
1 Security Assessment Report

Lulo
May 02, 2024

Sec3 Report

Summary

The Sec3 team (formerly Soteria) was engaged to conduct a thorough security analysis of the

Lulo smart contracts.

The artifact of the audit was the source code of the following programs, excluding tests, in a

private repository.

The initial audit focused on the following versions and revealed 8 issues or questions.

program type commit

Lulo Solana 781a0d3d7640207c324253bc15292abb690ea22d

Per team’s instruction, the following 3 instructions were excluded from this review:

• “init_action”

• “claim_tokens”

• “fund_tokens”

This report provides a detailed description of the findings and their respective resolutions.

1

Sec3 Report

Table of Contents

Result Overview.. 3

Findings in Detail .. 4

[M-01]Missing obligation and promotion_authority consistency check 4

[M-02] Arbitrary CPIs .. 5

[L-01] Outdated liquidity_token_account amount... 8

[L-02] Potential DoS issue caused by the init attribute of the ATA accounts.............................. 9

[I-01] Failure when closing liquidity_token_account ... 10

[I-02] Inconsistent macro naming in WithdrawMarginFi.. 12

[I-03] Runtime overflow check not enabled... 13

[I-04] Duplicated code snippets... 15

Appendix: Methodology and Scope of Work... 16

2

Sec3 Report

Result Overview

Issue Impact Status

LULO

[M-01]Missing obligation and promotion_authority consistency check Medium Resolved

[M-02] Arbitrary CPIs Medium Resolved

[L-01] Outdated liquidity_token_account amount Low Resolved

[L-02] Potential DoS issue caused by the init attribute of the ATA accounts Low Resolved

[I-01] Failure when closing liquidity_token_account Info Resolved

[I-02] Inconsistent macro naming in WithdrawMarginFi Info Resolved

[I-03] Runtime overflow check not enabled Info Resolved

[I-04] Duplicated code snippets Info Resolved

3

Sec3 Report

Findings in Detail

LULO
[M-01]Missing obligation and promotion_authority consistency check

In the current implementation of “deposit∕withdraw_2x_kamino”, the accounting logic operates

as follows:

• In deposit, the “promotion_authority.total_deposits” records the liquidity token amount;

• In withdrawal, after “WithdrawObligationCollateralAndRedeemReserveCollateral”, the to-

kens obtained are proportionally returned to users based on the corresponding amounts

recorded, with any surplus being returned to the reserve.

However, this design works for a one-to-one correspondence between a “promotion_authority”

and a liquiditymint, neglecting the possibility thatmultiple lendingmarkets or obligations could

share the same “promotion_authority”.

Consider a scenario where a malicious user deposits 100 tokens into obligation A and another

100 tokens into obligation B, then proceeds to withdraw from obligation A.

In this case, the attacker could retrieve all 200 tokens, including the 100 tokens from the admin

reserve, while the 200 tokens that should have been returned to the admin reserve remain in

obligation B. By repeating such actions, the attacker could potentially execute a DoS attack.

Althoughadministratorsmaydetect suchmaliciousbehaviorandmanually reclaimtokens through

transfer authority, it is recommended to introduce checks to ensure a one-to-one correspon-

dence between a “promotion_authority” and its obligation.

Resolution

This issue has been resolved by commit 1fcd51ea596878ecb31a78363da075d2c9b343da.

4

Sec3 Report

LULO
[M-02] Arbitrary CPIs

In the Solend-related CPIs, the Solend program address (“solend_program”) is not validated. As a

result, an attacker could use amalicious programaddress as “solend_program” and call a crafted

smart contract with the signature of the “user_account” PDA.

For instance, in the “deposit_solend”and “withdraw_solend”, the “collateral_token_account”and

“liquidity_token_account” token accounts’ authority is the signer of the CPI calls. If attackers

use the program ID of amalicious smart contract as the “solend_program” and deceive users into

signing the transaction, they could potentially steal the tokensheld in the aforementioned token

accounts inside this maliciously crafted CPI callee program, or just burn the tokens.

It is recommended to validate the “solend_program” program ID to ensure security.

Furthermore, while it is currently considered safe to omit program ID checks in the CPI calls

to “mfi”, “drift”, “kamino”, and “mango”, due to the CPI program ID in Anchor version 0.28 being

hardcoded as “crate::ID” (see cpi.rs in anchor 0.28). This approach needs reevaluation with the

release of Anchor 0.29. In this newer version, the CPI program ID is set to “ctx.program.key()”

(see cpi.rs in anchor 0.29).

Consequently, when upgrading to Anchor 0.29, validating the program ID in CPI calls becomes

necessary, as these IDs now originate from unchecked accounts in the context.

1. init_solend

∕* programs∕flexlend∕src∕solend.rs *∕
008 | pub struct InitSolend<'info> {
036 | #[account()]
037 | ∕∕∕ CHECK: CPI
038 | pub solend_program: AccountInfo<'info>,

045 | pub fn init_solend(ctx: Context<InitSolend>) -> Result<()> {
056 | let instruction = init_obligation(
057 | ctx.accounts.solend_program.key(),
063 |);
064 | invoke_signed(
065 | &instruction,
075 |)?;

5

https://github.com/coral-xyz/anchor/blob/v0.28.0/lang/syn/src/codegen/program/cpi.rs#L43
https://github.com/coral-xyz/anchor/blob/v0.29.0/lang/syn/src/codegen/program/cpi.rs#L43

Sec3 Report

379 | pub fn init_obligation(
380 | program_id: Pubkey,
386 |) -> Instruction {
387 | Instruction {
388 | program_id,

2. deposit_solend

∕* programs∕flexlend∕src∕solend.rs *∕
085 | pub struct ConvertSolend<'info> {
164 | #[account()]
165 | ∕∕∕ CHECK: CPI
166 | pub solend_program: AccountInfo<'info>,

179 | pub fn deposit_solend(
180 | ctx: Context<ConvertSolend>,
184 |) -> Result<()> {
195 | let solend_ix = deposit_reserve_liquidity(
196 | ctx.accounts.solend_program.key(),
207 | ctx.accounts.user_account.key(), ∕∕ obligation_owner
210 | ctx.accounts.user_account.key(), ∕∕ user_transfer_authority_pubkey

238 | fn deposit_reserve_liquidity(
239 | program_id: Pubkey,
250 | obligation_owner: Pubkey,
253 | user_transfer_authority_pubkey: Pubkey,
255 |) -> Instruction {
260 | Instruction {
261 | program_id,

3. withdraw_solend

∕* programs∕flexlend∕src∕solend.rs *∕
085 | pub struct ConvertSolend<'info> {
164 | #[account()]
165 | ∕∕∕ CHECK: CPI
166 | pub solend_program: AccountInfo<'info>,

282 | pub fn withdraw_solend(
283 | ctx: Context<ConvertSolend>,
287 |) -> Result<()> {
294 | let solend_ix = redeem_reserve_collateral(
295 | ctx.accounts.solend_program.key(),
306 | ctx.accounts.user_account.key(), ∕∕ obligation_owner
307 | ctx.accounts.user_account.key(), ∕∕ user_transfer_authority_pubkey

335 | fn redeem_reserve_collateral(
336 | program_id: Pubkey,
351 | obligation_owner: Pubkey,
352 | user_transfer_authority_pubkey: Pubkey, ∕∕ was 7, now 10

6

Sec3 Report

354 |) -> Instruction {
359 | Instruction {
360 | program_id,

Resolution

This issue has been resolved by commit f94f0850400678cd43e0ea969e4d32b26fba6cc4.

7

Sec3 Report

LULO
[L-01] Outdated liquidity_token_account amount

The balance of “liquidity_token_account” changes after the “transfer” operation at line 222 in

“kamino.rs”.

In line 244, “ctx.accounts.liquidity_token_account” points to a local copy loaded before the

transfer, resulting in “liquidity_amount” being assigned by an outdated value.

A “reload()” operation is necessary after the transfer to update this value.

∕* programs∕flexlend∕src∕kamino.rs *∕
208 | pub fn deposit_kamino(
209 | ctx: Context<DepositKamino>,
210 | deposit_amount: u64,
211 | deposit_all: bool,
212 | is_migration: bool,
213 |) -> Result<()> {
220 | if automation.key().eq(&user.owner) {
221 | ∕∕ Transfer from user to liquidity token account
222 | anchor_spl::token::transfer(
223 | CpiContext::new(
224 | ctx.accounts.token_program.to_account_info(),
225 | anchor_spl::token::Transfer {
226 | from: ctx.accounts.user_token_account.to_account_info(),
227 | to: ctx.accounts.liquidity_token_account.to_account_info(),
228 | authority: ctx.accounts.owner.to_account_info(),
229 | },
230 |),
231 | deposit_amount,
232 |)?;
233 | }
243 | let liquidity_amount = if is_migration || deposit_all {
244 | ctx.accounts.liquidity_token_account.amount
245 | } else {
246 | deposit_amount
247 | };

Resolution

This issue has been resolved by commit fa53c833ab800dcaeb8eb0468d7f53ea7cf6f079.

8

Sec3 Report

LULO
[L-02] Potential DoS issue caused by the init attribute of the ATA accounts

In “Deposit2xKamino” and “Withdraw2xKamino”, the “liquidity_token_account” has an “init” at-

tribute, requiring it to be an uninitialized account.

However, since “liquidity_token_account” is an associated token account (ATA), it could have

been created by anyone before. If such an account is pre-created, it would prevent users from

normally depositing or withdrawing, potentially leading to a denial of service (DoS).

Consider changing the “init” attribute on “liquidity_token_account” to “init_if_needed” tomit-

igate this risk.

∕* programs∕flexlend∕src∕d2x∕instructions∕deposit_2x_kamino.rs *∕
014 | pub struct Deposit2xKamino<'info> {
079 | #[account(
080 | init,
081 | payer = owner,
082 | associated_token::mint = liquidity_mint_address,
083 | associated_token::authority = promotion_authority,
084 |)]
085 | pub liquidity_token_account: Box<Account<'info, TokenAccount>>,

∕* programs∕flexlend∕src∕d2x∕instructions∕withdraw_2x_kamino.rs *∕
014 | pub struct Withdraw2xKamino<'info> {
080 | #[account(
081 | init,
082 | payer = owner,
083 | associated_token::mint = liquidity_mint_address,
084 | associated_token::authority = promotion_authority,
085 |)]
086 | pub liquidity_token_account: Box<Account<'info, TokenAccount>>,

Resolution

This issue has been resolved by commit eeb08f37cdf28f29eee774329d5ad446e087955b.

9

Sec3 Report

LULO
[I-01] Failure when closing liquidity_token_account

In the “deposit_kamino” function, closing the “liquidity_token_account”may fail if there is a re-

maining balance in the account.

∕* programs∕flexlend∕src∕kamino.rs *∕
208 | pub fn deposit_kamino(
213 |) -> Result<()> {
243 | let liquidity_amount = if is_migration || deposit_all {
244 | ctx.accounts.liquidity_token_account.amount
245 | } else {
246 | deposit_amount
247 | };
248 |
249 | msg!("liquidity_amount: {}", liquidity_amount);
250 |
251 | kamino_cpi::cpi::deposit_reserve_liquidity_and_obligation_collateral(
252 | CpiContext::new_with_signer(
278 |),
279 | liquidity_amount,
280 |)?;
281 |
282 | if automation.key().eq(&user.owner) {
283 | ∕∕ Close liquidity_token_account
284 | anchor_spl::token::close_account(CpiContext::new_with_signer(
285 | ctx.accounts.token_program.to_account_info(),
286 | anchor_spl::token::CloseAccount {
287 | account: ctx.accounts.liquidity_token_account.to_account_info(),
288 | destination: ctx.accounts.owner.to_account_info(),
289 | authority: ctx.accounts.user_account.to_account_info(),
290 | },
291 | signer_seeds,
292 |))?;
293 | }

∕* spl-token-3.5.0∕src∕processor.rs *∕
664 | ∕∕∕ Processes a [CloseAccount](enum.TokenInstruction.html) instruction.
665 | pub fn process_close_account(program_id: &Pubkey, accounts: &[AccountInfo]) -> ProgramResult {
675 | let source_account = Account::unpack(&source_account_info.data.borrow())?;
676 | if !source_account.is_native() && source_account.amount != 0 {
677 | return Err(TokenError::NonNativeHasBalance.into());
678 | }

Consider transferring the balance from “liquidity_token_account” to “user_token_account” in

advance.

10

Sec3 Report

Resolution

This issue has been resolved by commit fa53c833ab800dcaeb8eb0468d7f53ea7cf6f079.

11

Sec3 Report

LULO
[I-02] Inconsistent macro naming inWithdrawMarginFi

The “withdraw_marginfi” function uses parameters prefixed with “withdrawal_*”. However, the

parameters in “WithdrawMarginFi” are prefixed with “deposit_*”.

This isn’t an issue per se, but aligning these prefixes could enhance readability.

∕* programs∕flexlend∕src∕lib.rs *∕
107 | pub fn withdraw_marginfi<'a, 'b, 'c, 'info>(
108 | ctx: Context<'a, 'b, 'c, 'info, WithdrawMarginFi<'info>>,
109 | withdrawal_amount: u64,
110 | withdraw_all: bool,
111 | is_migration: bool,
112 |) -> Result<()> {
113 | mfi::withdraw_marginfi(ctx, withdrawal_amount, withdraw_all, is_migration)
114 | }

∕* programs∕flexlend∕src∕mfi.rs *∕
128 | #[derive(Accounts)]
129 | #[instruction(deposit_amount: u64, deposit_all: bool, is_migration: bool)]
130 | pub struct WithdrawMarginFi<'info> {

Resolution

This issue has been resolved by commit 6473da0c6200a692a2b93dd1651573c9e563ab68.

12

Sec3 Report

LULO
[I-03] Runtime overflow check not enabled

It is generally a good practice to activate runtime overflow checks for the following two arith-

metic operations, even though an overflowmay not occur.

Specifically, in “deposit_2x_kamino.rs:188”, the “amount” is a “u64” variable, so “amount * 2” could

potentially overflow. However, this is unlikely to happen because the two preceding transfer

operations to the “liquidity_token_account”would fail first.

∕* flexlend∕src∕d2x∕instructions∕deposit_2x_kamino.rs *∕
123 | pub fn deposit_2x_kamino(ctx: Context<Deposit2xKamino>, amount: u64) -> Result<()> {
129 | ∕∕ Transfer from reserve to liquidity token account
130 | anchor_spl::token::transfer(
131 | CpiContext::new_with_signer(
133 | anchor_spl::token::Transfer {
135 | to: ctx.accounts.liquidity_token_account.to_account_info(),
137 | },
139 |),
140 | amount,
141 |)?;
142 |
143 | ∕∕ Transfer from user to liquidity token account
144 | anchor_spl::token::transfer(
145 | CpiContext::new(
147 | anchor_spl::token::Transfer {
149 | to: ctx.accounts.liquidity_token_account.to_account_info(),
151 | },
152 |),
153 | amount,
154 |)?;
159 | ∕∕ Deposit 2x
160 | kamino_cpi::cpi::deposit_reserve_liquidity_and_obligation_collateral(
161 | CpiContext::new_with_signer(
187 |),
188 | amount * 2,
189 |)?;

Additionally,whencalculating “reclaim”, although “promo_info.lamports() - minimum_rent”won’t

underflow because the “2115840” is the calculated rent for the “promo_info” account, it is still

good practice to enable the runtime overflow check.

∕* flexlend∕src∕d2x∕instructions∕withdraw_2x_kamino.rs *∕
125 | pub fn withdraw_2x_kamino(
126 | ctx: Context<Withdraw2xKamino>,
127 | _amount: u64,

13

Sec3 Report

128 | _withdraw_all: bool,
129 |) -> Result<()> {
220 | let minimum_rent: u64 = 2115840;
222 | let promo_info = ctx.accounts.promotion_authority.to_account_info();
223 | let wallet_info = ctx.accounts.owner.to_account_info();
225 | let reclaim = promo_info.lamports() - minimum_rent;
227 | if reclaim > 0 {
228 | **promo_info.try_borrow_mut_lamports()? -= reclaim;
229 | **wallet_info.try_borrow_mut_lamports()? += reclaim;
230 | }

Resolution

This issue has been resolved by commit d62fb926477ee024113c0e3b0093eb76069318dc.

14

Sec3 Report

LULO
[I-04] Duplicated code snippets

The statement suggests that two sections of code (lines 279-284 and lines 286-291) are the

same, indicating redundancy. To optimize, consider merging them into a single section or func-

tion.

∕* programs∕flexlend∕src∕mfi.rs *∕
252 | pub fn withdraw_marginfi<'a, 'b, 'c, 'info>(
257 |) -> Result<()> {
278 | let cpi_ctx = if withdraw_all {
279 | anchor_lang::prelude::CpiContext {
280 | program: ctx.accounts.mfi_program.to_account_info(),
281 | accounts: accts,
282 | remaining_accounts: ctx.remaining_accounts.to_vec(),
283 | signer_seeds,
284 | }
285 | } else {
286 | anchor_lang::prelude::CpiContext {
287 | program: ctx.accounts.mfi_program.to_account_info(),
288 | accounts: accts,
289 | remaining_accounts: ctx.remaining_accounts.to_vec(),
290 | signer_seeds,
291 | }
292 | };

Resolution

This issue has been resolved by commit 3d305f33122ba8bc61a2d1154c345207c7cf71dc.

15

Sec3 Report

Appendix: Methodology and Scope ofWork

The Sec3 (formerly Soteria) audit team, which consists of Computer Science professors and

industrial researchers with extensive experience in smart contract security, program analy-

sis, testing and formal verification, performed a comprehensive manual code review, software

static analysis and penetration testing.

Assisted by the Sec3 Scanner developed in-house, the audit team particularly focused on the

following work items:

• Check common security issues.

• Check program logic implementation against available design specifications.

• Check poor coding practices and unsafe behavior.

• The soundness of the economics design and algorithm is out of scope of this work

16

The instance report ("Report") was prepared pursuant to an agreement between Coder-

rect Inc. d/b/a Sec3 (the "Company") and Lulo Labs Inc. (the "Client''). This Report solely

includes the results of a technical assessment of a specific build and/or version of the

Client's code specified in the Report ("Assessed Code") by the Company. The sole purpose

of the Report is to provide the Client with the results of the technical assessment of the

Assessed Code. The Report does not apply to any other version and/or build of the As-

sessed Code. Regardless of the contents of the Report, the Report does not (and should

not be interpreted to) provide anywarranty, representation or covenant that theAssessed

Code: (i) is error and/or bug free, (ii) has no security vulnerabilities, and/or (iii) does not

infringe any third-party rights. Moreover, the Report is not, and should not be considered,

an endorsement by the Company of the Assessed Code and/or of the Client. Finally, the

Report should not be considered investment advice or a recommendation to invest in the

Assessed Code and/or the Client.

This Report is considered null and void if the Report (or any portion thereof) is altered in

any manner.

DISCLAIMER

Founded by leading academics in the field of software security and senior industrial

veterans, Sec3 (formerly Soteria) is a leading blockchain security company. We are also

building sophisticated security tools that incorporate static analysis, penetration

testing, and formal verification.

At Sec3, we identify and eliminate security vulnerabilities through the most rigorous

process and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

ABOUT

https://www.sec3.dev/
https://twitter.com/Sec3dev

	Result Overview
	Findings in Detail
	[M-01] Missing obligation and promotion_authority consistency check
	[M-02] Arbitrary CPIs
	[L-01] Outdated liquidity_token_account amount
	[L-02] Potential DoS issue caused by the init attribute of the ATA accounts
	[I-01] Failure when closing liquidity_token_account
	[I-02] Inconsistent macro naming in WithdrawMarginFi
	[I-03] Runtime overflow check not enabled
	[I-04] Duplicated code snippets
	Appendix: Methodology and Scope of Work

