
SMART CONTRACT AUDIT

May 22th 2023 | v.	1.0

score

94

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

LFi Smart Contract Audit

This document outlines the overall security of the LFi smart contracts evaluated by the
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the LFi smart contracts codebase for
quality, security, and correctness.

There were 0 critical issues found during the audit. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contracts but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Polygon network’s fast-paced and rapidly
changing environment, we recommend that the LFi team put in place a bug bounty program
to encourage further active analysis of the smart contracts.

https://docs.google.com/document/d/1m_lRn2M-Q3A2KUcwwGcEQTJDfqlhnmx5FuwSyhgTTsA/edit#heading=h.y413rcm4r1gs

2

LFi Smart Contract Audit

7Complete Analysis

13Echidna Results

5Executive Summary

6Structure and Organization of the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

LFi Smart Contract Audit

The source code of the smart contract was taken from the LFi repository and Polygon link:  

Repository:

POLYGON MAINNET: 

LFi: https://polygonscan.com/address/0x9b760D11F63cb80BFFBCf69421cd46511E429f83

https://polygonscan.com/address/0x9b760D11F63cb80BFFBCf69421cd46511E429f83

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Thorough manual review of the
codebase line by line.

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

4

LFi Smart Contract Audit

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of LFi smart contracts. To do so, the code was reviewed line by line by our
smart contract developers, who documented even minor issues as they were discovered. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

Within the scope of this audit, the team of auditors reviewed the following contract(s):

LFI.sol

LFI Proxy

5

LFi Smart Contract Audit

Executive Summary

There was no critical issue found during the audit alongside one with medium severity and
some of low severity and one informational issue. All the mentioned findings may have an
effect only in case of specific conditions performed by the contract owner and the investors
interacting with it. They are described in detail in the “Complete Analysis” section. Contracts
are already deployed.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” depending on whether they
have been fixed or addressed. The issues that are tagged as “Verified” contain unclear or
suspicious functionality that either needs explanation from the Client or remains disregarded
by the Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

6

LFi Smart Contract Audit

Complete Analysis
 

Findings summary

7

LFi Smart Contract Audit

Resolved

Acknowledged

Acknowledged

Low

Informational

Low

RiskTitle# Status

Acknowledged

Resolved

Acknowledged

Low

Medium

Low

3

1

5

2

6

4

Renounce Ownership

Mismatch between deployed code and code
given for an audit

Centralization risk and token upgradeability

Unlocked compiler version

Use safe upgradeable mechanism

Transfer Ownership

Medium Resolved

Mismatch between deployed code and code given for an audit

The code for LFI token given for the audit is different from the code given deployed on the
testnets by the team.  
 

Recommendation:

It is advised to thoroughly check the code and deploy only the code that is audited.
Otherwise, it could result in unaudited code being deployed on mainnet which can result in
bugs.

Comment: The client provided verified contracts deployed on the Polygon mainnet and the
team checked to ensure that the audited code matched with the code deployed.

low Resolved

Unlocked compiler version

The compiler version used in the LFI token contract is ^0.8.18 which is a floating compiler
version. Using a floating compiler version can result in code being tested on a specific
version of the compiler and being deployed via a different compiler version. This is not
recommended as it could introduce bugs.

Recommendation:

It is advised to fix the compiler version for each of the custom contracts(other than standard
contracts like Openzeppelin) to avoid this issue.

8

LFi Smart Contract Audit

9

LFi Smart Contract Audit

Low Acknowledged

Renounce Ownership

The renounceOwnership function can be called accidentally by the admin leading to the
immediate renouncement of ownership to zero address after which any onlyOwner functions
will not be callable which can be risky.

Recommendation:

It is advised that the Owner cannot call renounceOwnership without first transferring
ownership to a different address. Additionally, if a multi-signature wallet is utilized, executing
the renounceOwnership method for two or more users should be confirmed. Alternatively,
the Renounce Ownership functionality can be disabled by overriding it.

Refer to this post for additional info- https://www.linkedin.com/posts/razzor_github-
razzorsecrazzorsec-contracts-activity-6873251560864968705-HOS8

https://www.linkedin.com/posts/razzor_github-razzorsecrazzorsec-contracts-activity-6873251560864968705-HOS8
https://www.linkedin.com/posts/razzor_github-razzorsecrazzorsec-contracts-activity-6873251560864968705-HOS8

10

LFi Smart Contract Audit

Low Acknowledged

Transfer Ownership

The transferOwnership() function in the contract allows the current admin to transfer his
privileges to another address. However, inside transferOwnership() , the newOwner is
directly stored

into the storage owner, after validating the newOwner is a non-zero address, and
immediately overwrites the current owner. This can lead to cases where the admin has
transferred ownership to an incorrect address and wants to revoke the transfer of ownership
or in the cases where the current admin comes to know that the new admin has lost access
to his account.

Recommendation:

It is advised to make ownership transfer a two-step process.

Refer- https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/
access/Ownable2Step.sol

and https://github.com/razzorsec/RazzorSec-Contracts/blob/main/AccessControl/
SafeOwn.sol

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/razzorsec/RazzorSec-Contracts/blob/main/AccessControl/SafeOwn.sol
https://github.com/razzorsec/RazzorSec-Contracts/blob/main/AccessControl/SafeOwn.sol

11

LFi Smart Contract Audit

Low Acknowledged

Centralization risk and token upgradeability

An upgradeable token is not recommended as it is prone to centralization risk and
contradicts the notion of the immutability of smart contracts on the blockchain. Upgrade to a
malicious implementation can be detrimental as it can result in minting of numerous tokens
by a malicious admin. This can result in a loss of value of funds of token holders or potential
rug pulls.

Recommendation:

It is advised to use an upgradeable pattern for your smart contracts only if it is really
necessary and cannot be done without. Additionally, it is advised to use a multisig for the
owner of upgradeable contracts if possible in order to reduce centralization risks.

Informational Acknowledged

Use safe upgradeable mechanism

Using upgradeable proxies correctly and securely is a difficult task that requires deep
knowledge of the proxy pattern (refer this). Incorrectly upgrading the contracts can lead to
security issues.

Recommendation:

It is advised to use Openzeppelin plugins in Hardhat or Truffle (refer https://
docs.openzeppelin.com/upgrades-plugins/1.x/) to upgrade your contracts.

https://docs.openzeppelin.com/contracts/4.x/api/proxy
https://docs.openzeppelin.com/upgrades-plugins/1.x/
https://docs.openzeppelin.com/upgrades-plugins/1.x/

PassPassAccess Management Hierarchy

PassArithmetic Over/Under Flows Pass

LFI LFI Proxy

PassPassDelegatecall

Pass PassHidden Malicious Code

PassPassUnchecked CALL
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassUnexpected Ether

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/ Parameter Attack

PassPassRace Conditions / Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

12

LFi Smart Contract Audit

Property testing using Echidna

LFI

Echidna Results

13

LFi Smart Contract Audit

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

LFi

LFi

