

 Gyrowin

 AUDIT
 SECURITY ASSESSMENT

 10. October, 2023

FOR

1

SolidProof_io @solidproof_io

2

Introduction 3

Disclaimer 3

Project Overview 4

Summary 4

Social Medias 4

Audit Summary 5

File Overview 6

Imported packages 6

Components 7

Exposed Functions 7

Capabilities 8

 Inheritance Graph 9

Audit Information 10

Vulnerability & Risk Level 10

Auditing Strategy and Techniques Applied 11

Methodology 11

Overall Security 12

Upgradeability 12

Ownership 13

Ownership Privileges 14

Minting tokens 14

Burning tokens 15

Blacklist addresses 16

Fees and Tax 17

Lock User Funds 18

Centralization Privileges 19
Audit Results 20

3

Introduction
SolidProof.io is a brand of the officially registered company MAKE
Network GmbH, based in Germany. We’re mainly focused on
Blockchain Security such as Smart Contract Audits and KYC verification
for project teams.
Solidproof.io assess potential security issues in the smart contracts
implementations, review for potential inconsistencies between the
code base and the whitepaper/documentation, and provide
suggestions for improvement.

Disclaimer
SolidProof.io reports are not, nor should be considered, an
“endorsement” or “disapproval” of any particular project or team. These
reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team.
SolidProof.io do not cover testing or auditing the integration with
external contract or services (such as Unicrypt, Uniswap, PancakeSwap
etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process
intending to help our customers increase the quality of their code
while reducing the high level of risk presented by cryptographic
tokens and blockchain technology. Blockchain technology and
cryptographic assets present a high level of ongoing risk. SolidProof’s
position is that each company and individual are responsible for their
own due diligence and continuous security. SolidProof in no way
claims any guarantee of the security or functionality of the
technology we agree to analyze.

4

Project Overview

Summary
Project Name Gyrowin

Website https://www.gyro.win/

About the project Gyrowin governance forum is a place where you can
discuss about the new proposals with gyrowin
community before it can be sumitted for the on-chain
voting.

Chain Binance Smart chain(bsc)

Language Solidity

Codebase https://bscscan.com/address/0x77774A06271d6A305CAc
cDBc06f847DEF05c7777#code

Commit N/A

Unit Tests Not Provided

Social Medias
Telegram https://t.me/gyrowin

Twitter https://twitter.com/Gyrowin

Facebook N/A

Instagram N/A

GitHub N/A

Reddit N/A

Medium N/A

Discord https://discord.com/invite/gyrowin

YouTube N/A

TikTok N/A

LinkedIn N/A

https://bscscan.com/address/0x77774A06271d6A305CAccDBc06f847DEF05c7777#code
https://bscscan.com/address/0x77774A06271d6A305CAccDBc06f847DEF05c7777#code

5

Audit Summary
 Version Delivery Date Change Log

v1.0 19. August 2023 • Layout Project

 • Automated/ Manual-Security Testing

 • Summary

v1.4 10. October 2023 • Reaudit

Note – The following audit report presents a comprehensive security
analysis of the smart contract utilized in the project that includes
outside manipulation of the contract’s functions in a malicious way.
This analysis did not include functional testing (or unit testing) of the
contract/s logic. We cannot guarantee 100% logical correctness of the
contract as we did not functionally test it. This includes internal
calculations in the formulae used in the contract.

6

File Overview
The Team provided us with the files that should be tested in the
security assessment. This audit covered the following files listed below
with an SHA-1 Hash.

File Name SHA-1 Hash

contracts/GyroWin.sol 30ba9ca54b5638997bbd2ea9b61e923ad8924df8

Please note: Files with a different hash value than in this table have been modified
after the security check, either intentionally or unintentionally. A different hash
value may (but need not) be an indication of a changed state or potential
vulnerability that was not the subject of this scan.

Imported packages.
Used code from other Frameworks/Smart Contracts.

Dependency / Import Path Count

@openzeppelin/contracts@4.9.0/token/ERC20/IERC20.sol 1

@openzeppelin/contracts@4.9.0/token/ERC20/extensions/IERC20Permit.sol 1

@openzeppelin/contracts@4.9.0/token/ERC20/utils/SafeERC20.sol 1

@openzeppelin/contracts@4.9.0/utils/Address.sol 1

Note for Investors: We only audited contracts mentioned in the scope
above. All contracts related to the project apart from that are not a part of
the audit, and we cannot comment on its security and are not responsible
for it in any way.

7

External/Public functions
External/public functions are functions that can be called from outside of a contract,
i.e., they can be accessed by other contracts or external accounts on the blockchain.
These functions are specified using the function declaration’s external or public
visibility modifier.

State variables
State variables are variables that are stored on the blockchain as part of the
contract's state. They are declared at the contract level and can be accessed
and modified by any function within the contract. State variables can
be needed within visibility modifier, such as public, private or internal,
which determines the access level of the variable.

Components

 Contracts Libraries Interfaces Abstract

1 0 0 0

Exposed Functions
This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

 StateVariables

Total Public

28 12

 Public Payable

35 2

External Internal Private Pure View

29 42 1 1 13

8

Capabilities

Transfer
s ETH

Low-
Level
Calls

DelegateCal
l

 Uses

Hash
Functions

ECRecov
er

New/Create/
Create2

yes yes yes

Solidity
Versions
observed

Experimental
Features

 Can

Receive
Funds

🖥 Uses

Assembly

 Has

Destroyable
Contracts

=0.8.19 ---------- yes
yes

(2 asm blocks)

9

Inheritance Graph
An inheritance graph is a graphical representation of the inheritance hierarchy
among contracts. In object-oriented programming, inheritance is a mechanism
that allows one class (or contract, in the case of Solidity) to inherit properties and
methods from another class. It shows the relationships between different contracts
and how they are related to each other through inheritance.

10

Audit Information

Vulnerability & Risk Level
Risk represents the probability that a certain source threat will exploit
the vulnerability and the impact of that event on the organization or
system. The risk level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical

9 - 10

A vulnerability that can disrupt the
contract functioning in a number
of scenarios, or creates a risk that
the contract may be broken.

Immediate action to
reduce risk level.

High

7 – 8.9

A vulnerability that affects the
desired outcome when using a
contract, or provides the
opportunity to use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium

4 – 6.9

A vulnerability that could affect
the desired outcome of
executing the contract in a
specific scenario.

Implementation of
corrective actions in a

certain period.

Low

2 – 3.9

A vulnerability that does not have
a significant impact on possible
scenarios for the use of the
contract and is probably
subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational

0 – 1.9

A vulnerability that have
informational character but is not
effecting any of the code.

An observation that
does not determine a

level of risk

11

Auditing Strategy and Techniques Applied
Throughout the review process, care was taken to check the repository
for security-related issues, code quality, and compliance with
specifications and best practices. To this end, our team of experienced
pen-testers and smart contract developers reviewed the code line by
line and documented any issues discovered.

We check every file manually. We use automated tools only so that
they help us achieve faster and better results.

Methodology
The auditing process follows a routine series of steps:

1. Code review that includes the following:

a. Reviewing the specifications, sources, and instructions
provided to
SolidProof to ensure we understand the size, scope, and
functionality of the
smart contract.

b. Manual review of the code, i.e., reading the source code line
by line to identify potential vulnerabilities.

c. Comparison to the specification, i.e., verifying that the code
does what is described in the specifications, sources, and
instructions provided to SolidProof.

2. Testing and automated analysis that includes the following:

a. Test coverage analysis determines whether test cases cover
code and how much code is executed when those test cases
are executed.

b. Symbolic execution, which is analysing a program to
determine what inputs cause each part of a program to
execute.

3. Review best practices, i.e., review smart contracts to improve efficiency,

effectiveness, clarity, maintainability, security, and control based on
best practices, recommendations, and research from industry and
academia.

4. Concrete, itemized and actionable recommendations to help you

secure your smart contracts.

12

Overall Security
Upgradeability

Description The contract is not an upgradeable contract. The
Deployer is not able to change or add any
functionalities to the contract after deploying.

Comment N/A

Contract is not an upgradable
 Deployer cannot update the contract

with new functionalities.

13

Ownership

Description The owner has not renounced the ownership that

means that the owner retains control over the
contract’s operations, including the ability to
execute functions that may impact the contract’s
users or stakeholders. This can lead to several
potential issues, including:

• Centralizations

• The owner has significant control over
contract’s operations.

Example N/A

Comment N/A

Note – The contract cannot be considered as renounced till it is not deployed
or having some functionality that can change the state of the contract.

The ownership is not
renounced The ownership is not renounced

14

Ownership Privileges
These functions can be dangerous. Please note that abuse can lead to financial loss.
We have a guide where you can learn more about these Functions.

Minting tokens
Minting tokens refer to the process of creating new tokens in a cryptocurrency or
blockchain network. This process is typically performed by the project's owner or
designated authority, who has the ability to add new tokens to the network's total
supply.

Description

The owner cannot mint any new tokens with the
help of this contract. Although the circulating
supply can be increased or decreased from the
contract, there must be a fixed number of
tokens present and cannot be minted more
than that amount of tokens with the help of this
contract.

Comment N/A

15

Burning tokens
Burning tokens is the process of permanently destroying a certain number of
tokens, reducing the total supply of a cryptocurrency or token. This is usually done
to increase the value of the remaining tokens, as the reduced supply can create
scarcity and potentially drive up demand.

Description The owner of the token cannot burn tokens

with the help of this contract.
Comment The amount of circulating supply can be

increased or decreased by an external contract.

The owner cannot burn tokens. Contract owner cannot
burn tokens.

16

Contract owner cannot
blacklist addresses The owner cannot blacklist addresses

Blacklist addresses
Blacklisting addresses in smart contracts is the process of adding
a certain address to a blacklist, effectively preventing them from
accessing or participating in certain functionalities or transactions
within the contract. This can be useful in preventing fraudulent or
malicious activities, such as hacking attempts or money laundering.

Description The owner is not able blacklist addresses to lock
funds.

Comment N/A

17

Fees and Tax
In some smart contracts, the owner or creator of the contract can
set fees for certain actions or operations within the contract. These
fees can be used to cover the cost of running the contract, such as
paying for gas fees or compensating the contract's owner for their
time and effort in developing and maintaining the contract.

Description The owner is not able to set the fees above 25%.

Comment The amount of fees cannot be set to more than 1%.

18

Lock User Funds
In a smart contract, locking refers to the process of restricting access
to certain tokens or assets for a specified period of time. When token
or assets are locked in a smart contract, they cannot be transferred or
used until the lock-up period has expired or certain conditions have
been met.

Description The operator of this contract cannot lock the

tokens from the transfer of tokens. Although the
contract has the circulating supply which will be
increased or decreased by the owner.

Comment N/A

19

Centralization Privileges
Centralization can arise when one or more parties have privileged access or
control over the contract's functionality, data, or decision-making. This can occur,
for example, if the contract is controlled by a single entity or if certain participants
have special permissions or abilities that others do not.

In the project, there are authorities that have access to the following
functions:

File Privileges

GyroWin.sol
➢ The owner can transfer ownership.

➢ The owner can change the operator’s address. Also, the
operator of this contract will always remain as an
external contract. The operator will be a contract
address only.

➢ The owner can update the treasury account.

➢ The owner can update the freeze lock contract
address.

➢ The owner can update the vesting contract address.

➢ The owner can change the swap pair address.

➢ The owner can whitelist addresses from gas fees.

➢ The owner can set the gas limit to not less than
3000000000 Wei.

➢ The owner can whitelist addresses from fees.

➢ The owner can set fees of not more than 1%.

➢ The owner can enable trading only once.

➢ The owner can claim the stuck tokens. Also, the owner
can claim the contract’s own tokens.

➢ The operator can lock and unlock the total amount of
tokens of a user for vesting.

Recommendations
To avoid potential hacking risks, it is advisable for the client to manage
the private key of the privileged account with care. Additionally, we
recommend enhancing the security practices of centralized privileges
or roles in the protocol through a decentralized mechanism or smart-
contract-based accounts, such as multi-signature wallets.

Here are some suggestions of what the client can do:

20

- Consider using multi-signature wallets: Multi-signature wallets
require multiple parties to sign off on a transaction before it can be
executed, providing an extra layer of security e.g. Gnosis Safe

- Use of a timelock at least with a latency of e.g. 48-72 hours for
awareness of privileged operations

- Introduce a DAO/Governance/Voting module to increase
transparency and user involvement

- Consider Renouncing the ownership so that the owner cannot
modify any state variables of the contract anymore. Make sure to set
up everything before renouncing.

21

Audit Result
#1 | Operator can mint and burn the tokens from external address.

Description - It is recommended that the burning of the tokens should
not be done without any allowance as of now, the operator can burn any
number of tokens from other accounts, which is not recommended. Also,
The operator can mint the tokens after the initial deployment which will
always be less than the amount of tokens burned.

Alleviation – The functionality is removed from the contract.

#2 | Transfer of tokens without enabling trade.

Description – The trading needs to be enabled by the owner in order for
regular users to transfer tokens. On the contrary, the owner can authorize
addresses manually and those addresses will be able to trade tokens. This
functionality can be exploited in the following way, For example, there is a
presale and the wallets used for the presale can be authorized by the
owner. All the tokens obtained can be consolidated into a final wallet
address and facilitate trading and selling of the acquired tokens, the last
wallet address can be authorized.

#3| Operator can lock tokens for unlimited period.

Description – The operator has the ability to lock the circulating supply of
the tokens. Also, the contract contains external contracts for vesting,
loyalty, and reserve that can lock the tokens and increase or decrease the
circulating supply.

File Severity Location Status

 GyroWin.sol Medium L800-830 Fixed

File Severity Location Status

 GyroWin.sol Medium L993-1029 Fixed

File Severity Location Status

 GyroWin.sol Medium L1278-1291 Fixed

22

#4 | Missing zero and dead address check.

Description - The address can be set to a zero or dead address, which is
not recommended. Add a ‘require’ check so that we it will throw a revert.

#5 | Floating pragma solidity version.

Description - Adding the constant version of solidity is recommended, as
this prevents the unintentional deployment of a contract with an outdated
compiler that contains unresolved bugs.

#6 | Missing events.

Description – It is recommended to emit all the critical parameter
changes.
Alleviation – events added in the functions.

#7 | Missing length check.

Description – Add a ‘require’ that the account length and the length of
amount array must be the same. Otherwise, the operation will fail.
Alleviation – Functionality is removed from the contract.

#8 | Owner can claim contract’s own tokens.

File Severity Location Status

 GyroWin.sol Low
L1219-1225, L1229-1235,
L1239-1245, L1331-1336 Fixed

File Severity Location Status

 GyroWin.sol Low L2 Fixed

File Severity Location Status

 GyroWin.sol Low

L831-834,
L843-855,

L863-875, L700, L710,
L716

Fixed

File Severity Location Status

 GyroWin.sol Low
L843-854,
L863-875 Fixed

File Severity Location Status

 GyroWin.sol Low L1489-1492 Fixed

23

Description – Add a ‘require’ check that the owner cannot claim the
contract’s own tokens. It is recommended that the owner of the
contract should not have the authority to claim the contract’s token
from contract balance.

#9 | Missing ‘require’ check.

Description - Add a ‘require’ check that the amount from the account
balance must be greater than the subtracted value otherwise the
operation will fail.

#10 | Incorrect ‘require’ check.

Description – Add ‘==’ operator for comparison between two values.
Here, In the function assignment operator is used. This will not be able
to check and will give incorrect results.

#11 | Missing zero check.

Description – Add a ‘require’ check that the account length must be
greater than zero to perform the operation.

#12 | Incorrect solidity naming conventions.

Description – constant variable starts with uppercase.
Follow the Solidity [naming convention]
(https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-
conventions).

Note – This contract contains some external contracts that are out of
the scope of audits, and we cannot claim any security concerns related
to them and will not be responsible for any security issues. We
recommend doing your own research before investing.

File Severity Location Status

 GyroWin.sol Low L1423-1459 Fixed

File Severity Location Status

 GyroWin.sol Low L784, L818 Fixed

File Severity Location Status

 GyroWin.sol Low L1342-1347 Fixed

File Severity Location Status

 GyroWin.sol Informational L536-539, L569 ACK

https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions
https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions

24

 Legend for the Issue Status
Attribute or Symbol Meaning

Open The issue is not fixed by the project team.

Fixed The issue is fixed by the project team.

Acknowledged(ACK)
The issue has been acknowledged or declared as
part of business logic.

