
For

Audit Report

October, 2024

QuillAudits

01www.quillaudits.com

KYEX - Audit Report

….. 03Executive Summary

......…... 04Number of Security Issues per Severity

... 05Checked Vulnerabilities

... 07Techniques and Methods

.. 08Types of Severity

......….. 08Types of Issues

Table of Content

113. Denial of Service Due to Zero withdrawGasFee

168. Redundant Approval Call in transferERC20 Function

091. Incorrect Handling of Cross-Chain Transfer for WZETA in zrcSwapToNative Function

124. Incorrect Platform Fee Calculation Leading to Overcharging Users

179. Incomplete Implementation of withdrawBTC Function in onCrossChainCall

102. Unaccounted Gas Fee Deduction in swapTokens Function

135. Zero-Value Treasury Transfers May Pause In-Flight Messages in KYEXSwap02

146. Incorrect Unwrapping and Transfer of WZETA in onCrossChainCall Function

157. Wrong handling of slippage

11Medium Severity Issues

16Low Severity Issues

09High Severity Issues

https://www.quillaudits.com/smart-contract-audit

02www.quillaudits.com

KYEX - Audit Report

......…... 19Automated Tests

.........…... 19Closing Summary

.................................…………….. 19Disclaimer

1810. Use safe transfer

1811. Disable Initializers

18Informational Issues

Table of Content

03www.quillaudits.com

KYEX - Audit Report

Project Name KYEX

Project URL https://kyex.io/

Updated Code Received 17th October 2024

Second Review 22nd October 2024 - 24th October 2024

First Review 25th September 2024 - 4th October 2024

Method Manual Analysis, Functional Testing, Automated Testing

Audit Scope The Scope of the Audit is to analyse code quality,security and
correctness of Kyex Contracts.

Commit Hash a7ec7e26b65aa393472a2c5b52758575555642cc

Contracts In-Scope contracts/KYEXSwap01.sol
contracts/KYEXSwap02.sol

Branch Master

Source Code https://github.com/kyexHead/kyex-swap

Language Solidity

Blockchain Zetachain

Fixed In be13bc107db8acc352702ac0f9a630519f77806e

Executive Summary

https://www.quillaudits.com/smart-contract-audit
https://kyex.io/
https://github.com/kyexHead/kyex-swap

04www.quillaudits.com

KYEX - Audit Report

0

0

1

1

0

0

0

2

0

0

1

4

0

0

0

2

Open Issues

Acknowledged Issues

Partially Resolved Issues

Resolved Issues

High Medium Low Informational

High

Low

Medium

Informational
Issues Found

11

Number of Security Issues per Severity

https://www.quillaudits.com/smart-contract-audit

05www.quillaudits.com

KYEX - Audit Report

Checked Vulnerabilities

Access Management

Arbitrary write to storage

Centralization of control

Ether theft

Improper or missing events

Logical issues and flaws

Arithmetic Correctness

Race conditions/front running

SWC Registry

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC’s conformance

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Multiple Sends

Using suicide

Using delegatecall

Upgradeable safety

Using throw

https://www.quillaudits.com/smart-contract-audit

06www.quillaudits.com

KYEX - Audit Report

Checked Vulnerabilities

Using inline assembly

Style guide violation

Unsafe type inference

Implicit visibility level

07www.quillaudits.com

KYEX - Audit Report

Throughout the audit of smart contracts, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments, match logic and expected behavior.
Token distribution and calculations are as per the intended behavior mentioned in the
whitepaper.
Implementation of ERC standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Structural Analysis

A static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this
step, a series of automated tools are used to test the security of smart contracts.

Static Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper. Besides, the results of the automated analysis were manually verified.

Code Review / Manual Analysis

In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code
to reduce gas consumption.

Gas Consumption

Remix IDE, Foundry, Solhint, Mythril, Slither, Solidity statistic analysis.
Tools and Platforms used for Audit

Techniques and Methods

https://www.quillaudits.com/smart-contract-audit

08www.quillaudits.com

KYEX - Audit Report

Every issue in this report has been assigned to a severity level. There are four levels of
severity, and each of them has been explained below.

Types of Severity

A high severity issue or vulnerability means that your smart contract can be exploited.
Issues on this level are critical to the smart contract’s performance or functionality, and
we recommend these issues be fixed before moving to a live environment.

High Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies in
the smart contract code. Issues on this level could potentially bring problems, and they
should still be fixed.

Medium Severity Issues

Low-level severity issues can cause minor impact and are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Low Severity Issues

These are four severity issues that indicate an improvement request, a general question,
a cosmetic or documentation error, or a request for information. There is low-to-no
impact.

Informational

Types of Issues

Security vulnerabilities identified that must be resolved and are currently unresolved.
Open

These are the issues identified in the initial audit and have been successfully fixed.
Resolved

Vulnerabilities which have been acknowledged but are yet to be resolved.
Acknowledged

Considerable efforts have been invested to reduce the risk/impact of the security issue,
but are not completely resolved.

Partially Resolved

https://www.quillaudits.com/smart-contract-audit

09www.quillaudits.com

KYEX - Audit Report

High Severity Issues

1. Incorrect Handling of Cross-Chain Transfer for WZETA in zrcSwapToNative Function

Description

Path

Function

In the zrcSwapToNative function of the KYEXSwap01 contract, there is a logical flaw when
handling the case where tokenOutOfZetaChain is equal to WZETA.
The issue arises because the transferZETA function is designed to transfer WZETA tokens
within the same chain (i.e., it refunds the user on the source chain). However, in the context
of a cross-chain swap, the intended behavior is to transfer WZETA tokens to the user’s
address on a different chain. The current implementation does not do this, it just swaps the
inputToken to WZETA in the swapTokens function, then sends it to the user on the ZETA
chain.

amountOut = swapTokens(tokenInOfZetaChain, tokenOutOfZetaChain, amountIn, isWrap,
slippageTolerance);

 if (tokenOutOfZetaChain == WZETA) {
 transferZETA(tokenOutOfZetaChain, msg.sender, amountOut, isWrap);

KYEXSwap01.sol

zrcSwapToNative

Recommendation
I suggest usage of the ZetaConnectorZEVM contract from the zeta protocol to handle
bridging of the ZETA tokens.
After the swap, the contract can unwrap the WZETA tokens and then bridge to the users
address.

Status
Resolved

10www.quillaudits.com

KYEX - Audit Report

2. Unaccounted Gas Fee Deduction in swapTokens Function

Description

Path

Function

In the swapTokens function of the KYEXSwap01 contract, there is an issue where the gas fee
(gasFee) is deducted from the input amount when swapping ZETA (WZETA) to another token,
but the deducted gas fee is not properly handled or utilized. This leads to the gas fee
amount being unaccounted for and remaining in the contract, which can cause
discrepancies in the contract’s balance and loss of user funds.

When swapping from WZETA to another token (i.e., tokenA == WZETA), the gas fee is
subtracted from amountA (amountA - gasFee), but the gasFee is not subsequently used or
transferred. This results in the gasFee amount remaining idle in the contract. The
unhandled gasFee effectively locks a portion of the user’s funds within the contract, leading
to an unintended loss for the user.

 if (tokenA == WZETA || tokenB == WZETA) {
path = new address[](2); path[0] = tokenA;path[1] = tokenB;
uint256[] memory amounts =
IUniswapV2Router02(UniswapRouter).swapExactTokensForTokens(
 okenB == WZETA ? amountA : amountA - gasFee,
 calculateMinimumOutputAmount(tokenB == WZETA ? amountA : amountA - gasFee, path,
slippageTolerance),path, address(this), block.timestamp + MAX_DEADLINE);amountOut =
amounts[1];

Also note that these tokens cannot be withdrawn from the contract.

KyexSwap01

swapTokens

Recommendation
Since the actual gas fee is deducted when the tokens are being withdrawn from ZETA in the
withdrawBTC and withdrawToken function.
Also for non-crosschain swaps, the user gets two deductions instead of one: Gasfee and
Platformfee

Status
Resolved

11www.quillaudits.com

KYEX - Audit Report

Medium Severity Issues

3. Denial of Service Due to Zero withdrawGasFee

Description

Path

 In the KYEXSwap01 & KYEXSwap02 contracts, there is a vulnerability where the protocol can
become unusable if the withdrawGasFee function returns zero. This function call is crucial
as it determines the gas fee required for token withdrawal operations. The ZETA protocol,
which the contract interacts with, has the ability to set the withdrawGasFee to zero through
the system contract.

Although unlikely, if the fees are set to zero, all swap calls to swap from ZRC20 to their
respective gasZRC20s will make the function break, causing multiple reverts and hindering
actual usage of the contract.

In the KYEXSwap02 contract, the inflight messages from the System Contract will also not
succeed

KYEXSwap01 & KYEXSwap02

Recommendation
Always check that the fee is always greater than zero before attempting the swap through
the Uniswap Contract

Status
Resolved

12www.quillaudits.com

KYEX - Audit Report

4. Incorrect Platform Fee Calculation Leading to Overcharging Users

Description

Path

Function

In the swapTokens function of the KYEXSwap01 contract, there is a miscalculation in how
the platform fee is applied. The platform fee is calculated based on the amountOut before
deducting the gas fee, which results in users being overcharged. Since the gas fee is an
additional cost that should not be included in the platform’s revenue, the platform fee
should be calculated after the gas fee has been deducted.

By calculating the platform fee on the total amountOut, including the gas fee, users are
effectively paying a fee on funds that are not part of their total funds

//@audit-ok Med platformfee deducted before gasfee deduction, this is an issue because
platform fee takes a percentage
 uint256 feeAmount = amountOut * platformFee / 10000;
 uint256 newAmount = amountOut - feeAmount;
 if (feeAmount > 0) {
 TransferHelper.safeTransfer(tokenB, kyexTreasury, feeAmount);
 }

KYEXSwap01

swapTokens

Recommendation
To correct this issue, the platform fee should be calculated based on the amount after the
gas fee has been deducted. This would be done in the functions after the swapTokens
function, majorly the transferZETA, withdrawBTC, withdrawToken, transferZRC.

Status
Resolved

13www.quillaudits.com

KYEX - Audit Report

5. Zero-Value Treasury Transfers May Pause In-Flight Messages in KYEXSwap02

Description

Path

In the KYEXSwap02 contract, there is an issue where zero-value transfers to the treasury are
not checked which will always cause reverts if feeAmount == 0, causing transactions to fail.
This occurs because the contract does not check whether the feeAmount is greater than
zero before attempting to transfer it to the kyexTreasury. Since ERC20 tokens generally
revert on zero-value transfers, the absence of this check can halt the execution of the
onCrossChainCall function which is a call coming from the SystemContract, effectively
pausing in-flight messages.

In the KYEXSwap01 contract, this is done properly, as each zero value transfer to the
treasury is checked and omitted. The absence of if (feeAmount > 0) before the transfer
means that zero-value transfers are attempted, leading to reverts.

KYEXSwap02

Recommendation
To resolve this issue, the KYEXSwap02 contract should include a check to prevent zero-value
transfers to the treasury so that small token transfers do not cause reverts.

uint256 feeAmount = swapAmounts.outputAmount * platformFee / 10000;
uint256 newAmount = swapAmounts.outputAmount - feeAmount;

// Add zero-value check to prevent reverts
if (feeAmount > 0) {
 TransferHelper.safeTransfer(targetTokenAddress, kyexTreasury, feeAmount);
}

Status
Resolved

14www.quillaudits.com

KYEX - Audit Report

6. Incorrect Unwrapping and Transfer of WZETA in onCrossChainCall Function

Description

Path

Function

In the onCrossChainCall the, when isWIthdraw == 3, the function calls transferERC20 to
handle ERC20 tokens, however this is not completely done properly.

} else if (isWithdraw == 3) {
 //Unwrap and transfer (for WZETA)
 transferERC20(zrc20, targetTokenAddress, amount, recipientAddress, slippage);

This particular condition for unwrapping before transferring WZETA was not handled in the
transferERC20 function. Although this does not cause any reverts, the code does not
provide the required output.
If the recipient is a contract, expecting native ZETA tokens, it would receive WZETA tokens
which are ERC20 tokens it is unable to handle.

KYEXSwap02

onCrossChainCall

Recommendation
Implement a check in transferERC20 function to handle WZETA tokens, i.e, unwrapping and
transferring tokens if targetTokenAddress == WZETA

Status
Resolved

15www.quillaudits.com

KYEX - Audit Report

7. Wrong handling of slippage

Description

Path

Although slippage is handled in the contracts, and calculated properly. There is a critical
oversight

Because the values are gotten onchain, within the same transaction as the swap,if the pool
is imbalanced, the price used for calculations would be imbalanced too. This leaves the
contract vulnerable as well. A MEV researcher can still manipulate a pool before
transactions are actually processed.

KYEXSwap02, KYEXSwap01

Recommendation
It is best to utilize an offchain slippage method, i.e, enable users to pass in the slippage
value as a parameter, not just a percentage or calculating based on an oracle. This would
give the maximum protection.

Status
Acknowledged

16www.quillaudits.com

KYEX - Audit Report

Low Severity Issues

8. Redundant Approval Call in transferERC20 Function

Description

Path

Function

In the transferERC20 function of the KYEXSwap02 contract, there is a redundant line of code
that unnecessarily attempts to approve the token contract to spend tokens on behalf of
itself.

if (!IZRC20(targetTokenAddress).approve(targetTokenAddress, outputAmount)) revert
Errors.ApprovalFailed(); // @audit LOW redundant line

This line calls the approve function on targetTokenAddress, allowing targetTokenAddress to
spend outputAmount tokens from the contract’s balance. However, since the contract is
transferring tokens directly to the recipient and does not require any external contract to
spend tokens on its behalf, this approval is unnecessary.

KYEXSwap02

transferERC20

Recommendation
To resolve this issue, remove the redundant approval line from the transferERC20 function

Status
Resolved

17www.quillaudits.com

KYEX - Audit Report

9. Incomplete Implementation of withdrawBTC Function in onCrossChainCall

Description

Path

Function

In the KYEXSwap02 contract, the withdrawBTC function is intended to handle the withdrawal
of BTC tokens. However, there is an issue where this function is not properly integrated
within the onCrossChainCall function. Specifically, when the contract is supposed to process
BTC withdrawals during cross-chain calls, the withdrawBTC function is either
unimplemented or not invoked as needed.

The onCrossChainCall function should handle different types of token transfers based on
the isWithdraw parameter. However, for cases involving BTC (e.g., when
tokenOutOfZetaChain == BITCOIN), the function does not invoke withdrawBTC as required.

KYEXSwap02

onCrossChainCall

Recommendation
Consider implementing the withdrawBTC function within the onCrossChainCall to enable its
usage.

Status
Resolved

18www.quillaudits.com

KYEX - Audit Report

Informational Issues

10. Use safe transfer

Description
Although there are no unexpected tokens to be used in the protocol asides ZETA tokens, it
would still be a good practice to consistently use the TransferHelper library to handle all
ERC20 token transfers.

Path
KYEXSwap02, KYEXSwap01

Recommendation
Use the appropriate function from the TransferHelper library to handle all necessary
transfers.

Status
Resolved

11. Disable Initializers

Path
KYEXSwap02, KYEXSwap01

Recommendation
To prevent reinitialization of the implementation contract, it is advised to use the
_disableInitializers function from the openzeppelin library.

Status
Acknowledged

19www.quillaudits.com

KYEX - Audit Report

Closing Summary
In this report, we have considered the security of KYEX. We performed our audit according to the
procedure described above.

Some issues of High,low,medium and informational severity were found. Some suggestions, gas
optimizations and best practices are also provided in order to improve the code quality and
security posture.

Disclaimer
QuillAudits Smart contract security audit provides services to help identify and mitigate potential
security risks in KYEX. However, it is important to understand that no security audit can
guarantee complete protection against all possible security threats. QuillAudits audit reports are
based on the information provided to us at the time of the audit, and we cannot guarantee the
accuracy or completeness of this information. Additionally, the security landscape is constantly
evolving, and new security threats may emerge after the audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of KYEX. One audit is not enough to guarantee complete protection
against all possible security threats. It is important to implement proper risk management
strategies and stay vigilant in monitoring your smart contracts for potential security risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent
to and despite using our audit services. It is the responsibility of KYEX to implement the
recommendations provided in our audit reports and to take appropriate steps to mitigate
potential security risks.

Automated Tests
No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

www.quillaudits.com

KYEX - Audit Report

Follow Our Journey

1M+
Lines of Code Audited

$30B
Secured

1000+
Audits Completed

About QuillAudits
QuillAudits is a leading name in Web3 security, offering top-notch solutions to safeguard projects

across DeFi, GameFi, NFT gaming, and all blockchain layers. With six years of expertise, we’ve
secured over 1000 projects globally, averting over $30 billion in losses. Our specialists rigorously
audit smart contracts and ensure DApp safety on major platforms like Ethereum, BSC, Arbitrum,

Algorand, Tron, Polygon, Polkadot, Fantom, NEAR, Solana, and others, guaranteeing your project’s
security with cutting-edge practices.

https://www.quillaudits.com/smart-contract-audit
https://x.com/quillaudits_ai
https://www.linkedin.com/company/quillaudits/
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://quillaudits.medium.com/
https://discord.gg/C6M2eQZagw
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

QuillAudits

Canada, India, Singapore, UAE, UK

www.quillaudits.com

audits@quillhash.com

For

Audit Report

October, 2024

https://www.quillaudits.com/smart-contract-audit
mailto:audits@quillhash.com

