mitigation

Receive a slippage amount as an argument or compute it with an on-chain oracle.

Team response

Acknowledged.

TRST-M-3 Liquidity minting functions are vulnerable to sandwich attacks

• Category: MEV attacks

• Source: MozToken.sol

• Status: Acknowledged

Description

Liquidity is added to the MozToken's Uniswap position as shown below:

INonfungiblePositionManager.IncreaseLiquidityParams

memory params = INonfungiblePositionManager.IncreaseLiquidityParams({

tokenId: tokenId,

amount0Desired: amount0ToAdd,

amount1Desired: amount1ToAdd,

amount0Min: 0,

amount1Min: 0,

deadline: block.timestamp

});

nonfungiblePositionManager.increaseLiquidity(

 params

);

Note that when providing liquidity, it is important to provide slippage parameters for amount

of tokens deposited. An attacker could manipulate the pool pricing to make the MozToken

swap at any ratio they desire and profit using a similar sandwich attack to the one explained

in M-2.

Recommended mitigation

Provide a tight spread in amount0Min,amount1Min which should be very close to the

"amount to add" variables.

Team response

Trust Security Mozaic Token

Acknowledged.

TRST-M-4 The swapping functionality is incorrectly paired to transfers, which creates

DOS concerns

• Category: DOS attacks

• Source: MozToken.sol

• Status: Fixed

Description

In MozToken, whenever a transfer occurs and the Moz balance is above a threshold, the

swapBack() function is called to handle swapping and adding liquidity for the protocol.

However, the coupling of simple transfer requests and Uniswap position management

introduces liveness issues. A caller may not provide enough gas for the swapBack()

functionality, if at time of TX creation the swapBack() call was not scheduled, yet new tax

tokens were collected to tip the scales. Also, there could be different reasons why the

swapBack() call could revert, like slippage checks, and it's important not to disrupt the

sensitive transferring functionality in case that occurs.

Recommended mitigation

Separate the swapBack() function and do not trigger it from transfer flows.

Team response

Fixed.

Mitigation review

Transfers now no longer trigger the swapBack() call.

TRST-M-5 The swapBack() function is not functional due to failing to unwrap WETH

• Category: ETH/WETH confusion

• Source: MozToken.sol

• Status: Fixed

Description

The swapBack() function calculates the amount of ETH gained from swapping Moz tokens as

seen below:

uint256 initialETHBalance = address(this).balance;

swapTokensForEth(amountToSwapForETH);

uint256 ethBalance = address(this).balance - initialETHBalance;

uint256 ethForTreasury = (ethBalance * tokensForTreasury) /

(totalTokensToSwap - (tokensForLiquidity / 2));

uint256 ethForLiquidity = ethBalance - ethForTreasury;

Trust Security Mozaic Token

Importantly, the swapTokensForEth() function swaps Moz into WETH and does not unwrap

them. Therefore, the ethBalance calculated will be zero.

function swapTokensForEth(uint256 tokenAmount) private {

 _approve(address(this), SwapRouter, tokenAmount);

 ISwapRouter.ExactInputSingleParams memory params = ISwapRouter

 .ExactInputSingleParams({

 tokenIn: address(this),

 tokenOut: WETH,

 fee: 3000,

 recipient: address(this),

 deadline: block.timestamp,

 amountIn: tokenAmount,

 amountOutMinimum: 0,

 sqrtPriceLimitX96: 0

 });

 ISwapRouter(SwapRouter).exactInputSingle(params);

}

Therefore, all funds for the treasury and liquidity will remain in the MozToken contract. They

can still be rescued using the withdrawStuckToken() function.

Recommended mitigation

Handle ETH/WETH conversion carefully.

Team response

Fixed.

Mitigation review

The code has been refactored to handle almost everything in WETH, and performs wrapping

correctly.

TRST-M-6 ETH transfer to the treasury is not validated

• Category: Validation issues

• Source: MozToken.sol

• Status: Fixed

Description

In swapBack(), ETH is transferred to the treasury.

(success,) = address(treasury).call{value: ethForTreasury}("");

The function never verifies the transfer has succeeded. If the call reverts, there would be

excess ETH in the MozToken contract.

Recommended mitigation

Verify success==True after the call.

Team response

Trust Security Mozaic Token

Fixed.

Mitigation review

The issue has been addressed.

Low severity findings

TRST-L-1 withdrawStuckMoz() uses deprecated transfer()

• Category: Logical flaws

• Source: MozToken.sol

• Status: Fixed

Description

In withdrawStuckMoz(), the remaining ETH balance is sent to the contract owner.

function withdrawStuckMoz() external onlyOwner {

 uint256 balance = IERC20(address(this)).balanceOf(address(this));

 IERC20(address(this)).transfer(msg.sender, balance);

 payable(msg.sender).transfer(address(this).balance);

}

It is frowned upon to use the transfer() call for Eth transfers, as it translated to a fixed 2300

gas stipend. As gas costs for opcodes change, the receiver's code may not be able to handle

the transfer properly.

Recommended mitigation

Use the ".call" transfer variant to pass gas safely to the receiver.

Team response

Fixed.

Mitigation review

Suggested fix has been applied.

TRST-L-2 Popular ERC20 tokens could be stuck in the contract

• Category: ERC20 compatibility issues

• Source: MozToken.sol

• Status: Fixed

Description

The MozToken owner can rescue tokens accidentally sent to the contract.

function withdrawStuckToken(address _token, address _to) external

onlyOwner {

https://consensys.io/diligence/blog/2019/09/stop-using-soliditys-transfer-now/

Trust Security Mozaic Token

 require(_token != address(0), "_token address cannot be 0");

 uint256 _contractBalance =

IERC20(_token).balanceOf(address(this));

 IERC20(_token).transfer(_to, _contractBalance);

}

Note that it uses the standard ERC20 transfer() call. However, there are hundreds of tokens

like BNB and USDT which would revert on this call, because they have different function

signatures. This would make such tokens permanently stuck in the MozToken contract.

Recommended mitigation

It is recommended to use OpenZeppelin's safeTransfer() variant.

Team response

Fixed.

Mitigation review

Arbitrary tokens can no longer be rescued, so this issue is not relevant.

https://github.com/d-xo/weird-erc20#missing-return-values

Trust Security Mozaic Token

Centralization risks

TRST-CR-1 Owner has control of all funds in MozToken

The MozToken is implemented so that governance has ultimate control over the tax revenue.

Owner can:

1. Choose the treasury address

2. Burn all supplied Moz/ETH liquidity

3. Exfiltrate any Moz or ETH residing in the contract

TRST-CR-2 Owner can control fees up to 10%

The owner can set up fees for Moz transfers up to 10% of the transferred amount. Note that

the split between liquidity fee and treasury fee is not strictly enforced at the code level.

		2023-09-20T18:30:43+0200
	Trust

