
Security Assessment

EDUM - Audit
CertiK Verified on Mar 17th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

1 Medium 1 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

0 Minor

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

6 Informational 1 Resolved, 5 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY EDUM - AUDIT

CertiK Verified on Mar 17th, 2023

EDUM - Audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Meta

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 03/17/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/edum-official/EDUM

...View All

COMMITS
base: 0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb

update: f92f0d06f9835d72f91bd8390e94aefb46f3edca

...View All

7
Total Findings

2
Resolved

0
Mitigated

0
Partially Resolved

5
Acknowledged

0
Declined

0
Unresolved

https://github.com/edum-official/EDUM
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb
https://github.com/edum-official/EDUM/tree/f92f0d06f9835d72f91bd8390e94aefb46f3edca

TABLE OF CONTENTS EDUM - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Decentralization Efforts

Description

Recommendations
Short Term:

Long Term:

Permanent:

Findings

EDU-09 : Funds Can Be Accidentally Locked

EDU-01 : Too Many Digits

EDU-02 : `receive` Can Be Removed

EDU-03 : Function `setControllers()` Updates Inefficiently

EDU-04 : Misleading Function Naming

EDU-05 : Left Over Test Code

EDU-11 : Missing Emit Events

Optimizations

EDU-06 : Redundant Initialization

EDU-07 : Length Can be Checked in `_releaseLockInfo` to Save Users Gas

EDU-08 : Redundant use of `onlyController` in `_transferTimelock()`

EDU-10 : Inefficient Memory Parameter

EDU-12 : User-Defined Getters

EDU-13 : Condition Will Never Execute in `getLockedBalance()`

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

TABLE OF CONTENTS EDUM - AUDIT

Disclaimer

TABLE OF CONTENTS EDUM - AUDIT

CODEBASE EDUM - AUDIT

Repository

https://github.com/edum-official/EDUM

Commit

base: 0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb

update: f92f0d06f9835d72f91bd8390e94aefb46f3edca

CODEBASE EDUM - AUDIT

https://github.com/edum-official/EDUM
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb
https://github.com/edum-official/EDUM/tree/f92f0d06f9835d72f91bd8390e94aefb46f3edca

AUDIT SCOPE EDUM - AUDIT

1 file audited 1 file with Acknowledged findings

ID Repo Commit File SHA256 Checksum

EDU edum-official/EDUM 0283e22 contracts/EDUM.sol
f272a4ee1ccb673424d1d1fad1262708f77d9a

28d89786bc2de9fd17e568d5be

AUDIT SCOPE EDUM - AUDIT

APPROACH & METHODS EDUM - AUDIT

This report has been prepared for EDUM to discover issues and vulnerabilities in the source code of the EDUM - Audit

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Static Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS EDUM - AUDIT

DECENTRALIZATION EFFORTS EDUM - AUDIT

Description

In the contract EDUM the role onlyOwner and onlyController have authority over the functions shown in the diagram

below.

Any compromise to the onlyOwner account may allow the hacker to take advantage of this and do the following:

Transfer tokens to multiple wallets.

Remove and set new controller addresses.

Set a new listing date if it has not been set.

Any compromise to the OnlyController account may allow the hacker to take advantage of this and do the following:

transferTimelock() - create a new timelock.

transferPreTimelock() - create a new timelock before listing date.

Authenticated Role

Function

Function State Variables

Function Calls

Function State Variables

_owner

multiTransfer

setControllers

setListingDate

transfer

controllers

listingDate

Recommendations

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

DECENTRALIZATION EFFORTS EDUM - AUDIT

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

DECENTRALIZATION EFFORTS EDUM - AUDIT

FINDINGS EDUM - AUDIT

This report has been prepared to discover issues and vulnerabilities for EDUM - Audit. Through this audit, we have

uncovered 7 issues ranging from different severity levels. Utilizing the techniques of Static Analysis & Manual Review to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

EDU-09 Funds Can Be Accidentally Locked Volatile Code Medium Resolved

EDU-01 Too Many Digits Coding Style Informational Acknowledged

EDU-02 receive Can Be Removed Inconsistency Informational Acknowledged

EDU-03 Function setControllers() Updates Inefficiently Logical Issue Informational Acknowledged

EDU-04 Misleading Function Naming Coding Style Informational Acknowledged

EDU-05 Left Over Test Code Coding Style Informational Resolved

EDU-11 Missing Emit Events Coding Style Informational Acknowledged

FINDINGS EDUM - AUDIT

7
Total Findings

0
Critical

0
Major

1
Medium

0
Minor

6
Informational

EDU-09 FUNDS CAN BE ACCIDENTALLY LOCKED

Category Severity Location Status

Volatile Code Medium contracts/EDUM.sol (base): 286 Resolved

Description

On line 286 the comment line below can cause unintended bugs if followed:

 * @param _releaseTime The timestamp to unlock token.

If the future timestamp is input into transferPreTimelock() , then the timelock will accidentally be put far into the future due

to the line below:

 releaseTime = lockStates[_addr].lockInfo[ii].releaseTime + listingDate;

This will add the timestamp of the listingDate and the releaseTime which will be unintended. This will also increase

minReleaseTime to the same value which will fail in the future unless a new timelock is sent to reset minReleaseTime

 if (lockStates[_addr].minReleaseTime > block.timestamp) return;

Recommendation

We recommend changing the comment line to reflect that the input should be the intended length of the timelock from the

listing date in seconds.

Alleviation

[CertiK] : The client fixed this issue in the following commit: f92f0d06f9835d72f91bd8390e94aefb46f3edca.

EDU-09 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L286-L286
https://github.com/edum-official/EDUM/commit/f92f0d06f9835d72f91bd8390e94aefb46f3edca

EDU-01 TOO MANY DIGITS

Category Severity Location Status

Coding Style Informational contracts/EDUM.sol (base): 9 Acknowledged

Description

Literals with many digits are difficult to read and review. The following variable should be revised:

TOTAL_SUPPLY

Recommendation

We recommend using scientific notation (e.g. 1e6) or underscores (e.g. 1_000_000) to improve readability.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-01 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L9-L9

EDU-02 receive CAN BE REMOVED

Category Severity Location Status

Inconsistency Informational contracts/EDUM.sol (base): 130 Acknowledged

Description

If the contract should not accept Ether, then the contract does not need to have a receive() function.

Recommendation

We recommend removing the receive() function.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-02 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L130-L130

EDU-03 FUNCTION setControllers() UPDATES INEFFICIENTLY

Category Severity Location Status

Logical Issue Informational contracts/EDUM.sol (base): 108 Acknowledged

Description

In the function setControllers() , the controllers are reset each call which can be inefficient if its not intended. It is

inefficient due to having to remove all controllers one by one.

For example: The protocol has 1 controller but wants to add a new one. When setControllers() is called again, the

original controller has to be added in with the new one again otherwise the original controller will be removed.

Recommendation

We recommend changing this design as it could cause unintended errors. If the behavior is not intended, a mapping could

protect against accidental errors by not having to iterate and remove each user.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version. The client stated

they will call this function once after deployment.

EDU-03 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L108-L108

EDU-04 MISLEADING FUNCTION NAMING

Category Severity Location Status

Coding Style Informational contracts/EDUM.sol (base): 273, 289 Acknowledged

Description

The following functions have potentially confusing names:

transferTimelock()

transferPreTimelock()

By calling these functions, it appears as the timeLock is already created.

Recommendation

We recommend changing these function to make them more clear to outside reviewers. For example: the function name

transferTimelock() could be changed to createTimeLock() .

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-04 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L273-L273
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L289-L289

EDU-05 LEFT OVER TEST CODE

Category Severity Location Status

Coding Style Informational contracts/EDUM.sol (base): 385 Resolved

Description

The following functions are leftover from testing and should be removed before the token is deployed:

getLockedCount()

dummy()

Recommendation

We recommend removing this function for consistency before deployment.

Alleviation

[CertiK] : The client fixed this issue in the following commit: 5e2ad23fcb58012697133faf7204dfea4a7b2053.

EDU-05 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L385-L385
https://github.com/edum-official/EDUM/commit/5e2ad23fcb58012697133faf7204dfea4a7b2053

EDU-11 MISSING EMIT EVENTS

Category Severity Location Status

Coding Style Informational contracts/EDUM.sol (base): 108 Acknowledged

Description

In the contract EDUM , the following functions do not emit events:

setControllers()

Recommendation

We recommend adding events for state-changing actions and emitting them in their relevant functions.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-11 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L108-L108

OPTIMIZATIONS EDUM - AUDIT

ID Title Category Severity Status

EDU-06 Redundant Initialization
Gas

Optimization
Optimization Acknowledged

EDU-07
Length Can Be Checked In _releaseLockInfo

To Save Users Gas

Gas

Optimization
Optimization Acknowledged

EDU-08
Redundant Use Of onlyController In

_transferTimelock()
Coding Style Optimization Acknowledged

EDU-10 Inefficient Memory Parameter
Gas

Optimization
Optimization Acknowledged

EDU-12 User-Defined Getters
Gas

Optimization
Optimization Acknowledged

EDU-13
Condition Will Never Execute In

getLockedBalance()

Gas

Optimization
Optimization Acknowledged

OPTIMIZATIONS EDUM - AUDIT

EDU-06 REDUNDANT INITIALIZATION

Category Severity Location Status

Gas Optimization Optimization contracts/EDUM.sol (base): 68, 165, 219, 314, 315 Acknowledged

Description

The variable listingDate , lockCount , totalLocked , totalAmount , and amountLength are initialized with the value 0

. In Solidity, all un-initialized variables have a default value which for the uint256 variable is 0, hence the initialization part is

redundant and can be removed.

Recommendation

We recommend removing the unnecessary initialization.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-06 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L68-L68
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L165-L165
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L219-L219
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L314-L314
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L315-L315

EDU-07 LENGTH CAN BE CHECKED IN _releaseLockInfo TO SAVE

USERS GAS

Category Severity Location Status

Gas Optimization Optimization contracts/EDUM.sol (base): 142, 164 Acknowledged

Description

As some users will not have a timelock, it may be beneficial to check inside of _releaseLockInfo() if the length of

lockInfo equals zero to avoid users using more gas than necessary.

Recommendation

We recommend considering this change to save users gas.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-07 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L142-L142
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L164-L164

EDU-08 REDUNDANT USE OF onlyController IN

_transferTimelock()

Category Severity Location Status

Coding Style Optimization contracts/EDUM.sol (base): 307 Acknowledged

Description

The internal function _transferTimelock() does not need the onlyController modifier as the only functions that call it

have the modifier as well.

Recommendation

We recommend removing the onlyController modifier from the _transferTimelock() function.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-08 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L307-L307

EDU-10 INEFFICIENT MEMORY PARAMETER

Category Severity Location Status

Gas Optimization Optimization contracts/EDUM.sol (base): 108 Acknowledged

Description

One or more parameters with memory data location are never modified in their functions and those functions are never

called internally within the contract. Thus, their data location can be changed to calldata to avoid the gas consumption

copying from calldata to memory.

108 function setControllers(address[] memory controllerList) public onlyOwner {

setControllers has memory location parameters: controllerList .

Recommendation

We recommend changing the parameter's data location to calldata to save gas.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-10 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L108-L108

EDU-12 USER-DEFINED GETTERS

Category Severity Location Status

Gas Optimization Optimization contracts/EDUM.sol (base): 100~102, 349~351 Acknowledged

Description

The following functions are equivalent to the compiler-generated getter functions for the respective variables:

getTokenlockStates()

getListingDate()

Recommendation

We recommend that the linked variables are instead declared as public as compiler-generated getter functions are less

prone to error and much more maintainable than manually written ones.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-12 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L100-L102
https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L349-L351

EDU-13 CONDITION WILL NEVER EXECUTE IN
getLockedBalance()

Category Severity Location Status

Gas Optimization Optimization contracts/EDUM.sol (base): 231 Acknowledged

Description

Inside the function getLockedBalance() the following condition will never be executed:

231 if (lockStates[_addr].minReleaseTime == 0) {

232 releaseTime += listingDate;

233 }

This will never execute this if block due to minReleaseTime being set inside of _releaseLockInfo() ,

_refactoringPreTimelock() , or _transferTimelock() .

Recommendation

We recommend removing this if block as it cannot be reached.

Alleviation

[CertiK] : The client acknowledged the finding but opted to not make any changes to the current version.

EDU-13 EDUM - AUDIT

https://github.com/edum-official/EDUM/tree/0283e22ce0d0f24e92dcf5845cc7c3e48f839ffb/contracts/EDUM.sol#L231-L231

FORMAL VERIFICATION EDUM - AUDIT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-succeed-self transfer Succeeds on Admissible Self Transfers

erc20-transfer-succeed-normal transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-correct-amount-self transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-transfer-change-state transfer Has No Unexpected State Changes

erc20-transfer-never-return-false transfer Never Returns false

erc20-transfer-recipient-overflow transfer Prevents Overflows in the Recipient's Balance

erc20-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

FORMAL VERIFICATION EDUM - AUDIT

Property Name Title

erc20-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-transferfrom-succeed-normal transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Non-self Transfers

erc20-transferfrom-correct-amount-self transferFrom Performs Self Transfers Correctly

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-change-state transferFrom Has No Unexpected State Changes

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always allowance Always Succeeds

erc20-transferfrom-fail-recipient-overflow transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-allowance-correct-value allowance Returns Correct Value

erc20-allowance-change-state allowance Does Not Change the Contract's State

FORMAL VERIFICATION EDUM - AUDIT

Property Name Title

erc20-approve-succeed-normal approve Succeeds for Admissible Inputs

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-approve-never-return-false approve Never Returns false

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-change-state approve Has No Unexpected State Changes

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract EDUM (contracts/EDUM.sol)

FORMAL VERIFICATION EDUM - AUDIT

Verification of ERC-20 Compliance

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount Inconclusive

erc20-transfer-succeed-self Inconclusive

erc20-transfer-succeed-normal Inconclusive

erc20-transfer-correct-amount-self Inconclusive

erc20-transfer-exceed-balance Inconclusive

erc20-transfer-change-state Inconclusive

erc20-transfer-never-return-false True

erc20-transfer-recipient-overflow Inconclusive

erc20-transfer-false Inconclusive

FORMAL VERIFICATION EDUM - AUDIT

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal Inconclusive

erc20-transferfrom-succeed-self Inconclusive

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-correct-allowance Inconclusive

erc20-transferfrom-change-state Inconclusive

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-exceed-balance Inconclusive

erc20-transferfrom-fail-recipient-overflow Inconclusive

erc20-transferfrom-false Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION EDUM - AUDIT

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-succeed-normal True

erc20-approve-revert-zero True

erc20-approve-correct-amount True

erc20-approve-never-return-false True

erc20-approve-false True

erc20-approve-change-state True

FORMAL VERIFICATION EDUM - AUDIT

APPENDIX EDUM - AUDIT

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

Technical Description

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

APPENDIX EDUM - AUDIT

Assumptions and Simplifications

The following assumptions and simplifications apply to our model:

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any function. That ignores

contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled using modular arithmetic

based on the bit-width of the underlying numeric Solidity type. This ensures that over- and underflow characteristics

are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for Property Specification

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time step. Our analysis reasons about the contract's state upon entering and upon

leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates as atomic propositions. They are evaluated on the contract's state whenever a discrete time step

occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of the Analyzed ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply . In the following, we list those

property specifications.

Properties related to function transfer

APPENDIX EDUM - AUDIT

erc20-transfer-revert-zero

transfer Prevents Transfers to the Zero Address. Any call of the form transfer(recipient, amount) must fail if the

recipient address is the zero address. Specification:

[](started(contract.transfer(to, value), to == address(0)) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-succeed-normal

transfer Succeeds on Admissible Non-self Transfers. All invocations of the form transfer(recipient, amount) must

succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to != msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[to] + value <

 0x100 &&

 _balances[to] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-succeed-self

transfer Succeeds on Admissible Self Transfers. All self-transfers, i.e. invocations of the form transfer(recipient,

amount) where the recipient address equals the address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transfer(to, value), to != address(0) && to == msg.sender &&

 value >= 0 && value <= _balances[msg.sender] && _balances[msg.sender] >= 0 &&

 _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true)))

erc20-transfer-correct-amount

transfer Transfers the Correct Amount in Non-self Transfers. All non-reverting invocations of transfer(recipient,

amount) that return true must subtract the value in amount from the balance of msg.sender and add the same value to

APPENDIX EDUM - AUDIT

the balance of the recipient address. Specification:

[](willSucceed(contract.transfer(to, value), to != msg.sender && _balances[to] >= 0

 && value >= 0 && _balances[to] + value <

 0x100 &&

 _balances[msg.sender] >= 0 && _balances[msg.sender] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==>

 _balances[msg.sender] == old(_balances[msg.sender]) - value && _balances[to]

 == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

transfer Transfers the Correct Amount in Self Transfers. All non-reverting invocations of transfer(recipient, amount)

that return true and where the recipient address equals msg.sender (i.e. self-transfers) must not change the balance

of address msg.sender . Specification:

[](willSucceed(contract.transfer(to, value), to == msg.sender && _balances[to] >= 0

 && _balances[to] <

 0x100) ==>

 <>(finished(contract.transfer(to, value), return == true ==> _balances[to] ==

 old(_balances[to]))))

erc20-transfer-change-state

transfer Has No Unexpected State Changes. All non-reverting invocations of transfer(recipient, amount) that return

true must only modify the balance entries of the msg.sender and the recipient addresses. Specification:

[](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to) ==>

 <>(finished(contract.transfer(to, value), return == true ==> (_totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) && _balances[p1] ==

 old(_balances[p1]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transfer-exceed-balance

transfer Fails if Requested Amount Exceeds Available Balance. Any transfer of an amount of tokens that exceeds the

balance of msg.sender must fail. Specification:

[](started(contract.transfer(to, value), value > _balances[msg.sender] &&

 _balances[msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transfer) || finished(contract.transfer(to, value), return

 == false)))

erc20-transfer-recipient-overflow

APPENDIX EDUM - AUDIT

transfer Prevents Overflows in the Recipient's Balance. Any invocation of transfer(recipient, amount) must fail if it

causes the balance of the recipient address to overflow. Specification:

[](started(contract.transfer(to, value), to != msg.sender && _balances[to] + value

 >= 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _balances[msg.sender] <

 0x100 && value >

 0 && value <= _balances[msg.sender]) ==> <>(reverted(contract.transfer) ||

 finished(contract.transfer(to, value), return == false) ||

 finished(contract.transfer(to, value), _balances[to] > old(_balances[to]) +

 value -

 0x100)))

erc20-transfer-false

If transfer Returns false , the Contract State Is Not Changed. If the transfer function in contract contract fails by

returning false , it must undo all state changes it incurred before returning to the caller. Specification:

[](willSucceed(contract.transfer(to, value)) ==> <>(finished(contract.transfer(to,

 value), return == false ==> (_balances == old(_balances) && _totalSupply ==

 old(_totalSupply) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables)))))

erc20-transfer-never-return-false

transfer Never Returns false . The transfer function must never return false to signal a failure. Specification:

[](!(finished(contract.transfer, return == false)))

Properties related to function transferFrom

erc20-transferfrom-revert-from-zero

transferFrom Fails for Transfers From the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the from address is zero, must fail. Specification:

[](started(contract.transferFrom(from, to, value), from == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-revert-to-zero

transferFrom Fails for Transfers To the Zero Address. All calls of the form transferFrom(from, dest, amount) where

the dest address is zero, must fail. Specification:

APPENDIX EDUM - AUDIT

[](started(contract.transferFrom(from, to, value), to == address(0)) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-succeed-normal

transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest, amount) must

succeed and return true if

the value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && to !=

 address(0) && from != to && value <= _balances[from] && value <=

 _allowances[from][msg.sender] && _balances[to] + value <

 0x100 && value >=

 0 && _balances[to] >= 0 && _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-succeed-self

transferFrom Succeeds on Admissible Self Transfers. All invocations of transferFrom(from, dest, amount) where the

dest address equals the from address (i.e. self-transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call. Specification:

[](started(contract.transferFrom(from, to, value), from != address(0) && from == to

 && value <= _balances[from] && value <= _allowances[from][msg.sender] && value

 >= 0 && _balances[from] <

 0x100 &&

 _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true)))

erc20-transferfrom-correct-amount

APPENDIX EDUM - AUDIT

transferFrom Transfers the Correct Amount in Non-self Transfers. All invocations of transferFrom(from, dest,

amount) that succeed and that return true subtract the value in amount from the balance of address from and add the

same value to the balance of address dest . Specification:

[](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] + value <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]) - value && _balances[to] ==

 old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

transferFrom Performs Self Transfers Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true and where the address in from equals the address in dest (i.e. self-transfers) do not change the

balance entry of the from address (which equals dest). Specification:

[](willSucceed(contract.transferFrom(from, to, value), from == to && value >= 0 &&

 value < 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

transferFrom Updated the Allowance Correctly. All non-reverting invocations of transferFrom(from, dest, amount)

that return true must decrease the allowance for address msg.sender over address from by the value in amount .

Specification:

[](willSucceed(contract.transferFrom(from, to, value), value >= 0 && value <

 0x100 &&

 _balances[from] >= 0 && _balances[from] <

 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100 &&

 _allowances[from][msg.sender] >= 0 && _allowances[from][msg.sender] <

 0x100) ==>

 <>(finished(contract.transferFrom(from, to, value), return == true ==>

 ((_allowances[from][msg.sender] == old(_allowances[from][msg.sender]) -

 value) || (_allowances[from][msg.sender] ==

 old(_allowances[from][msg.sender]) && (from == msg.sender ||

 old(_allowances[from][msg.sender]) ==

 0xFF))))))

APPENDIX EDUM - AUDIT

erc20-transferfrom-change-state

transferFrom Has No Unexpected State Changes. All non-reverting invocations of transferFrom(from, dest, amount)

that return true may only modify the following state variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

[](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to &&

 (p2 != from || p3 != msg.sender)) ==> <>(finished(contract.transferFrom(from,

 to, amount), return == true ==> (_totalSupply == old(_totalSupply) &&

 _balances[p1] == old(_balances[p1]) && _allowances[p2][p3] ==

 old(_allowances[p2][p3]) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-fail-exceed-balance

transferFrom Fails if the Requested Amount Exceeds the Available Balance. Any call of the form transferFrom(from,

dest, amount) with a value for amount that exceeds the balance of address from must fail. Specification:

[](started(contract.transferFrom(from, to, value), value > _balances[from] &&

 _balances[from] >= 0 && _balances[from] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom, return ==

 false)))

erc20-transferfrom-fail-exceed-allowance

transferFrom Fails if the Requested Amount Exceeds the Available Allowance. Any call of the form transferFrom(from,

dest, amount) with a value for amount that exceeds the allowance of address msg.sender must fail. Specification:

[](started(contract.transferFrom(from, to, value), msg.sender != from && value >

 _allowances[from][msg.sender] && _allowances[from][msg.sender] >= 0 && value <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false)))

erc20-transferfrom-fail-recipient-overflow

transferFrom Prevents Overflows in the Recipient's Balance. Any call of transferFrom(from, dest, amount) with a

value in amount whose transfer would cause an overflow of the balance of address dest must fail. Specification:

APPENDIX EDUM - AUDIT

[](started(contract.transferFrom(from, to, value), from != to && _balances[to] +

 value >= 0x100 &&

 value < 0x100 &&

 _balances[to] >= 0 && _balances[to] <

 0x100) ==>

 <>(reverted(contract.transferFrom) || finished(contract.transferFrom(from, to,

 value), return == false) || finished(contract.transferFrom(from, to,

 value), _balances[to] > old(_balances[to]) + value -

 0x100)))

erc20-transferfrom-false

If transferFrom Returns false , the Contract's State Is Unchanged. If transferFrom returns false to signal a failure,

it must undo all incurred state changes before returning to the caller. Specification:

[](willSucceed(contract.transferFrom(from, to, value)) ==>

 <>(finished(contract.transferFrom(from, to, value), return == false ==>

 (_balances == old(_balances) && _totalSupply == old(_totalSupply) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables)))))

erc20-transferfrom-never-return-false

transferFrom Never Returns false . The transferFrom function must never return false . Specification:

[](!(finished(contract.transferFrom, return == false)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

totalSupply Always Succeeds. The function totalSupply must always succeeds, assuming that its execution does not

run out of gas. Specification:

[](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

totalSupply Returns the Value of the Corresponding State Variable. The totalSupply function must return the value that

is held in the corresponding state variable of contract contract. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply, return

 == _totalSupply)))

erc20-totalsupply-change-state

APPENDIX EDUM - AUDIT

totalSupply Does Not Change the Contract's State. The totalSupply function in contract contract must not change any

state variables. Specification:

[](willSucceed(contract.totalSupply) ==> <>(finished(contract.totalSupply,

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

balanceOf Always Succeeds. Function balanceOf must always succeed if it does not run out of gas. Specification:

[](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

balanceOf Returns the Correct Value. Invocations of balanceOf(owner) must return the value that is held in the contract's

balance mapping for address owner . Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 return == _balances[owner])))

erc20-balanceof-change-state

balanceOf Does Not Change the Contract's State. Function balanceOf must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.balanceOf) ==> <>(finished(contract.balanceOf(owner),

 _totalSupply == old(_totalSupply) && _balances == old(_balances) &&

 _allowances == old(_allowances) && other_state_variables ==

 old(other_state_variables))))

Properties related to function allowance

erc20-allowance-succeed-always

allowance Always Succeeds. Function allowance must always succeed, assuming that its execution does not run out of

gas. Specification:

[](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

APPENDIX EDUM - AUDIT

allowance Returns Correct Value. Invocations of allowance(owner, spender) must return the allowance that address

spender has over tokens held by address owner . Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), return ==

 _allowances[owner][spender])))

erc20-allowance-change-state

allowance Does Not Change the Contract's State. Function allowance must not change any of the contract's state

variables. Specification:

[](willSucceed(contract.allowance(owner, spender)) ==>

 <>(finished(contract.allowance(owner, spender), _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances) &&

 other_state_variables == old(other_state_variables))))

Properties related to function approve

erc20-approve-revert-zero

approve Prevents Approvals For the Zero Address. All calls of the form approve(spender, amount) must fail if the

address in spender is the zero address. Specification:

[](started(contract.approve(spender, value), spender == address(0)) ==>

 <>(reverted(contract.approve) || finished(contract.approve(spender, value),

 return == false)))

erc20-approve-succeed-normal

approve Succeeds for Admissible Inputs. All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas. Specification:

[](started(contract.approve(spender, value), spender != address(0)) ==>

 <>(finished(contract.approve(spender, value), return == true)))

erc20-approve-correct-amount

approve Updates the Approval Mapping Correctly. All non-reverting calls of the form approve(spender, amount) that

return true must correctly update the allowance mapping according to the address msg.sender and the values of

spender and amount . Specification:

APPENDIX EDUM - AUDIT

[](willSucceed(contract.approve(spender, value), spender != address(0) && value >=

 0 && value <

 0x100) ==>

 <>(finished(contract.approve(spender, value), return == true ==>

 _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

approve Has No Unexpected State Changes. All calls of the form approve(spender, amount) must only update the

allowance mapping according to the address msg.sender and the values of spender and amount and incur no other

state changes. Specification:

[](willSucceed(contract.approve(spender, value), spender != address(0) && (p1 !=

 msg.sender || p2 != spender)) ==> <>(finished(contract.approve(spender,

 value), return == true ==> _totalSupply == old(_totalSupply) && _balances

 == old(_balances) && _allowances[p1][p2] == old(_allowances[p1][p2]) &&

 other_state_variables == old(other_state_variables))))

erc20-approve-false

If approve Returns false , the Contract's State Is Unchanged. If function approve returns false to signal a failure, it

must undo all state changes that it incurred before returning to the caller. Specification:

[](willSucceed(contract.approve(spender, value)) ==>

 <>(finished(contract.approve(spender, value), return == false ==> (_balances ==

 old(_balances) && _totalSupply == old(_totalSupply) && _allowances ==

 old(_allowances) && other_state_variables == old(other_state_variables)))))

erc20-approve-never-return-false

approve Never Returns false . The function approve must never returns false . Specification:

[](!(finished(contract.approve, return == false)))

APPENDIX EDUM - AUDIT

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER EDUM - AUDIT

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER EDUM - AUDIT

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

EDUM - Audit Security Assessment CertiK Verified on Mar 17th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

