
<Lorenzo Bruno>

PYTHON3
PER IL
MACHINE
LEARNING

New
game

<PYTHON3> <Dov'è usato Python?>

<Lorenzo Bruno> <Chi sono>

Ex-Galileiano01

02

03 Videogamer

Appassionato cybersecurity

Ex studente del
Liceo Scientifico
Galileo Galilei

Chi sono?

}

}

}
}

}

}

Studente di laurea magistrale in
Sicurezza Informatica a Milano

<PYTHON3> <Programmare>

Come è strutturato il corso
• Teoria
• Esercizi
• Quiz a fine di ogni modulo principale

: Concetto di teoria importante

: Esempio da svolgere

<PYTHON3> <Programmare>

Programmare{01}
La programmazione è l'arte di dire a
un computer cosa fare attraverso una
serie di istruzioni scritte in un
linguaggio specifico.
È un processo creativo e logico che
ci permette di sviluppare software,
siti web, applicazioni e molto altro.
Padroneggiando i linguaggi di
programmazione, è possibile creare
soluzioni innovative, automatizzare
compiti e dare vita alle idee nel
mondo digitale.

Python3 <Le basi>

<PYTHON3> <Iniziamo>

Esiste più di un Python
Esistono due versioni principali di Python,
denominati Python 2 e Python 3.

Python 2 è una versione più vecchia. Il suo
sviluppo è stato intenzionalmente interrotto,
anche se questo non significa che non ci siano
aggiornamenti.

Python 3 è la versione più recente (o, per essere
più precisi, quella attuale) del linguaggio.

Python 3 non è solo una versione migliore di
Python 2: è un linguaggio "completamente diverso",
anche se molto simile al suo predecessore. Quando
li si guarda da lontano, sembrano uguali, ma
quando li si osserva da vicino si notano molte
differenze.

<PYTHON3> <Introduzione: 2vs3>

Come funziona un programma?

<PYTHON3> <Introduzione: Linguaggio>

Un programma rende un computer utilizzabile. Senza un programma, un computer, anche il più
potente, non è altro che un soprammobile.

Immaginate di voler conoscere la velocità media raggiunta durante un lungo viaggio. Conoscete
la distanza, conoscete il tempo, vi serve la velocità.

Naturalmente il computer sarà in grado di calcolarla, ma non è a conoscenza di elementi come
la distanza, la velocità o il tempo. Pertanto, è necessario istruire il computer a:

• accettare un numero che rappresenta la distanza;
• accettare un numero che rappresenta il tempo di percorrenza;
• dividere il primo valore per il secondo e memorizzare il risultato;
• visualizzare il risultato (che rappresenta la velocità media) in un formato leggibile.

Queste quattro semplici azioni formano un programma. Naturalmente, questi esempi non sono
formalizzati.

La parola chiave è linguaggio.

Come funziona un programma?

<PYTHON3> <Introduzione: Linguaggio>

https://www.youtube.com/watc
h?v=cDA3_5982h8&t=106s

Linguaggio naturale vs programmazione

<PYTHON3> <Introduzione: Linguaggio>

Possiamo dire che ogni linguaggio (macchina o naturale, non importa) è composto
dai seguenti elementi:

• Alfabeto: insieme di simboli usati per comporre parole
• Lessico (dizionario): insieme di parole
• Sintassi: insieme di regole per determinare se una parola o un insieme di
parole è ben formato

• Semantica: un insieme di regole che determinano il significato di come queste
parole sono messe insieme tra loro

Esempi:

"Lui sono un'monglofiera"
"Una vecchietta portare l'auto con i piedi"
"Non tirare le zampe ad una rana se non vuoi che la lattuga sia blu"

Compilatore e/o Interprete

<PYTHON3> <Introduzione: Linguaggio>

Programmare significa quindi comporre gli elementi che sono parte di
un linguaggio affinché il computer esegua le azioni da noi desiderate.

Per fare ciò dobbiamo avere del codice che sia corretto dal punto di
vista sintattico

Affinché il programma, con un linguaggio ad alto livello, sia
trasformato in un linguaggio che la macchina possa comprendere è
necessario che questo venga trasformato da un compilatore o da un
interprete.

Vediamo le differenze

<PYTHON3> <Introduzione: Linguaggio>

Compilatore
Strumento che converte il codice sorgente in
un file (ad esempio .exe) contenente
linguaggio macchina eseguibile dal
processore.

Una volta che il codice è stato compilato, il
file eseguibile è distribuibile a chiunque.

N.B.: La compilazione va eseguita ogni volta
che vengono effettuate modifiche al codice
sorgente

<PYTHON3> <Introduzione: Linguaggio>

Interprete
Strumento che converte
(interpreta) il codice sorgente in
linguaggio macchina ogni volta che
vogliamo eseguire il programma
stesso

N.B.: Python è un linguaggio interpretato*

<PYTHON3> <Introduzione: Hello World>

Shell
Una shell è un programma che interpreta i comandi inseriti dall’utente
e li esegue, interagendo con il sistema operativo. (Command line
interpreter)

È l’ambiente che legge i comandi, li traduce in istruzioni
comprensibili per il sistema e restituisce l’output all’utente.

Esistono vari tipi di shell, ognuna con sintassi e caratteristiche
particolari:

• Bash (Bourne Again SHell): molto usata in ambienti Unix/Linux.
• cmd.exe: la shell predefinita di Windows prima di PowerShell.
• PowerShell: shell avanzata di Windows, orientata agli oggetti.

<PYTHON3> <Introduzione: Hello World>

Terminale
Il terminale è l'interfaccia che permette di interagire con il sistema
operativo tramite una shell.

In passato, il terminale era un dispositivo fisico con una tastiera e
uno schermo (come i terminali VT100).

Oggi, il terminale è solitamente un programma software che permette di
inviare comandi al sistema operativo e visualizzare il risultato.
Esempi di terminale includono:

• Terminale su macOS
• Gnome Terminal o Konsole su Linux
• Windows Terminal su Windows

<PYTHON3> <Introduzione: Hello World>

Shell e terminale?

<PYTHON3> <Introduzione: Hello World>

Verificare Python
Verifichiamo che
python sia
correttamente
installato nel
nostro sistema

Come installarlo?

<PYTHON3> <Introduzione: Hello World>

Lo zen di Python

• Bello è meglio di brutto
• Esplicito è meglio di implicito
• Semplice è meglio di complesso
• Complesso è meglio di complicato
• La leggibilità è importante

<PYTHON3> <Introduzione: Hello World>

Il primo programma python
Scriviamo il nostro primo
programma python:

Un semplice Hello World

esercizio_01

<PYTHON3> <Introduzione: Hello World>

Impara dai tuoi errori!
Proviamo a sbagliare di proposito il nostro
codice e vediamo cosa succede

Print("This could be an error"
Prin("This is definitely an error")

esercizio_02

<PYTHON3> <Introduzione: Hello World>

Come imparare dagli errori
Quattro elementi da tenere in considerazione:

• Il traceback (ovvero il percorso che il codice compie attraverso le
diverse parti del programma)

• la posizione dell'errore (il nome del file contenente l'errore, il
numero di riga e il nome del modulo)

nota: il numero può essere fuorviante, poiché Python di solito mostra
il punto in cui nota per la prima volta gli effetti dell'errore, non
necessariamente l'errore stesso

• il contenuto della riga errata
• Il nome dell'errore e una breve descrizione

<PYTHON3> <Introduzione: Hello World>

Riassumiamo brevemente
1. La funzione print() è una funzione integrata (built-in).

2. Le funzioni integrate, a differenza di quelle definite dall'utente, sono sempre disponibili
e non devono essere importate. Python 3.8 è dotato di 69 funzioni integrate. L'elenco completo
è riportato in ordine alfabetico nella Libreria standard di Python.

3. Per chiamare una funzione (questo processo è noto come invocazione di funzione o chiamata di
funzione), è necessario utilizzare il nome della funzione seguito da parentesi. È possibile
inserire argomenti in una funzione inserendoli all'interno delle parentesi. Gli argomenti
devono essere separati da una virgola, ad esempio print(“Hello,”, “world!”). Una funzione
print() “vuota” invia sullo schermo una riga vuota.

4. Le stringhe in Python sono delimitate da virgolette, ad esempio “Io sono una stringa”
(virgolette doppie) o 'Anch'io sono una stringa' (virgolette singole).

5. I programmi sono raccolte di istruzioni. Un'istruzione è un comando per eseguire un compito
specifico quando eseguito

<PYTHON3> <Introduzione: Hello World>

Quiz n.1
Che cos'è il linguaggio macchina?

A. Un linguaggio di programmazione di basso livello costituito da
bit/cifre binarie che il computer legge e comprende.

B. Un linguaggio di programmazione di basso livello costituito da cifre
esadecimali che compongono le istruzioni del linguaggio di alto
livello.

C. Un linguaggio di programmazione di medio livello costituito dal
codice assembly progettato per il processore del computer

D. Un linguaggio di programmazione di alto livello costituito da
elenchi di istruzioni che l'uomo può leggere e comprendere.

<PYTHON3> <Introduzione: Hello World>

Quiz n.1
Che cos'è il linguaggio macchina?

A. Un linguaggio di programmazione di basso livello costituito da
bit/cifre binarie che il computer legge e comprende.

B. Un linguaggio di programmazione di basso livello costituito da cifre
esadecimali che compongono le istruzioni del linguaggio di alto
livello.

C. Un linguaggio di programmazione di medio livello costituito dal
codice assembly progettato per il processore del computer

D. Un linguaggio di programmazione di alto livello costituito da
elenchi di istruzioni che l'uomo può leggere e comprendere.

<PYTHON3> <Introduzione: Hello World>

Quiz n.2
Quali sono i quattro elementi fondamentali di un
linguaggio?

A. Un alfabeto, un lessico, una fonetica e una semantica

B. Un alfabeto, un lessico, una sintassi e una semantica

C. Un alfabeto, una morfologia, una fonetica e una
semantica

D. Un alfabeto, una fonetica, una fonologia e una
semantica

<PYTHON3> <Introduzione: Hello World>

Quiz n.2
Quali sono i quattro elementi fondamentali di un
linguaggio?

A. Un alfabeto, un lessico, una fonetica e una semantica

B. Un alfabeto, un lessico, una sintassi e una semantica

C. Un alfabeto, una morfologia, una fonetica e una
semantica

D. Un alfabeto, una fonetica, una fonologia e una
semantica

<PYTHON3> <Tipi>

{02} Tipi (Literals)
• Numeri
• Stringhe
• Boolean
• None
• Liste
• Tuple
• Set
• Dizionari

<PYTHON3> <Tipi>

Tipi numerici
I numeri possono essere

• interi (int)
• decimali (float): rappresentati con il punto
come separazione tra la parte intera e
quella decimale.

Python3 ha anche altri tipi numerici ma per le nostre finalità
non verranno trattati.

<PYTHON3> <Tipi>

Stringhe
Le stringhe vengono utilizzate quando è necessario elaborare del testo,
non i numeri. Ne sapete già qualcosa, ad esempio che le stringhe hanno
bisogno di virgolette come i float hanno bisogno di punti.

Tuttavia, c'è un problema. Il problema è come codificare una citazione
all'interno di una stringa già delimitata da virgolette.
Supponiamo di voler stampare un messaggio molto semplice che dica:

Mi piace “Monty Python”.

Come possiamo farlo senza generare un errore? Ci sono due possibili
soluzioni.

<PYTHON3> <Tipi>

Come gestire le stringhe
Il primo si basa sul concetto già noto di carattere di escape, che
ricordiamo essere interpretato dal backslash (\). Il backslash può anche
sfuggire alle virgolette.

• print("Mi piace \"Monty Python\"")

La seconda soluzione può essere un po' sorprendente. Python può usare un
apostrofo al posto delle virgolette. Entrambi i caratteri possono
delimitare le stringhe, ma bisogna essere coerenti.Se si apre una stringa
con una citazione, bisogna chiuderla con una citazione. Se si inizia una
stringa con un apostrofo, bisogna chiuderla con un apostrofo.

• print('Mi piace "Monty Python"')

<PYTHON3> <Tipi>

Booleani
Utilizzati per rappresentare un valore molto astratto: la veridicità
(vero/falso).

Ogni volta che si chiede a Python se un numero è maggiore di un altro, la
domanda porta alla creazione di un dato specifico: un valore booleano.

I computer conoscono solo due tipi di risposte:

• Sì, vero;
• No, falso.

Non si otterrà mai una risposta del tipo: Non lo so o Probabilmente sì, ma non
ne sono sicuro.

Questi due valori booleani sono rappresentati da: True False

N.B.: Questi simboli sono immutabili e vanno presi così come sono, compresi di
Case Sensitive

<PYTHON3> <Tipi>

True False
I valori booleani, True e False, prendono nome da George Boole
(1815-1864), autore dell'opera "Le leggi del pensiero", che
contiene la definizione di algebra booleana.

L'algebra booleana fa uso di due soli valori distinti:

Vero e Falso, indicati come 1 e 0.

Cosa significa nella pratica?

esercizio_03

<PYTHON3> <Tipi>

Cosa manca?
• None
• Liste
• Tuple

Vedremo questi tipi di dati
successivamente

<PYTHON3> <Introduzione: Hello World>

Quiz n.3
Qual è il tipo di questi valori?

• "Hello ", "007"

• "1.5", 2.0, 528, False

<PYTHON3> <Introduzione: Hello World>

Quiz n.3
Qual è il tipo di questi valori?

• "Hello ", "007" -> Stringhe

• "1.5", 2.0, 528, False –> Stringa, Float, Booleano

{03} Operatori
Un operatore è un simbolo del linguaggio di
programmazione in grado di operare sui
valori.

Tuttavia, non tutti gli operatori di Python
sono così ovvi, quindi esaminiamo alcuni
degli operatori disponibili in Python e
spiegheremo il loro uso e come interpretare
le operazioni che eseguono.

Inizieremo con gli operatori associati alle
operazioni aritmetiche più conosciute

<PYTHON3> <Operatori>

Tutti gli operatori necessari
• + addizione (concatenazione)
• - sottrazione
• * moltiplicazione
• / divisione
• // divisione intera d

• % modulo
• ** esponenziale

<PYTHON3> <Operatori>

esercizio_04

{04} Variabili
È normale chiedersi come memorizzare i
risultati delle operazioni effettuate per
poterli utilizzare successivamente

Come si fa a salvare i risultati intermedi e
a riutilizzarli per produrre quelli
successivi?

Python offre speciali “scatole”, che vengono
chiamate variabili - il nome stesso
suggerisce che il contenuto di questi
contenitori può essere variato in (quasi)
tutti i modi.

<PYTHON3> <Variabili>

Com'è fatta una variabile?
Una variabile è costituita da due elementi
principali:

• Un nome: che sia valido e che segua sempre delle
convenzioni condivise (es. Camel Case)

• Un valore: essendo una scatola, essa dovrà
contenere al suo interno un valore qualsiasi

<PYTHON3> <Variabili>

Variabile: nome
È necessario seguire alcune regole precise:

• Il nome della variabile deve essere composto da lettere maiuscole o minuscole,
cifre e dal carattere _ (trattino basso);

• Il nome della variabile deve iniziare con una lettera;

• Il carattere di sottolineatura è una lettera;

• Le lettere maiuscole e minuscole sono trattate in modo diverso (Alice e ALICE
sono due variabili diverse);

• Il nome della variabile non deve essere una delle parole riservate di Python,
dette keywords

N.B.: Le stesse restrizioni si applicano ai nomi delle funzioni.

<PYTHON3> <Variabili>

Keywords
<PYTHON3> <Variabili>

['False', 'None', 'true', 'and', 'as', 'assert', 'break', 'class', 'continue',
'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if',
'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return',
'try', 'while', 'with', 'yield']

Si chiamano parole chiave o (più precisamente) parole chiave riservate.
Sono riservate perché non devono essere usate come nomi: né per le
variabili, né per le funzioni, né per qualsiasi altra entità denominata
che si voglia creare.

Fortunatamente, grazie al fatto che Python è sensibile alle maiuscole e
alle minuscole, è possibile modificare una qualsiasi di queste parole
cambiando il caso di una qualsiasi lettera, creando così una nuova
parola, che non è più riservata.

PEP 8 – Style Guide for Python Code

<PYTHON3> <Variabili>

La "PEP 8 -- Guida allo stile del codice Python"
raccomanda la seguente convenzione di denominazione
per le variabili e le funzioni in Python:

• i nomi delle variabili devono essere minuscoli, con
le parole separate da trattini bassi per migliorare
la leggibilità (ad esempio, var, my_variable)

• i nomi delle funzioni seguono la stessa convenzione
dei nomi delle variabili (ad esempio, fun,
my_function)

• è anche possibile usare le lettere miste (ad esempio
myVariable secondo convenzione cammello), ma solo in
contesti in cui questo è già lo stile prevalente,
per mantenere la compatibilità con la convenzione
adottata.

Variabile: come crearla
<PYTHON3> <Variabili>

Cosa possiamo mettere dentro una variabile?

Qualsiasi cosa.

È possibile utilizzare una variabile per memorizzare
qualsiasi valore di uno dei tipi già presentati e molti
altri non ancora mostrati.

Il valore di una variabile è quello che avete inserito al
suo interno. Può variare tutte le volte che lo si desidera.
Può essere un numero intero un momento, un float un momento
dopo, per poi diventare una stringa.

Parliamo ora di due cose importanti: come si creano le
variabili e come si inseriscono i valori al loro interno (o
meglio, come si danno o si passano i valori alle variabili).

Creazione
<PYTHON3> <Variabili>

Una variabile nasce come risultato dell'assegnazione di un
valore. A differenza di altri linguaggi (es. C++), non è
necessario dichiararla in modo particolare.

Se si assegna un valore a una variabile inesistente, la
variabile viene creata automaticamente. Non è necessario fare
altro.

La creazione (in altre parole, la sua sintassi) è estremamente
semplice: basta usare il nome della variabile desiderata, poi
il segno di uguale (=) e il valore che si vuole inserire nella
variabile.

Manipolazione: shortcut
<PYTHON3> <Variabili>

esercizio_05, esercizio_06

Riassumiamo brevemente
<PYTHON3> <Variabili>

• Una variabile viene creata o inizializzata automaticamente quando le si
assegna un valore per la prima volta.

• Ogni variabile deve avere un nome univoco, un identificatore. Non può essere
una parola chiave Python. Il primo carattere può essere seguito da trattini
bassi, lettere e cifre. Gli identificatori in Python sono sensibili alle
maiuscole e alle minuscole.

• Python è un linguaggio a tipizzazione dinamica, il che significa che non è
necessario dichiarare le variabili. Per assegnare valori alle variabili, si
può usare un operatore di assegnazione semplice nella forma del segno di
uguale (=). Si può anche usare un operatore di assegnazione composto (= 1).

• Si possono anche utilizzare operatori di assegnazione composti (operatori di
scelta rapida) per modificare i valori assegnati alle variabili, ad esempio:
var += 1, o var /= 5 * 2.

<Company> <Lesson>

Features of ‘the Topic’ {

Step 01 Step 02 Step 03
Welcome to Step 01 of your
journey! This is where you
lay the foundation for all
that is to come. In this
step, you will begin by
setting clear goals and
intentions for yourself.
What is it that you want to
achieve?

Welcome to Step 01 of your
journey! This is where you
lay the foundation for all
that is to come. In this
step, you will begin by
setting clear goals and
intentions for yourself.
What is it that you want to
achieve?

Once you have a clear
vision in mind, it's time
to take the first steps
towards making it a
reality. Break down your
goals into smaller,
manageable tasks that you
can tackle one by one. R

<Company> <Lesson>

Who Should `Attend}

Individuals’ {Students}

This workshop is designed for absolute beginners with little to no prior
programming experience. Whether you're a student exploring new interests, a
professional looking to switch careers, or someone curious about the world
of coding, this workshop is perfect for you.

Individuals with little to no prior
programming experience, seeking to
explore the world of coding.

Students interested in acquiring
essential programming skills to enhance
their academic and career prospects.

} }

} }

<Company> <Lesson>

Programming}
Language}

}
}

}
Variables`

Data }`Types

Variables are placeholders for storing data values. They can
hold various types of data, such as numbers, strings (text), and
Boolean (true/false) values. We'll learn how to declare
variables, assign values to them, and manipulate their contents

Different types of data require different ways of handling and
storing them. We'll cover basic data types like integers,
floating-point numbers, strings, and Boolean values.
Understanding data types is crucial for writing robust and
efficient code.

Gallery [Our Student`
What can you say about your projects? Share it here!

<Company> <Lesson>

<Company> <Lesson>

Like any skill, programming requires consistent practice to master. Set
aside dedicated time each day or week to work on coding exercises,
solve problems, and build projects.

Begin with simple programs and gradually increase complexity as you
become more comfortable with the language. Break down larger problems
into smaller, manageable tasks to avoid feeling overwhelmed.

‘Recommendation{]
Practice Regularly:

Start Small:

<Company> <Lesson>

Practical }Exercise: Simple
Calculator `Program
Here's a step-by-step guide to building the calculator program:

Prompt User for Input: Ask the user to enter the first number, the
operator (+, -, *, or /), and the second number.

Perform Calculation: Based on the operator entered by the user,
perform the corresponding arithmetic operation on the two numbers.

Display Result: Output the result of the calculation to the user.

<Company> <Lesson>

Simple} Calculator
`Program
Copy the code into a Python environment or editor.
Run the program.
Enter the numbers and operator as prompted.
View the result and decide whether to perform
another calculation or exit the program.
This exercise provides a hands-on opportunity to
apply basic programming concepts such as user
input, conditional statements, and functions. Feel
free to modify and expand upon the program to add
more functionality or improve its user experience.
Happy coding!

To try out this program:

Did `you know this}
?

<Company> <Lesson>

Did you know that the Earth is the only
planet in our solar system known to support
life? With its perfect distance from the
sun, a breathable atmosphere, and abundant
water, Earth provides a unique environment
for a diverse range of living organisms to
thrive. The intricate web of ecosystems,
from lush rainforests to vast oceans,
showcases the incredible biodiversity of
our planet. This delicate balance of nature
highlights the importance of conservation
and stewardship to ensure a sustainable
future for all life on Earth.

Client` name
Elaborate on what
you want to discuss.

Client name
Elaborate on what
you want to discuss.

Client name
Elaborate on what
you want to discuss.

Testimonials`}

<Company> <Lesson>

A picture is worth
a thousand words

<Company> <Lesson>

Write an original
statement or
inspiring quote
— Include a credit, citation, or supporting message

<Company> <FINE>

Embark on your journey into the world of programming
with us! Join our workshop and take the first step
towards becoming a proficient programmer. No matter
your background or experience level, we're here to
support you in your learning journey.

Ready to dive in? Let's start coding together!

For inquiries and registration, please contact [Your
Contact Information].

[Include any logos, affiliations, or additional
details as needed]

[End of Presentation]

That's all folks!

Resource
Page
Use these design resources in your
Canva Presentation.

You can find these fonts online too.
Happy designing!

Don't forget to delete this page
before presenting.

This presentation template uses
the following free fonts:

1.Titles: Fira code
2.Headers: Fira code
3.Body Copy: Fira code

Credits

This presentation is under copyright
For use contact me at: brunlorenz99@gmail.com

Happy coding!
Lorenzo Bruno

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60

