
Prepared for

Bracket Labs Group SA

Prepared by
Nipun Gupta
AyazMammadov
Zellic

April 19, 2024

Bracket Fi Escrow
Smart Contract Security Assessment



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Bracket Fi Escrow 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Reentrancy in withdrawals 11

3.2. Centralization Risk 13

3.3. Nonpayable bridgeTokenConnext function 16

3.4. Nonpayable bridgeTokenArb function 18

3.5. Allowance given to incorrect address 20

4. Discussion 21

4.1. MultipleMerkle tree leaves 22

Zellic © 2024 ← Back to Contents Page 2 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

5. ThreatModel 22

5.1. Module: BridgeEscrow.sol 23

5.2. Module: EscrowBase.sol 26

5.3. Module: MainEscrow.sol 30

6. Assessment Results 32

6.1. Disclaimer 33

Zellic © 2024 ← Back to Contents Page 3 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 33

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Bracket Labs Group SA from April 16th and April 18th,
2024. During this engagement, Zellic reviewedBracket Fi Escrow's code for security vulnerabilities,
design issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are there any issues in the validation of theMerkle tree proofs?
• Can funds be drained in the escrow contract?
• Does the escrow interact correctly with the contract?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

Duringourassessmenton thescopedBracketFi Escrowcontracts,wediscoveredfivefindings. One
critical issue was found. Threewere of medium impact and onewas of low impact.

Additionally, Zellic recorded its notesandobservations fromtheassessment forBracket LabsGroup
SA's benefit in the Discussion section (4. ↗).

Zellic © 2024 ← Back to Contents Page 5 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 1

■ High 0

■ Medium 3

■ Low 1

■ Informational 0

Zellic © 2024 ← Back to Contents Page 6 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

2. Introduction 2.1. About Bracket Fi Escrow

Bracket Labs Group SA contributed the following description of Bracket Fi Escrow:

Bracket’s Escrow contracts aims to collect Liquid Staking Tokens (LSTs) in an escrow on both
Layer 1 (L1) Ethereum and Layer 2 (L2) Arbitrum for a designated period in order to accumulate
points for users until an escrow break event occurs.

Users are permitted to deposit and withdraw their funds any time until the escrow is broken.
Once escrow is broke, the funds will be used to mint brktETH, where they will serve as collat-
eral, backing brktETH’s value, users will be able to burn brktETH in exchange for the collateral
any time they want.

brktETH will then be deposited into the escrow contract, where user will be able to claim an
amount of brktETHwith the same value of their deposits through amerkle tree distribution.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look

Zellic © 2024 ← Back to Contents Page 7 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

2.3. Scope

The engagement involved a review of the following targets:

Bracket Fi EscrowContracts

Repository https://github.com/bracket-fi/escrow_contract ↗

Version escrow_contract: cf207cc18097500a283a1f89a98d5de42523819a

Programs • BridgeEscrow.sol
• EscrowBase.sol
• MainEscrow.sol

Type Solidity

Platform EVM-compatible

2.4. Project Overview

Zellic was contracted to perform a security assessment with two consultants for a total of four
person-days. The assessment was conducted over the course of two calendar days.

Zellic © 2024 ← Back to Contents Page 9 of 33

https://github.com/bracket-fi/escrow_contract


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Nipun Gupta
Engineer
nipun@zellic.io ↗

AyazMammadov
Engineer
ayaz@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

April 16, 2024 Kick-off call

April 16, 2024 Start of primary review period

April 18, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 33

mailto:chad@zellic.io
mailto:nipun@zellic.io
mailto:ayaz@zellic.io


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

3. Detailed Findings 3.1. Reentrancy in withdrawals

Target EscrowBase

Category Business Logic Severity Critical

Likelihood High Impact Critical

Description

The function withdraw is responsible for the withdrawals of tokens from the escrow contract. The
function first checks if there is enough balance in the usersBalance for the caller, then unwraps the
token if unwrap is true, and finally decreases the amount from the usersBalancemapping and to-
talStaked.

If the rebase token is ETH_ADDRESS, the function will unwrap WETH to ETH and send the tokens to
the user via the msg.sender.call{value: amount}(""); call. In this function, the checks-effects-
interactions pattern is broken, as the interaction (i.e., the transfer of the amount to the caller) is hap-
peningbefore theeffects (i.e., the deductionof the amount). Furthermore, the amount is deducted in
an unchecked block, which leads to underflow in the balance, and thus the function does not revert
when the amount subtracted is more than the balance.

function withdraw(address token, uint256 amount, bool unwrap)
external onlyNotBroke returns (uint256) {
if (amount == 0) revert ZeroAmount();

EscrowBaseStorage storage s = _getStorage();

uint256 balance = s.usersBalance[msg.sender][token];
if (amount > balance) revert NotEnoughAmountStaked(balance); //[1] <-
checks

uint256 finalAmt = amount;
if (unwrap) {

//...
} else if (tokenInfo.rebase == ETH_ADDRESS) {

_unwrapETH(token, amount);
(bool success,) = msg.sender.call{value: amount}(""); //[2] <-

interaction
if (!success) revert ETHSendFailed();

//...
unchecked {

s.usersBalance[msg.sender][token] = balance - amount; //[3] <- effects

Zellic © 2024 ← Back to Contents Page 11 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

s.tokens[token].totalStaked -= amount;
}
//...

}

Impact

An attacker could drain theWETH tokens available in the contract.

Recommendations

We recommend following the checks-effects-interactions pattern or adding a nonReentrantmodi-
fier to stop the reentrancy in this function.

Remediation

This issue has been acknowledgedbyBracket LabsGroupSA, and a fixwas implemented in commit
6b7b4b1b ↗.

Bracket Labs Group SA provided the following response:

Unchecking the balance subtractionwas introducedwhile debugging an issuewith rebase to-
kensand thedevelopment team forgot to remove it before theaudit commit, andwasoriginally
meant to revert upon reentrancy. This was fixed immediately after the beginning of the audit,
and nonReentrant modifier was added as an additional safeguardmechanism.

Zellic © 2024 ← Back to Contents Page 12 of 33

https://github.com/bracket-fi/escrow_contract/commit/6b7b4b1b39cf48057609a0c5a022963752c9ca50


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

3.2. Centralization Risk

Target MainEscrow, BridgeEscrow

Category Protocol Risks Severity High

Likelihood Low Impact Medium

Description

The MainEscrow and BridgeEscrow contracts have certain centralization risks, which could result
in a single point of failure or grant excessive control over the tokens stored in the escrow to a single
entity.

For example withdrawEscrow allows owner to withdraw all the tokens from the escrow

function withdrawEscrow(address[] calldata tokens)
external onlyOwner onlyBroke {

uint256 length = tokens.length;

for (uint256 i; i < length; ++i) {
IERC20 token = IERC20(tokens[i]);
uint256 balance = token.balanceOf(address(this));
if (balance != 0) {

token.safeTransfer(msg.sender,
token.balanceOf(address(this)));

}
}

}

and the bridge functions in BridgeEscrow allow owner to transfer tokens to any address on the L2.

function bridgeTokenArb(address token, address arbEscrow, uint256 amount,
uint256 maxGas, uint256 gasPrice)

external
onlyOwner
onlyBroke

{
IERC20(token).safeIncreaseAllowance(address(bridgeRouter), amount);
bridgeRouter.outboundTransferCustomRefund(token, msg.sender, arbEscrow,

amount, maxGas, gasPrice, bytes(""));
}

Zellic © 2024 ← Back to Contents Page 13 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

function bridgeTokenConnext(address token, address arbEscrow,
uint256 amount, uint256 slippage, uint256 relayerFee)

external
onlyOwner
onlyBroke

{
IERC20(token).safeIncreaseAllowance(address(renzoLockbox), amount);

IXERC20 xToken = renzoLockbox.XERC20();
renzoLockbox.deposit(amount);

IERC20(address(xToken)).safeIncreaseAllowance(address(connext),
amount);

connext.xcall{value: relayerFee}(
1634886255, // _destination: Domain ID of the destination chain
arbEscrow, // _to: address receiving the funds on the destination
address(xToken), // _asset: address of the token contract
msg.sender, // _delegate: address that can revert or forceLocal on

destination
amount, // _amount: amount of tokens to transfer
slippage, // _slippage: the maximum amount of slippage the user

will accept in BPS (e.g. 30 = 0.3%)
bytes("") // _callData: empty bytes because we're only sending funds

);
}

Impact

If the owner's keys are compromised, the impact on the protocol could be significant as the contract
allows the owner to directly transfer user's assets to another address.

Recommendations

Toaddress this risk, and increase user confidence and security, we recommend implementingmea-
sures that remove reliance on a single point of failure. Here are a few recommendations to do that:

• Utilize a multi-signature address wallet with multiple signers. This approach would pre-
vent an attacker from causing economic harm if a private key were compromised.

• Secure critical functions behind a timelock. Thiswould provide userswith sufficient time
to withdraw funds from the protocol if anymalicious executions are scheduled.

• Provide documentation on privileged functions so that users are aware of the potential
risks when depositing their tokens into the protocol.

Zellic © 2024 ← Back to Contents Page 14 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Remediation

This issue has been acknowledged by Bracket Labs Group SA.

Bracket Labs Group SA provided the following response:

Because brktETH will be actively developed during the escrow phase, a certain level of cen-
tralization is required as assets need to be exchanged for brktETH once the escrow breaks.
However, privileged actions can only be performed by the owner, which will be a big multisig
to increasedecentralization. Moreover, assets cannot bepulledbefore theescrowbreaks, and
users are free to deposit andwithdrawbefore then. Once the escrowbreaks, the assetswill be
exchanged for brktETH and users will be able to claim brktETH in the escrow which will hold
an equal value to that of their assets at themoment of break.

Zellic © 2024 ← Back to Contents Page 15 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

3.3. Nonpayable bridgeTokenConnext function

Target BridgeEscrow

Category CodingMistakes Severity Low

Likelihood High Impact Low

Description

The function bridgeTokenConnext, which is used to bridge tokens via connext bridge, calls the fol-
lowing function with the value passed as relayerFee:

function bridgeTokenConnext(address token, address arbEscrow, uint256 amount,
uint256 slippage, uint256 relayerFee)
external
onlyOwner
onlyBroke

{
//...
connext.xcall{value: relayerFee}(

1634886255, // _destination: Domain ID of the destination chain
arbEscrow, // _to: address receiving the funds on the destination
address(xToken), // _asset: address of the token contract
msg.sender, // _delegate: address that can revert or forceLocal on

destination
amount, // _amount: amount of tokens to transfer
slippage, // _slippage: the maximum amount of slippage the user will

accept in BPS (e.g. 30 = 0.3%)
bytes("") // _callData: empty bytes because we're only sending funds

);
}

While the function calls connext.xcall with some value, bridgeTokenConnext is not marked as
payable. Therefore, therelayerFeewouldbesubtracted from theETHbalanceavailable in thecon-
tract (i.e., the user funds). Adding a payable keywordwould allowETH tobe sent to this function call.

Impact

The relayerFee sent to connext bridge would be deducted from the user funds.

Zellic © 2024 ← Back to Contents Page 16 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Recommendations

We recommend making the function payable. Furthermore, we also recommend adding a check
that the msg.value passed to the function is equal to the relayerFee.

Remediation

This issue has been acknowledgedbyBracket LabsGroupSA, and a fixwas implemented in commit
e2377e01 ↗.

Zellic © 2024 ← Back to Contents Page 17 of 33

https://github.com/bracket-fi/escrow_contract/commit/e2377e01bf3911e653b503b2c7c3f6d624d3a9bd


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

3.4. Nonpayable bridgeTokenArb function

Target BridgeEscrow

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The functionoutboundTransferCustomRefundcalled inbridgeTokenArb is apayable function,while
bridgeTokenArb is not. Therefore, ETH could not be sent in the outboundTransferCustomRefund
call.

function bridgeTokenArb(address token, address arbEscrow, uint256 amount,
uint256 maxGas, uint256 gasPrice)
external
onlyOwner
onlyBroke

{
IERC20(token).safeIncreaseAllowance(address(bridgeRouter), amount);
bridgeRouter.outboundTransferCustomRefund(token, msg.sender, arbEscrow,
amount, maxGas, gasPrice, bytes(""));

}

The msg.value passed along this function is used as the gas fees on the L2 after the tokens are
bridged. If this value is not sent, the gas passed along would be 0, and hence the bridging might
fail.

Impact

Bridging of tokensmight fail due to no gas fee on the L2.

Recommendations

We recommend making the function payable and sending the msg.value to the function call out-
boundTransferCustomRefund.

Zellic © 2024 ← Back to Contents Page 18 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Remediation

This issue has been acknowledgedbyBracket LabsGroupSA, and a fixwas implemented in commit
9d8ba151 ↗.

Zellic © 2024 ← Back to Contents Page 19 of 33

https://github.com/bracket-fi/escrow_contract/commit/9d8ba15148fdcaa6cd42768782fa555592d21271


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

3.5. Allowance given to incorrect address

Target BridgeEscrow

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The function bridgeTokenArb first increases the allowance of bridgeRouter by the value amount
and then calls outboundTransferCustomRefund to start the bridging of the tokens.

function bridgeTokenArb(address token, address arbEscrow, uint256 amount,
uint256 maxGas, uint256 gasPrice)
external
onlyOwner
onlyBroke

{
IERC20(token).safeIncreaseAllowance(address(bridgeRouter), amount);
bridgeRouter.outboundTransferCustomRefund(token, msg.sender, arbEscrow,
amount, maxGas, gasPrice, bytes(""));

}

As per the ArbitrumDocs ↗, the approval of the tokens should be given to the L1ERC20Gateway and
not the IL1GatewayRouter (or bridgeRouter) contract.

The correct address of the L1ERC20Gateway could be retrieved by calling the method getGateway
function in the IL1GatewayRouter contract.

Impact

Bridging of tokens will fail due to the incorrect allowance.

Recommendations

We recommend calling safeIncreaseAllowance on the correct contract address. The correct ad-
dress can be retrieved by calling getGateway asmentioned above.

Zellic © 2024 ← Back to Contents Page 20 of 33

https://docs.arbitrum.io/build-decentralized-apps/token-bridging/bridge-tokens-programmatically/how-to-bridge-tokens-standard#step-3-approve-token-allowance-for-the-gateway-contract


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Remediation

This issue has been acknowledgedbyBracket LabsGroupSA, and a fixwas implemented in commit
9d8ba151 ↗.

Zellic © 2024 ← Back to Contents Page 21 of 33

https://github.com/bracket-fi/escrow_contract/commit/9d8ba15148fdcaa6cd42768782fa555592d21271


Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. MultipleMerkle tree leaves

In the caseof auser havingmultipleMerkle tree leaves, theywouldnot beable to claimall the tokens
they have proofs for, as the interaction with the claim mapping would result in the claimed amount
subtracting the amount in the second leaf.

The teamstated, however, that theMerkle treewill only haveone leaf peruser and that theclaimable
mapping is used in case a redistribution of tokens has to bemade.

Zellic © 2024 ← Back to Contents Page 22 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in thecontractsandcreatedawritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Module: BridgeEscrow.sol

Function: bridgeTokenArb(address token, address arbEscrow, uint256
amount, uint256 maxGas, uint256 gasPrice)

The function is called by the owner after the break timestamp to bridge tokens to the L2.

Inputs

• token
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Address of the token contract.

• arbEscrow
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Address receiving the funds on the destination.

• amount
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Amount of tokens to transfer.

• maxGas
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Max gas deducted from user’s L2 balance to cover the execution in
L2.

• gasPrice
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Gas price for the execution in L2.

Branches and code coverage

Intended branches

Zellic © 2024 ← Back to Contents Page 23 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

• Increases the allowance of the bridgeRouter contract and starts the bridging of the to-
kens.

Test coverage

Negative behavior

• N/A.

Function call analysis

• SafeERC20.safeIncreaseAllowance(IERC20(token), ad-
dress(this.bridgeRouter), amount)

• What is controllable? token and amount.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

• this.bridgeRouter.outboundTransferCustomRefund(token, msg.sender, arbE-
scrow, amount, maxGas, gasPrice, bytes(""))

• What is controllable? token, msg.sender, arbEscrow, amount, maxGas, and
gasPrice.

• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

Function: bridgeTokenConnext(address token, address arbEscrow, uint256
amount, uint256 slippage, uint256 relayerFee)

The function is called by the owner after the break timestamp to bridge Renzo restaked ETH tokens
to the L2.

Inputs

• token
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Address of the token contract.

• arbEscrow
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Address receiving the funds on the destination.

• amount

Zellic © 2024 ← Back to Contents Page 24 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Amount of tokens to transfer.

• slippage
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: Themaximumamount of slippage the userwill accept in BPS (e.g., 30
= 0.3%).

• relayerFee
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: The fee payed to the relayer.

Branches and code coverage

Intended branches

• Increases the allowance for the token of the renzoLockbox contract and deposits the to-
ken amount to that contract.

Test coverage
• Increases the allowance for the xtoken of the connext contract and calls connext.xcall
to start the bridging.

Test coverage

Negative behavior

• N/A.

Function call analysis

• SafeERC20.safeIncreaseAllowance(IERC20(token), ad-
dress(this.renzoLockbox), amount)

• What is controllable? token and amount.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

• this.renzoLockbox.deposit(amount)
• What is controllable? amount.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

• SafeERC20.safeIncreaseAllowance(IERC20(address(xToken)), ad-

Zellic © 2024 ← Back to Contents Page 25 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

dress(this.connext), amount)
• What is controllable? amount.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

• this.connext.xcall{value: relayerFee}(1634886255,arbEscrow,address(xToken),msg.sender,amount,slippage,bytes(""))
• What is controllable? arbEscrow, msg.sender, amount, and slippage.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

5.2. Module: EscrowBase.sol

Function: depositETH()

The function can be utilized for depositing ETH into the escrow contract.

Branches and code coverage

Intended branches

• Wrap the deposited ETH to WETH, then increase the totalStaked value of WETH, and
increase the value of usersBalance of user for that token.

Test coverage

Negative behavior

• Revert if msg.value is 0.
Negative test

Function call analysis

• this._getStorage()
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the storage slot.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Function: depositToken(address token, uint256 amount)

The function can be utilized for depositing tokens into the escrow contract.

Zellic © 2024 ← Back to Contents Page 26 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

Inputs

• token
• Control: Fully controlled by caller.
• Constraints: Should bewhitelisted.
• Impact: This token is deposited in the contract.

• amount
• Control: Fully controlled by caller.
• Constraints: Should not be 0.
• Impact: The amount of token to be deposited.

Branches and code coverage

Intended branches

• If thewrapped token isanon-zeroaddress,wrap the tokenfirstand thendeposit the token
to the contract.

Test coverage
• If the wrapped token is address(0), directly deposit the token to the contract.

Test coverage
• Increase the totalStaked value of the token, and increase the value of usersBalance of
user for that token.

Test coverage

Negative behavior

• Revert if the token used is ETH_ADDRESS.
Negative test

• Revert if amount is 0.
Negative test

• Revert if there is abalancemismatchafter the transferof token fromcaller to thecontract.
Negative test

• Revert if token is not added or not whitelisted.
Negative test

• Revert if the function is called after break time has reached.
Negative test

Function call analysis

• this._getStorage()
• What is controllable? N/A
• If the return value is controllable, how is it used and how can it go wrong?
Returns the storage slot.

• What happens if it reverts, reenters or does other unusual control flow? N/A

Zellic © 2024 ← Back to Contents Page 27 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

• IERC20(wrapped).balanceOf(address(this))
• What is controllable? N/A
• If the return value is controllable, how is it used and how can it go wrong?
The return value is the balance of the wrapped token of this contract

• What happens if it reverts, reenters or does other unusual control flow? N/A
• SafeERC20.safeTransferFrom(IERC20(token), msg.sender, address(this), amount)

• What is controllable? token, msg.sender and amount
• If the return value is controllable, how is it used and how can it go wrong?
N/A

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert; no re-entrancy scenario.

• SafeERC20.safeIncreaseAllowance(IERC20(token), wrapped, amount)
• What is controllable? token and amount
• If the return value is controllable, how is it used and how can it go wrong?
N/A

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert; no re-entrancy scenario.

• IERC20(token).balanceOf(address(this))
• What is controllable? N/A
• If the return value is controllable, how is it used and how can it go wrong?
The return value is the balance of the token of this contract.

• What happens if it reverts, reenters or does other unusual control flow? N/A

Function: withdraw(address token, uint256 amount, bool unwrap)

The function can be utilized for withdrawing tokens from the escrow contract.

Inputs

• token
• Control: Fully controlled by the caller.
• Constraints: No constraints.
• Impact: This token is withdrawn from the contract.

• amount
• Control: Fully controlled by the caller.
• Constraints: Should not be 0, and user's deposit balance should be greater
than or equal to this value.

• Impact: The amount of token to bewithdrawn.
• unwrap

• Control: Fully controlled by the caller.
• Constraints: Should be a boolean.
• Impact: Unwraps and then transfers the token to the user if true; transfers di-

Zellic © 2024 ← Back to Contents Page 28 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

rectly without unwrapping if false.

Branches and code coverage

Intended branches

• If unwrap is true, then unwrap the token and transfer the unwrapped token to the caller.
Test coverage

• If unwrap is false, directly transfer the token to the caller.
Test coverage

• Decrease the usersBalance of the user and totalStaked for that token by amount.
Test coverage

Negative behavior

• Revert if amount is 0.
Negative test

• Revert if balance of the user is less than the withdrawal amount requested.
Negative test

• Revert if unwrap is true and the address of rebase for that token is address(0).
Negative test

• Revert if rebase token is ETH and the transfer of ETH to msg.sender fails.
Negative test

Function call analysis

• this._getStorage()
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
Returns the storage slot.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• SafeERC20.safeTransfer(IERC20(tokenInfo.rebase), msg.sender, finalAmt)

• What is controllable? msg.sender and finalAmt (partially controllable).
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

• SafeERC20.safeTransfer(IERC20(token), msg.sender, amount)
• What is controllable? token, msg.sender, and amount.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If it
reverts, the entire transaction would revert — no reentrancy scenario.

Zellic © 2024 ← Back to Contents Page 29 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

5.3. Module: MainEscrow.sol

Function: claimTokens(address token, uint256 amount, byte[32][] proof)

Claim tokens.

Inputs

• token
• Control: Full.
• Constraints: None.
• Impact: The token.

• amount
• Control: Full.
• Constraints: None.
• Impact: Amount.

• proof
• Control: Full.
• Constraints: Length > 0.
• Impact: The proof.

Branches and code coverage

Intended branches

• Verify that the proof is valid.
Test coverage

• User cannot claim amount twice.
Test coverage

Negative behavior

• Another token cannot be used to redeem the proof of a different token.
Negative test

Function call analysis

• MerkleProof.verify(proof, root, leaf)
• What is controllable? proof and leaf.
• If the return value is controllable, how is it used and how can it go wrong?
No.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• SafeERC20.safeTransfer(IERC20(token), msg.sender, claimable)

Zellic © 2024 ← Back to Contents Page 30 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

• What is controllable? token.
• If the return value is controllable, how is it used and how can it go wrong?
Nothing.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Function: withdrawEscrow(address[] tokens)

Withdraw escrow tokens (onlyOwner).

Inputs

• tokens
• Control: Full.
• Constraints: None.
• Impact: The tokens to withdraw.

Branches and code coverage

Intended branches

• Tokens are withdrawn.
Test coverage

Negative behavior

• Empty tokens are not transferred.
Negative test

Function call analysis

• token.balanceOf(address(this))
• What is controllable? Full.
• If the return value is controllable, how is it used and how can it go wrong?
Check if there are tokens.

• What happens if it reverts, reenters or does other unusual control flow?
Nothing.

• SafeERC20.safeTransfer(token, msg.sender, token.balanceOf(address(this)))
• What is controllable? token.
• If the return value is controllable, how is it used and how can it go wrong?
Nothing.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• token.balanceOf(address(this))

• What is controllable? token.

Zellic © 2024 ← Back to Contents Page 31 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

• If the return value is controllable, how is it used and how can it go wrong?
Amount to send.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Zellic © 2024 ← Back to Contents Page 32 of 33



Bracket Fi Escrow Smart Contract Security Assessment April 19, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the EthereumMainnet.

Duringourassessmenton thescopedBracketFi Escrowcontracts,wediscoveredfivefindings. One
critical issue was found. Threewere of medium impact and onewas of low impact.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 33 of 33


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Bracket Fi Escrow
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Reentrancy in withdrawals
	Centralization Risk
	Nonpayable bridgeTokenConnext function
	Nonpayable bridgeTokenArb function
	Allowance given to incorrect address

	Discussion
	Multiple Merkle tree leaves

	Threat Model
	Module: BridgeEscrow.sol
	Module: EscrowBase.sol
	Module: MainEscrow.sol

	Assessment Results
	Disclaimer


