Software Engineering – Personal Project 2025
[image: ]

Requirements Document
School Chess Tournament Management Software
Project Title
School Chess Tournament Manager
1. General Understanding
Purpose
The software package will assist in managing a school chess tournament, including player registration, match scheduling, score tracking, and ranking generation.
Problem Statement
Manual management of chess tournaments is time-consuming and prone to errors. The software will automate tasks, ensure accuracy, and provide an easy-to-use interface for tournament organizers.
Goals:
- Create a Python-based application using customTKinter for a GUI.
- Ensure the system is user-friendly and adaptable for different tournament sizes.
2. Stakeholder Requirements
Stakeholders:
Tournament organisers: Require an intuitive system to manage players, matches, and results.
Participants: Need access to schedules and rankings.
Stakeholder Expectations:
- Reliable, error-free operation.
- Easy-to-navigate graphical interface.
- Support for saving and resuming tournaments.



Stakeholder Validation: 
Organisers will review prototypes and provide feedback before the final implementation.
3. Functional Requirements
Player Management:
- Add, edit, and delete player information (e.g., name, age, school, rank).
- View a list of all registered players.
Tournament Scheduling:
- Automatically generate match schedules using a Swiss-system or round-robin format.
- Allow manual adjustments to the schedule if needed.
Score Tracking and Rankings:
- Record match results (win, loss, draw).
- Automatically calculate rankings based on tournament results.
Reports and Exporting:
- Generate printable schedules, results, and final rankings.
- Export data to a file (e.g., CSV or JSON).
Save and Load Tournaments:
- Save tournament progress, including player data and match results, to a file.
- Load saved tournaments to resume management.
4. Non-Functional Requirements
Performance: The system should respond within 2 seconds for all operations, including schedule generation.
Security: Prevent accidental data loss by implementing confirmation prompts for critical actions (e.g., deleting players or matches).
Reliability:
- Ensure saved tournament files can be loaded without errors.
- Handle edge cases, such as mismatched player numbers, gracefully.


Usability:
- Provide a clear and accessible interface using customTKinter.
- Ensure compatibility with Windows, macOS, and Linux operating systems.
5. Data Requirements
Player Information: Fields: Name, age, school, ranking, contact details.
Tournament Data: Match schedules and results, Player rankings and scores.
File Management:
- Save and load data in a structured format (e.g., JSON or SQLite database).
- Allow exporting to CSV for external use.
6. System Requirements
Hardware Requirements:
- Minimum: 2GB RAM, 1GHz CPU, 500MB storage.
- Recommended: 4GB RAM, 2GHz CPU, 1GB storage.
Software Requirements:
- Python 3.10 or later.
- customTKinter library installed.
- Additional libraries for file handling (e.g., json, csv).
Integration Requirements: Ensure compatibility with common office tools (e.g., Excel for exported CSV files).


7. Constraints
Time Constraints: The software must be ready for deployment within 8 weeks.
Budget Constraints: Development is limited to free or open-source tools and libraries.
Technical Limitations: The application must function on Python’s standard libraries with minimal external dependencies.
8. Validation and Review
Validation:
- Stakeholders will test the system at each milestone.
- Functional and non-functional requirements will be verified through unit testing and user acceptance testing.
Review:
- Requirements will be revisited biweekly to ensure alignment with project goals.
Final Check
- Requirements are documented in a clear and structured format.
- All functional and non-functional requirements are testable.
- Stakeholders have approved the final requirements document.
Student Name | Date
image1.png
—— A

Chess Manager





