

Smart Contract Audit
Report
The Colony – Collectible Drops

Coffee
COFFEEXDEV April 25, 2024

Overview
The following is a review of the Colony Collectibles smart contract system, a series of
smart contracts for managing tokenized physical collectibles and collections of collectible
drops, to be deployed on the Blast network.

Contracts in scope for this review include:

- CollectiblesRegistry.sol
- DropsRegistry.sol
- WrappedDrops.sol
- RandomnessProviderGelato.sol
- GelatoVRFConsumerBase.sol
- TransferMiddleware.sol

This review was initially based on commit SHA
fd1e6f2474f5c4c4cd3efdb91138b45a5364646e. It aims to identify security
vulnerabilities and general best practices with regards to the contracts in scope. This
review should not be considered an endorsement of the project, nor is it a guarantee of
security.

Additional changes for remediation were reviewed in commit
200f9786663b093ce162816499d81f454ba9f946 which provided resolution to
issues as mentioned in the Status text.

Findings
Minters/Proposers can create drops with 0 tokens.
Severity: Low
DropsRegistry.commitDrop does not check that the number of tokens in
drop.TokenIds is greater than zero. This potentially allows a proposer to create a drop
with zero tokens which could have unintended eGects or allow a proposer to grief the
contract by exhausting the available drop IDs with empty drops.

Recommendation: ensure that the number of tokens in a drop is greater than zero.
Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946

Minters/Proposers can add tokens to other drops
Severity: Low
DropsRegistry.pushTokensToDrop does not check that the user pushing
collectibles to a drop is the original creator of the drop. Because of this, any authorized
proposer can grief drop creation by pushing many low value collectibles to someone else’s
drop or accidentally lose value by adding cards to the wrong drop.

Recommendation: ensure that the user pushing tokens to a drop is the original creator of
the drop.
Status: Acknowledged

Duplicated code in closeUnsuccessfulDrop
Severity: Informational
DropsRegistry.closeUnsuccesfulDrop checks the same condition twice for a
revert.
Recommendation: Remove duplicated code
if (block.timestamp < drop.saleEndTime) revert("sale still ongoing");
//TODO: clean
if (block.timestamp < drop.saleEndTime) {
 _revert(RefundNotAvailable.selector);
}

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946

Users can burn and refund any wrapped drop tokens after any
unsuccessful drop.
Severity: Critical
DropsRegistry.claimRefund does not check the range of tokens being refunded
belong to the drop. This allows anyone to trigger the burning and refunding of any tokens
from any drop as soon as any unsuccessful drop has occurred. This can result in
inconsistent state, loss of funds, and loss of assets for users.

Example:
Drop 1 is unsuccessful.
Drop 2 is ongoing.

- Malicious actor calls claimRefund and passes drop id 1 but wrappedTokenIds
belonging to drop 2. Tokens from drop 2 are burned and refunded at the price of
tokens from drop 1. This is especially problematic if drop 1 was more expensive than
drop 2 as users could immediately claim a refund for more than they paid.

Recommendation: Ensure that each of the wrappedTokenIds passed to claimRefund are
within the scope of the drop being refunded.

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946

Usage of abi.encodePacked with multiple dynamic sized elements.
Severity: Low

abi.encodePacked should not be used with multiple dynamic sized input elements. If
you use keccak256(abi.encodePacked(a, b)) and both a and b are dynamic
types, it is easy to craft collisions in the hash value by moving parts of a into b and vice-
versa. More specifically, abi.encodePacked("a", "bc") ==
abi.encodePacked("ab", "c"). If you use abi.encodePacked for signatures,
authentication or data integrity, make sure to always use the same types and check that at
most one of them is dynamic. Unless there is a compelling reason, abi.encode should
be preferred.
Usages:
CollectiblesRegistry.getTokenizeDigest
DropsRegistry.swap

Recommendation: While these do not appear to be exploitable, it is still recommended to
prefer abi.encode over abi.encodePacked as a best practice.

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946. Code
was updated to check for equal array lengths so collision is not possible.

Inconsistent variable naming and redundant code
Severity: Informational
RandomnessProviderGelato has a public mapping of requestIdtoDropId which maps the
VRF request id to the collectible drop id. This mapping is accessed with variables having
inconsistent names (requestId and dropId). Upon further investigation, the base contract is
using the drop id as the request id so the access is correct with either name but the
mapping is redundant.

Recommendation: remove the requestIdToDropId mapping and refactor variable naming to
be consistent.
Status: Redundant code Resolved in commit
200f9786663b093ce162816499d81f454ba9f946. Variable naming Acknowledged

WrappedDrops tokens are never marked as committed
Severity: Informational/Low
Code is in place in the WrappedDrops contract to prevent transfer/trade of the wrapped
drops tokens while they are marked as a status of “committed” but this status is never
updated on the token. WrappedDrops are always in the initial status of “none”
If the intent is to prevent trading of the tokens while a drop is ongoing, this code branch will
never be hit.

Recommendation: If needed, ensure that the extraData.status field is updated to

properly set the tokens to committed. If unneeded, remove the extraData.status field
and unnecessary code in WrappedDrops._update.

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946.
Code in transfer was deemed unnecessary and was removed.

State mutability warnings
Severity: Informational
Adjust state mutability per compiler warnings.

- CollectiblesRegistry._startTokenId() can be marked pure
- WrappedDrops._onlyDropsRegistry() can be marked view
- DropsRegistry._onlyProposer() can be marked view
- DropsRegistry._checkExchangeAndReturnValues() can be marked view

Recommendation: Adjust state mutability to always use the most restrictive mutability
option.

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946

Inconsistent naming of internal functions
Severity: Informational
The following functions are marked internal and do not follow the underscore prefix for
internal function names followed throughout the rest of the codebase:

- DropsRegistry.uint256ArrayToUint48Array
- TransferMiddleware.splitSignature
- WrappedDrops.assignDropToToken

Recommendation: Prefix all internal function names with an underscore (_)

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946

Remove unused variables/parameters
Severity: Informational
The following variables or parameters are unused and can be removed:

- WrappedDrops.unrevealedTokensOfDrop: _dropsRegistry local variable
- DropsRegistry._executeSwapAndGetLeaves: breakdownRoot parameter
- RandomnessProviderGelato._fulfillRandomness: dropId local variable

Recommendation: ensure disuse of variables/parameters is correct and remove if
unnecessary.

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946

Unused struct parameter
Severity: Informational
WrappedDrops.UserDropStats.numPurchased is never used (this is tracked on
DropsRegistry).

Recommendation: Remove UserDropStats struct from WrappedDrops and only track
balance in drop if needed, or properly track number purchased if needed on
WrappedDrops.

Status: Resolved in commit 200f9786663b093ce162816499d81f454ba9f946

