
Report for Radiant
UniswapV3 Helpers

Date: June 28, 2024 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 3
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter 2Findings 5
2.1 Software Security . 5

2.1.1 Potential precision loss . 5
2.1.2 Ineffective maximum deposit limit . 8
2.1.3 Potential DoS risk . 9
2.1.4 Lack of checks on the token order . 9

2.2 DeFi Security . 10
2.2.1 Potential liquidity manipulation in the autoRebalance function 10
2.2.2 Manipulable return value from the getLpPrice function 12

2.3 Additional Recommendation . 14
2.3.1 Remove redundant checks . 14

2.4 Note . 14
2.4.1 Potential centralization risks . 14
2.4.2 Assumption on the UniV3PoolHelper contract 15
2.4.3 Dependency on the block timestamp . 15

Report Manifest

Item Description
Client Radiant Capital
Target Radiant UniswapV3 Helpers

Version History

Version Date Description
1.0 June 28, 2024 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The focus of this audit is on the Radiant UniswapV3 Helpers of Radiant Capital 1. Radiant
UniswapV3 Helpers allows users to stake their RDNT and WETH tokens into the Uniswap V3
like pools, including Uniswap V3 and Velodrome.

Please note that only the UniV3PoolHelper.sol and the UniV3TokenizedLp.sol locatedwithin
the contracts/main/radiant/zap/helpers/ folder in the repository are included in the scope of
this audit. Other files are not within the scope of the audit. Additionally, all dependencies of
the smart contracts within the audit scope are considered reliable in terms of both functionality
and security, and are therefore not included in the audit scope.

The auditing process is iterative. Specifically, we would audit the commits that fix the dis-
covered issues. If there are new issues, we will continue this process. The commit SHA values
during the audit are shown in the following table. Our audit report is responsible for the code
in the initial version (Version 1), as well as new code (in the following versions) to fix issues in
the audit report.

Project Version Commit Hash

Radiant UniswapV3 Helpers
Version 1 aeb485411517983a20fb3a285c6129b4d2ec5e4d
Version 2 b235c538ef72bd8ee8445ac57337cc0c8cd761eb
Version 3 2f6eaadd32dd2d650499ee21e2b75824dd429ebf

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

1https://github.com/radiant-capital/v2-core

https://github.com/radiant-capital/v2-core

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

2

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that arewidely adopted by both
industry and academy, including OWASP Risk Rating Methodology 2 and Common Weakness
Enumeration 3. The overall severity of the risk is determined by likelihood and impact. Specif-
ically, likelihood is used to estimate how likely a particular vulnerability can be uncovered and
exploited by an attacker, while impact is used to measure the consequences of a successful
exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we found six potential security issues. Besides, we have one recommendation and
three notes.

- Medium Risk: 3
- Low Risk: 3
- Recommendation: 1
- Note: 3

ID Severity Description Category Status

1 Low Potential precision loss Software Secu-
rity Confirmed

2 Low Ineffective maximum deposit limit Software Secu-
rity Confirmed

3 Medium Potential DoS risk Software Secu-
rity Fixed

4 Medium Lack of checks on the token order Software Secu-
rity Fixed

5 Low Potential liquidity manipulation in the
autoRebalance function DeFi Security Fixed

6 Medium Manipulable return value from the
getLpPrice function DeFi Security Fixed

7 - Remove redundant checks Recommendation Fixed
8 - Potential centralization risks Note -

9 - Assumption on the UniV3PoolHelper con-
tract Note -

10 - Dependency on the block timestamp Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Potential precision loss

Severity Low
Status Confirmed
Introduced by Version 1

Description The deposit and withdrawal progress in the UniV3TokenizedLp contract may suf-
fer from precision losses.

Specifically, the assets in this contract are divided into twoparts: liquidity in theUniswapV3
pool position (denoted as part A) and the remaining token balances in the contract (denoted as
partB). Sharesminted for each deposit action are calculated as amount∗totalSupply/(A+B). In
contrast, the returned amounts for a withdrawal action are calculated as shares∗A/totalSupply+
shares ∗B/totalSupply. The issue arises because A and B are calculated separately during the

withdrawal process, potentially leading to precision losses due to the summed total beingmuch
larger than the individual parts.
430 function deposit(
431 uint256 deposit0,
432 uint256 deposit1,
433 address to
434) external override nonReentrant returns (uint256 shares) {
435 if (!allowToken0 && deposit0 > 0) {
436 revert UniV3TokenizedLp_Token0NotAllowed();
437 }
438 if (!allowToken1 && deposit1 > 0) {
439 revert UniV3TokenizedLp_Token1NotAllowed();
440 }
441 if (deposit0 == 0 && deposit1 == 0) {
442 revert UniV3TokenizedLp_ZeroValue();
443 }
444 if (deposit0 > deposit0Max || deposit1 > deposit1Max) {
445 revert UniV3TokenizedLp_MoreThanMaxDeposit();
446 }
447 if (to == NULL_ADDRESS) revert UniV3TokenizedLp_ZeroAddress();
448
449 // Updates pending fees in pool state for inclusion when calling `getTotalAmounts()`
450 (uint128 baseLiquidity, ,) = _position(baseLower, baseUpper);
451 if (baseLiquidity > 0) {
452 // See IUniswapV3PoolActions.burn(...) interface docs, this call is used to update state

of fees
453 (uint256 burn0, uint256 burn1) = IUniswapV3Pool(pool).burn(baseLower, baseUpper, 0);
454 if (burn0 != 0 || burn1 != 0) {
455 revert UniV3TokenizedLp_UnexpectedBurn();
456 }
457 }
458
459 // Spot price of token1/token0
460 uint256 spotPrice = fetchSpot(token0, token1, PRECISION);
461 // External oracle price of token1/token0
462 uint256 oraclePrice = fetchOracle(token0, token1, PRECISION);
463
464 // If difference between spot and oracle is bigger than `hysteresis`, it
465 // checks the timestamp of the last `observation` at the pool
466 // to confirm if price has been manipulated in this block
467 uint256 delta = (spotPrice > oraclePrice)
468 ? ((spotPrice - oraclePrice) * PRECISION) / spotPrice
469 : ((oraclePrice - spotPrice) * PRECISION) / oraclePrice;
470 if (delta > hysteresis) require(_checkHysteresis(), "try later");
471
472 (uint256 pool0, uint256 pool1) = getTotalAmounts();
473
474 // Price the `deposit0` amount in token1 at oracle price
475 uint256 deposit0PricedInToken1 = (deposit0 * oraclePrice) / PRECISION;
476
477 if (deposit0 > 0) {
478 IERC20(token0).safeTransferFrom(msg.sender, address(this), deposit0);

6

479 }
480 if (deposit1 > 0) {
481 IERC20(token1).safeTransferFrom(msg.sender, address(this), deposit1);
482 }
483
484 // Shares in value of token1
485 shares = deposit1 + deposit0PricedInToken1;
486
487 if (totalSupply() != 0) {
488 // Price the pool0 in token1 at oracle price
489 uint256 pool0PricedInToken1 = (pool0 * oraclePrice) / PRECISION;
490 // Compute ratio of total shares to pool AUM in token1
491 shares = (shares * totalSupply()) / (pool0PricedInToken1 + pool1);
492 }
493 _mint(to, shares);
494 emit Deposit(msg.sender, to, shares, deposit0, deposit1);
495 }

Listing 2.1: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

514 function withdraw(
515 uint256 shares,
516 address to
517) external override nonReentrant returns (uint256 amount0, uint256 amount1) {
518 if (shares == 0) revert UniV3TokenizedLp_ZeroValue();
519 if (to == NULL_ADDRESS) revert UniV3TokenizedLp_ZeroAddress();
520
521
522 // Withdraw share amount of liquidity from the Uniswap pool
523 // This call also updates fee state in the pool
524 (uint256 base0, uint256 base1) = _burnLiquidity(
525 baseLower,
526 baseUpper,
527 _liquidityForShares(baseLower, baseUpper, shares),
528 to,
529 false
530);
531
532 // Compute proportion of unused balances in this contract relative to `shares`
533 // Note: Sending tokens directly to alter the balances of this address will result in a

loss to the sender-caller.
534 uint256 _totalSupply = totalSupply();
535 uint256 unusedAmount0 = (IERC20(token0).balanceOf(address(this)) * (shares)) / _totalSupply

;
536 uint256 unusedAmount1 = (IERC20(token1).balanceOf(address(this)) * (shares)) / _totalSupply

;
537 if (unusedAmount0 > 0) IERC20(token0).safeTransfer(to, unusedAmount0);
538 if (unusedAmount1 > 0) IERC20(token1).safeTransfer(to, unusedAmount1);
539
540 amount0 = base0 + unusedAmount0;
541 amount1 = base1 + unusedAmount1;
542
543 _burn(msg.sender, shares);

7

544
545 emit Withdraw(msg.sender, to, shares, amount0, amount1);
546 }

Listing 2.2: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

Impact Potential precision loss may result in unexpected consequences.
Suggestion Revise the code accordingly.
Feedback from the Project This issue is acknowledged by the team, and we decide not to
change the existing code. The lost precision results in losses to the user withdrawing of close
to 1 wei unit, in favor of the remaining depositors.

2.1.2 Ineffective maximum deposit limit

Severity Low
Status Confirmed
Introduced by Version 1

Description In the deposit function, the checks on the maximum deposit limit are ineffective,
as users can bypass them by splitting a single deposit into multiple calls.
430 function deposit(
431 uint256 deposit0,
432 uint256 deposit1,
433 address to
434) external override nonReentrant returns (uint256 shares) {
435 if (!allowToken0 && deposit0 > 0) {
436 revert UniV3TokenizedLp_Token0NotAllowed();
437 }
438 if (!allowToken1 && deposit1 > 0) {
439 revert UniV3TokenizedLp_Token1NotAllowed();
440 }
441 if (deposit0 == 0 && deposit1 == 0) {
442 revert UniV3TokenizedLp_ZeroValue();
443 }
444 if (deposit0 > deposit0Max || deposit1 > deposit1Max) {
445 revert UniV3TokenizedLp_MoreThanMaxDeposit();
446 }

Listing 2.3: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

Impact The maximum deposit limit can be circumvented by splitting deposit actions into mul-
tiple calls.
Suggestion Revise the code accordingly.
Feedback from the Project If deposit0Max or deposit1Max are set to zero, it effectively stops
the inflow of a specific type of token, even in further attempts. Setting a non-zero value can
help control the proportion of inflow tokens; however, the team acknowledges that in several
separate calls the purpose of inflow tokens in expected “max-ratio” can be not as effective.

8

2.1.3 Potential DoS risk

Severity Medium
Status Fixed in Version 3

Introduced by Version 1

Description There is a potential DoS risk in UniV3TokenizedLp contract. Specifically, user-
deposited tokens are not immediately added to the Uniswap V3 pool, while the contract burns
liquidity from the underlying Uniswap V3 pool immediately upon withdrawals requests. A mali-
cious user can exploit this by repeatedly depositing and withdrawing from the contract, forcing
it to burn liquidity into underlying tokens. In themost extreme case, this could leave onlyminimal
liquidity in the contract, effectively reducing the contract’s fee revenue.
Impact The DoS attack may reduce the liquidity of the contract’s position.
Suggestion Revise the code accordingly.

2.1.4 Lack of checks on the token order

Severity Medium
Status Fixed in Version 3

Introduced by Version 2

Description When initializing a new UniV3TokenlizedLp contract, the UniV3PoolHelper con-
tract adds liquidity to the corresponding pool. However, the initializePool function lack
checks on the token order, which may result in incorrect initialization.
112 function initializePool(InitializeParams memory params) public onlyOwner {
113 if (address(tokenizedLpToken) != address(0)) revert AlreadyInitialized();
114
115 (token0, token1) = rdntAddr < weth9Addr ? (rdntAddr, weth9Addr) : (weth9Addr, rdntAddr);
116
117 uint256 initRdntBal = IERC20(rdntAddr).balanceOf(address(this));
118 uint256 initWeth9Bal = IERC20(weth9Addr).balanceOf(address(this));
119 uint160 sqrtPriceX96 = UniV3PoolMath.encodePriceSqrtX96(
120 rdntAddr == token0 ? initRdntBal : initWeth9Bal,
121 rdntAddr == token1 ? initRdntBal : initWeth9Bal
122);
123
124 if (params.factoryType == FactoryType.UniswapV3) {
125 pool = IUniswapV3Pool(params.uniV3Factory.getPool(token0, token1, DESIRED_FEE));
126 if (address(pool) == address(0)) {
127 // UniswapV3 vanilla factory implementation takes desired fee
128 pool = IUniswapV3Pool(params.uniV3Factory.createPool(token0, token1, DESIRED_FEE));
129 pool.initialize(sqrtPriceX96);
130 }
131 } else if (params.factoryType == FactoryType.Velodrome) {
132 ICLFactory clFactory = ICLFactory(address(params.uniV3Factory));
133 pool = IUniswapV3Pool(clFactory.getPool(rdntAddr, weth9Addr, DESIRED_TICK_SPACING));
134 if (address(pool) == address(0)) {
135 // Velodrome factory implementation takes desired tick spacing and initializes

srqtPriceX96

9

136 pool = IUniswapV3Pool(clFactory.createPool(rdntAddr, weth9Addr, DESIRED_TICK_SPACING
, sqrtPriceX96));

137 }
138 }
139
140 tokenizedLpToken = UniV3TokenizedLp(Clones.cloneDeterministic(params.tokenizedLpImpl, "

(>'.'<)"));
141
142 {
143 (address oracle0, address oracle1) = rdntAddr == token0
144 ? (params.usdRdntOracle, params.usdWeth9Oracle)
145 : (params.usdWeth9Oracle, params.usdRdntOracle);
146 tokenizedLpToken.initialize(address(pool), true, true, oracle0, oracle1);
147 int24 tickSpacing = pool.tickSpacing();
148 int24 baseLower_ = UniV3PoolMath.roundTick(UniV3PoolMath.MIN_TICK, tickSpacing);
149 int24 baseUpper_ = UniV3PoolMath.roundTick(UniV3PoolMath.MAX_TICK, tickSpacing);
150 tokenizedLpToken.rebalance(baseLower_, baseUpper_, 0);
151
152 IERC20(rdntAddr).forceApprove(address(pool), initRdntBal);
153 IERC20(weth9Addr).forceApprove(address(pool), initWeth9Bal);
154
155 uint128 fullRangeliquidity = UniV3PoolMath.getLiquidityForAmounts(
156 sqrtPriceX96,
157 UniV3PoolMath.MIN_SQRT_RATIO,
158 UniV3PoolMath.MAX_SQRT_RATIO,
159 initRdntBal,
160 initWeth9Bal
161);
162
163 pool.mint(address(this), baseLower_, baseUpper_, fullRangeliquidity, abi.encode(address(

this)));
164 }
165
166 tokenizedLpToken.setApprovedRebalancer(address(this), false);
167 tokenizedLpToken.setApprovedRebalancer(msg.sender, true);
168 tokenizedLpToken.setFeeRecipient(msg.sender);
169 tokenizedLpToken.transferOwnership(msg.sender);
170
171 emit TokenizedLpInitialized(address(tokenizedLpToken));
172 }

Listing 2.4: contracts/main/radiant/zap/helpers/UniV3PoolHelper.sol

Impact Lack of token order may cause the function to fail.
Suggestion Revise the code accordingly.

2.2 DeFi Security

2.2.1 Potential liquidity manipulation in the autoRebalance function

Severity Low

10

Status Fixed in Version 3

Introduced by Version 1

Description The autoRebalance function in the UniV3TokenlizedLp contract may encounter
issues during the rebalance process. Specifically, the function first burns the position to with-
draw all liquidity and then restructures tokens based on the spot price and oracle price. This
mechanism functions effectively under certain conditions:

The delta surpasses the threshold while the upper and lower ranges remain unchanged.
The upper and lower ranges adjust when the oracle price moves significantly.
However, if the spot price exceeds the upper or lower range, causing the liquidity position

to be filled predominantly with one token, the liquidity to be minted in the final step would be 0.
Essentially, this empties the position’s liquidity, preventing fee collection from the Uniswap V3
pool until the next proper rebalance.
545 function autoRebalance() public nonReentrant {
546 if (baseLower == 0 && baseUpper == 0) revert UniV3TokenizedLp_SetBaseTicksViaRebalanceFirst

();
547
548 (uint256 token0Bal, uint256 token1Bal) = _updateAndCollectPositionFees();
549
550 // Get spot and external oracle prices
551 uint256 spotPrice = fetchSpot(token0, token1, PRECISION);
552 uint256 oraclePrice = fetchOracle(token0, token1, PRECISION);
553
554 // Check if difference between spot and oraclePrice is too big
555 uint256 delta = (spotPrice > oraclePrice)
556 ? ((spotPrice - oraclePrice) * PRECISION) / oraclePrice
557 : ((oraclePrice - spotPrice) * PRECISION) / oraclePrice;
558
559 // Calculate the new baseLower and baseUpper ticks. It is required to encode the price into

sqrtPriceX96
560 int24 baseLower_ = UniV3PoolMath.roundTick(
561 UniV3PoolMath.getTickAtSqrtRatio(
562 UniV3PoolMath.encodePriceSqrtX96(
563 PRECISION,
564 ((oraclePrice * (FULL_PERCENT - baseBpsRangeLower)) / FULL_PERCENT)
565)
566),
567 tickSpacing
568);
569 int24 baseUpper_ = UniV3PoolMath.roundTick(
570 UniV3PoolMath.getTickAtSqrtRatio(
571 UniV3PoolMath.encodePriceSqrtX96(
572 PRECISION,
573 ((oraclePrice * (FULL_PERCENT + baseBpsRangeUpper)) / FULL_PERCENT)
574)
575),
576 tickSpacing
577);
578
579 if (delta > hysteresis || baseLower != baseLower_ || baseUpper != baseUpper_) {
580 baseLower = baseLower_;

11

581 baseUpper = baseUpper_;
582
583 // Swap tokens if required to reach the target price
584 uint160 sqrtPriceCurrentX96 = currentSqrtPriceX96();
585 uint160 sqrtPriceTargetX96 = UniV3PoolMath.encodePriceSqrtX96(PRECISION, oraclePrice);
586 if (sqrtPriceCurrentX96 != sqrtPriceTargetX96) {
587 // Determine if it is a token0-to-token1 or opposite swap
588 bool zeroToOne = sqrtPriceCurrentX96 > sqrtPriceTargetX96;
589 IUniswapV3Pool(pool).swap(
590 address(this),
591 zeroToOne,
592 zeroToOne ? int256(token0Bal) : int256(token1Bal),
593 sqrtPriceTargetX96, // Swap through ticks until the target price is reached or

run out of tokens
594 abi.encode(address(this))
595);
596 }
597
598 uint128 liquidity = _liquidityForAmounts(
599 baseLower,
600 baseUpper,
601 IERC20(token0).balanceOf(address(this)),
602 IERC20(token1).balanceOf(address(this))
603);
604 // Set the CL position at the new baseLower and baseUpper ticks
605 _mintLiquidity(baseLower, baseUpper, liquidity);
606 } else {
607 // Since price difference was less than `hysteresis`, set the CL position back at
608 // the previous baseLower and baseUpper ticks
609 uint128 baseLiquidity = _liquidityForAmounts(baseLower, baseUpper, token0Bal, token1Bal)

;
610 _mintLiquidity(baseLower, baseUpper, baseLiquidity);
611 }
612 }

Listing 2.5: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

Impact Malicious users could potentially deplete the contract’s position, thereby preventing
the contract from earning fees.
Suggestion Revise the code accordingly.

2.2.2 Manipulable return value from the getLpPrice function

Severity Medium
Status Fixed in Version 3

Introduced by Version 1

Description There is a getLpPrice function in the UniV3PoolHelper contract that returns the
price of the underlying UniV3TokenizedLp token.
230 function getLpPrice(uint256) public view returns (uint256 priceInEth) {
231 (uint256 rdntReserve, uint256 wethReserve, uint256 lpSupply) = getReserves();

12

232 uint256 wethForRdnt = tokenizedLpToken.fetchOracle(rdntAddr, weth9Addr, rdntReserve);
233 uint256 allReservesInWeth = wethReserve + wethForRdnt;
234 priceInEth = (allReservesInWeth * 1e8) / lpSupply;
235 }

Listing 2.6: contracts/main/radiant/zap/helpers/UniV3PoolHelper.sol

However, the return value of this function can bemanipulated. Specifically, the getReserves
function converts the position of the UniV3TokenizedLp contract into underlying amounts of the
two tokens. While the liquidity of the position is determined, the spot price is vulnerable to ma-
nipulation. Manipulating the spot price can ultimately affect the LP price, potentially resulting
in unexpected consequences.
218 function getReserves() public view returns (uint256 rdntManaged, uint256 wethManaged, uint256

lpTokenSupply) {
219 lpTokenSupply = tokenizedLpToken.totalSupply();
220 (uint256 total0, uint256 total1) = tokenizedLpToken.getTotalAmounts();
221 (wethManaged, rdntManaged) = weth9Addr == token0 ? (total0, total1) : (total1, total0);
222 }

Listing 2.7: contracts/main/radiant/zap/helpers/UniV3PoolHelper.sol

349 function getTotalAmounts() public view override returns (uint256 total0, uint256 total1) {
350 (, uint256 base0, uint256 base1) = getBasePosition();
351 total0 = IERC20(token0).balanceOf(address(this)) + base0;
352 total1 = IERC20(token1).balanceOf(address(this)) + base1;
353 }

Listing 2.8: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

361 function getBasePosition() public view returns (uint128 liquidity, uint256 amount0, uint256
amount1) {

362 (uint128 positionLiquidity, uint128 tokensOwed0, uint128 tokensOwed1) = _position(baseLower
, baseUpper);

363 (amount0, amount1) = _amountsForLiquidity(baseLower, baseUpper, positionLiquidity);
364 liquidity = positionLiquidity;
365 amount0 = amount0 + uint256(tokensOwed0);
366 amount1 = amount1 + uint256(tokensOwed1);
367 }

Listing 2.9: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

813 function _amountsForLiquidity(
814 int24 tickLower,
815 int24 tickUpper,
816 uint128 liquidity
817) internal view returns (uint256, uint256) {
818 (uint160 sqrtRatioX96, , , , , ,) = IUniswapV3Pool(pool).slot0();
819 return
820 UniV3PoolMath.getAmountsForLiquidity(
821 sqrtRatioX96,
822 UniV3PoolMath.getSqrtRatioAtTick(tickLower),
823 UniV3PoolMath.getSqrtRatioAtTick(tickUpper),

13

824 liquidity
825);
826 }

Listing 2.10: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

Impact A manipulated LP price may lead to unforeseen consequences for protocols relying
on this function.
Suggestion Revise the code accordingly.

2.3 Additional Recommendation

2.3.1 Remove redundant checks

Status Fixed in Version 3

Introduced by Version 1

Description In the _distributeFees function, there are redundant checks on the parameters
which have been checked in the function that sets these parameters.
681 function _distributeFees(uint256 fees0, uint256 fees1) internal {
682 // if there is no affiliate 100% of the baseFee should go to feeRecipient
683 uint256 baseFeeSplit_ = (affiliate == NULL_ADDRESS) ? PRECISION : baseFeeSplit;
684
685
686 if (baseFee > PRECISION) {
687 revert UniV3TokenizedLp_FeeMustBeLtePrecision();
688 }
689 if (baseFeeSplit_ > PRECISION) {
690 revert UniV3TokenizedLp_SplitMustBeLtePrecision();
691 }
692 if (feeRecipient == NULL_ADDRESS) {
693 revert UniV3TokenizedLp_ZeroAddress();
694 }

Listing 2.11: contracts/main/radiant/zap/helpers/UniV3TokenizedLp

Impact Redundant checks can cause extraneous gas usages.
Suggestion Remove the redundant checks.

2.4 Note

2.4.1 Potential centralization risks

Introduced by Version 1

Description In both the UniV3PoolHelper and UniV3TokenizedLp contracts, there are multiple
functions with privileges to set key parameters for the contracts. Altering these parameters
can significantly alter the functionality of the contracts, potentially rendering them unusable or
in an incorrect state.

14

2.4.2 Assumption on the UniV3PoolHelper contract

Introduced by Version 1

Description It is assumed that the UniV3PoolHelper contract does not hold any tokens.
Feedback from the Project The team confirms there is no intention for UniV3PoolHelper to
hold any tokens at any moment. This note is acknowledged by the team.

2.4.3 Dependency on the block timestamp

Introduced by Version 1

Description In the _checkHysteresis function, the block timestamp is used to prevent price
manipulation by ensuring no previous swaps occur in the same block. However, when de-
ploying contracts on the Arbitrum blockchain, this check may be ineffective. Specifically, the
Arbitrum blockchain can have very short block intervals. Although timestamps are derived from
Layer 1 Ethereum), it’s feasible to monitor timestamp changes and manipulate prices before
the switch, effectively circumventing the intended limitations.
801 function _checkHysteresis() private view returns (bool) {
802 (, , uint16 observationIndex, , , ,) = IUniswapV3Pool(pool).slot0();
803 (uint32 blockTimestamp, , ,) = IUniswapV3Pool(pool).observations(observationIndex);
804 return (block.timestamp != blockTimestamp);
805 }

Listing 2.12: contracts/main/radiant/zap/helpers/UniV3TokenizedLp.sol

Feedback from the Project The team acknowledges that block.timestamp of pool observa-
tions can be bypassed in subsequent blocks, specifically in “tight” timestamp blockchains such
as layer-2 EVM-compatible blockchains. However, the check still guards against the usage of
a flash loan as an “atomic” price manipulation mode, which we consider the main attack vector
to defend against. As the liquidity of the underlying pool becomes higher, this form of attack
becomes more costly.

15

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Potential precision loss
	2.1.2 Ineffective maximum deposit limit
	2.1.3 Potential DoS risk
	2.1.4 Lack of checks on the token order

	2.2 DeFi Security
	2.2.1 Potential liquidity manipulation in the autoRebalance function
	2.2.2 Manipulable return value from the getLpPrice function

	2.3 Additional Recommendation
	2.3.1 Remove redundant checks

	2.4 Note
	2.4.1 Potential centralization risks
	2.4.2 Assumption on the UniV3PoolHelper contract
	2.4.3 Dependency on the block timestamp

		2024-07-12T16:50:11+0800

