
<Lorenzo Bruno>

PYTHON3
PER IL
MACHINE
LEARNING

Continue

<PYTHON3> <Interazioni con l'utente>

Interazioni con l'utente{01}
In questa sezione
imparerete a parlare con un
computer: familiarizzerete
con la funzione input(),
eseguirete conversioni di
tipo e imparerete a usare
gli operatori di stringa.

<PYTHON3> <Interazioni con l'utente>

La funzione input()
Presentiamo una funzione completamente nuova, che sembra essere lo speculare
della funzione print().

Perché? print() invia dati alla console, la nuova funzione ottiene dati da
essa.

La funzione input() è in grado di leggere i dati inseriti dall'utente e di
restituire gli stessi dati al programma in esecuzione.

Il programma può manipolare i dati, rendendo il codice veramente interattivo.

Praticamente tutti i programmi leggono ed elaborano dati. Un programma che non
riceve l'input dell'utente è un programma deaf (sordo).

<PYTHON3> <Interazioni con l'utente>

input(): funzionamento base
Abbiamo già detto come una variabile viene creata nel momento in cui viene
dichiarata e le viene assegnato un valore.

La funzione input() viene invocata senza argomenti (questo è il modo più
semplice di usare la funzione).

Quando chiamata la funzione converte la console in modalità di input; si vedrà
un cursore lampeggiante e si potranno inserire alcuni tasti, terminando con il
tasto Invio; tutti i dati inseriti saranno inviati al programma attraverso il
risultato della funzione;

N.B.: è necessario assegnare il risultato a una variabile; questo passaggio è
fondamentale - se lo si tralascia, i dati inseriti andranno persi.

<PYTHON3> <Interazioni con l'utente>

input() con un argomento
La funzione input() può fare anche qualcos'altro. Può chiedere all'utente di
rispondere senza l'aiuto di print(). Modifichiamo il prmo esempio, guardiamo il
codice dell'esempio successivo. Il funzionamento è il seguente:

1. la funzione input() viene invocata con un solo argomento: una stringa
contenente un messaggio;

2. il messaggio viene visualizzato sulla console prima che l'utente abbia la
possibilità di inserire qualcosa;

3. input() farà quindi il suo normale lavoro.

Questa variante dell'invocazione di input() semplifica il codice e lo rende più
chiaro.
Vediamo la documentazione della funzione input()

esercizio_08

<PYTHON3> <Interazioni con l'utente>

Risultato funzione input()
Lo abbiamo già detto, ma va ribadito senza ambiguità: il
risultato della funzione input() è una stringa.

Una stringa contenente tutti i caratteri inseriti dall'utente
dalla tastiera. Non è un intero o un float.

Ciò significa che non è possibile utilizzarla come argomento di
alcuna operazione aritmetica, ad esempio non è possibile
utilizzare questi dati per elevarli al quadrato, dividerli per
qualcosa o dividere qualsiasi cosa per essi.

esercizio_08

<PYTHON3> <Interazioni con l'utente>

Analizziamo l'errore
L'ultima riga della frase spiega tutto: avete cercato di
applicare l'operatore ** a 'str' (stringa) accompagnato
da 'float'.

Questo operazione è proibita.

Questo dovrebbe essere ovvio: potete prevedere il valore
di “Ciao sono Lorenzo” elevato alla potenza di 2?

Noi non possiamo e nemmeno Python può farlo.

Siamo in una situazione di stallo? Esiste una soluzione a
questo problema? Certo che c'è.

<PYTHON3> <Interazioni con l'utente>

Casting del tipo (conversione)
Python offre due semplici funzioni per specificare un tipo di dati e risolvere questo problema:
int() e float().

I loro nomi si commentano da soli:

• la funzione int() prende un argomento (ad esempio, una stringa: int(stringa)) e cerca di
convertirlo in un numero intero; se fallisce, fallisce anche l'intero programma (esiste una
soluzione per questa situazione, ma ve la mostreremo poco più avanti);

• la funzione float() prende un argomento (ad esempio, una stringa: float(stringa)) e cerca di
convertirlo in un float (il resto è lo stesso).

È molto semplice e molto efficace. Inoltre, è possibile invocare qualsiasi funzione passando
direttamente i risultati di input(). Non è necessario utilizzare alcuna variabile come memoria
intermedia.

Riuscite a immaginare come la stringa inserita dall'utente passa da input() a print()?
Provate a eseguire il codice modificato. Verificate alcuni valori diversi, piccoli e grandi,
negativi e positivi. Anche lo zero è un buon input.

<PYTHON3> <Interazioni con l'utente>

Altro su input() e il casting
Avere un trio input()-int()-float() apre molte nuove possibilità.

Ora sarete in grado di scrivere programmi completi, che accettano
dati sotto forma di numeri, elaborandoli e visualizzando i
risultati.

Naturalmente, questi programmi saranno molto primitivi e poco
utilizzabili, non possono prendere decisioni e, di conseguenza, non
sono in grado di reagire in modo diverso a situazioni diverse.

Il prossimo esempio si riferisce al programma precedente per
trovare la lunghezza di un'ipotenusa. Eseguiamolo e facciamo in
modo che sia in grado di leggere le lunghezze dei gambe dalla
console.

<PYTHON3> <Interazioni con l'utente>

Casting a stringa
Sapete già come usare le funzioni int() e float() per convertire una stringa
in un numero.

Questo tipo di conversione non è a senso unico. È anche possibile convertire
un numero in una stringa, il che è molto più semplice e sicuro. Questo tipo
di operazione è sempre possibile.

La funzione in grado di farlo si chiama (ovviamente) str()

<PYTHON3> <Stringhe>

Replica di una stringa
Abbiamo visto come l'operatore + non è usato solo per la somma di
valori ma anche per la concatenazione di stringhe.

Esiste anche un'altra operazione possibile sulle stringhe che
sfrutta un operatore già visto. Stiamo parlando dell'asterisco

Il * ci permette di effettuare la "replication" di stringhe.

Vediamo nella pratica come usarlo

N.B.: A number less than or equal to zero produces an empty string.

<PYTHON3> <Quiz: manipolare dati in input>

Quiz n.1
Qual è l'output del seguente pezzo di codice?

<PYTHON3> <Quiz: manipolare dati in input>

Quiz n.1

<PYTHON3> <Quiz: manipolare dati in input>

Quiz n.2

<PYTHON3> <Quiz: manipolare dati in input>

Quiz n.2

<PYTHON3> <Condizioni>

{02} Condizioni
Un programmatore scrive un programma, il programma pone
delle domande.

Un computer esegue il programma e fornisce le risposte.
Il programma deve essere in grado di reagire in base alle
risposte ricevute.

Fortunatamente, i computer conoscono solo due tipi di
risposte:

• sì, è vero;
• no, è falso.

Non si otterrà mai una risposta del tipo: "non lo so", o
"Probabilmente sì, ma non ne sono sicuro".

Per porre domande, Python utilizza una serie di operatori
speciali che abbiamo già avuto modo di vedere

<PYTHON3> <Condizioni>

Condizioni ed esecuzione condizionale
Sapete già come porre le domande a Python, ma non sapete ancora
come fare un uso ragionevole delle risposte. Dovete avere un
meccanismo che vi permetta di fare qualcosa se una condizione è
soddisfatta, e di non farla se non lo è.

È proprio come nella vita reale: si fanno certe cose o non si fanno
quando una specifica condizione è soddisfatta o meno, ad esempio si
va a fare una passeggiata se il tempo è bello, o si resta a casa se
è umido e freddo.

Per prendere tali decisioni, Python offre un'istruzione speciale. A
causa della sua natura e della sua applicazione, viene chiamata
selezione (o anche istruzione/struttura condizionale).

Ne esistono diverse varianti. Inizieremo con la più semplice,
aumentando lentamente la difficoltà.

<PYTHON3> <Condizioni>

Esecuzione condizionale: l'istruzione if
Uno sviluppatore Python è insonne e si addormenta solo quando conta
120 pecore. Il programma per indurre il sonno può essere
implementata come una funzione speciale chiamata sleep_and_dream(),
l'intero codice assume la forma seguente:

<PYTHON3> <Condizioni>

Esecuzione condizionale: l'istruzione if
Si può leggere come: se sheep_counter è maggiore o uguale a
120, allora addormentarsi e sognare (cioè, eseguire la
funzione sleep_and_dream). Abbiamo detto che le istruzioni
eseguite in modo condizionale devono essere indentate.
Questo crea una struttura molto leggibile, che mostra
chiaramente tutti i possibili percorsi di esecuzione del
codice.

<PYTHON3> <Condizioni>

Come si può vedere, rifare il letto, fare la doccia, addormentarsi e sognare
vengono tutti eseguiti in modo condizionale, quando sheep_counter raggiunge il
limite desiderato.

Dare da mangiare ai cani da pastore, invece, viene fatto sempre (cioè, la
funzione dai da mangiare ai cani da pastore() non è indentata e non appartiene
al blocco if, il che significa che viene sempre eseguita).

Ora discuteremo un'altra variante dell'istruzione condizionale, che consente
di eseguire un'azione aggiuntiva quando la condizione non è soddisfatta.

<PYTHON3> <Condizioni>

La struttura if-else
Abbiamo iniziato con una semplice frase: Se il tempo è buono, andremo a fare una
passeggiata.

Nota: non c'è una parola su cosa succederà se il tempo è brutto. Sappiamo solo
che non andremo all'aperto, ma non sappiamo cosa potremmo fare al suo posto.
Potremmo voler pianificare qualcosa anche in caso di maltempo.

Possiamo dire, ad esempio: Se il tempo è bello, andremo a fare una passeggiata,
altrimenti andremo al cinema.

Ora sappiamo cosa faremo se le condizioni sono soddisfatte e sappiamo cosa
faremo se non tutto va come vorremmo. In altre parole, abbiamo un “piano B”.

<PYTHON3> <Condizioni>

AND e OR: l'uso di and
In Python, gli operatori logici and e or vengono utilizzati all'interno di
istruzioni if per combinare più condizioni logiche e determinare il flusso di
esecuzione del programma in base a queste condizioni.

L'operatore and viene utilizzato quando desideri verificare che tutte le
condizioni siano vere. Solo se tutte le condizioni sono vere, l'intera
espressione risulterà vera.

<PYTHON3> <Condizioni>

AND e OR: l'uso di or
In Python, gli operatori logici and e or vengono utilizzati all'interno di
istruzioni if per combinare più condizioni logiche e determinare il flusso di
esecuzione del programma in base a queste condizioni.

L'operatore or viene utilizzato quando desideri verificare che almeno una
delle condizioni sia vera. L'intera espressione risulterà vera se almeno una
delle condizioni è vera.

<PYTHON3> <Condizioni>

Cortocircuito
In programmazione, il cortocircuito (short-circuiting) in
un'istruzione if si riferisce a un comportamento in cui
l'esecuzione delle espressioni viene interrotta non appena il
risultato finale dell'operazione logica è determinato. Questo
comportamento è tipico degli operatori logici and (&&) e or (||).

Esempio: siamo dei controllori e dobbiamo verificare che una
persona, per vedere un film vietato ai minori di 18 anni, soddisfi
dei requisiti:
• abbia pagato il biglietto,
• non porti con se cibo o bevande,
• abbia effettivamente 18 anni.

Quale controllare prima?

<PYTHON3> <Condizioni>

L'istruzione elif
Vediamo un secondo caso speciale che introduce un'altra nuova parola chiave
di Python: elif

Si tratta di una forma più breve di else if.

elif viene utilizzato per verificare più di una condizione e per fermarsi
quando viene trovata la prima affermazione vera.

Il prossimo esempio assomiglia alla nidificazione, ma le somiglianze sono
minime. Anche in questo caso, cambieremo i nostri piani e li esprimeremo come
segue: Se il tempo è bello, andremo a fare una passeggiata, altrimenti se
avremo i biglietti, andremo a teatro, altrimenti se ci sono tavoli liberi al
ristorante, andremo a pranzo; se tutto il resto fallisce, resteremo a casa a
giocare a scacchi.

Avete notato quante volte abbiamo usato la parola altrimenti? Questa è la
fase in cui la parola chiave elif svolge il suo ruolo.

<PYTHON3> <Condizioni>

CHALLENGE

esercizio_08

Le regole sono semplici:

•1h di tempo

•3 suggerimenti per gruppo

•Non cercare aiuto da Internet (non ci
provate)

<Company> <FINE>

Ci vediamo
la prossima
settimana!

That's all folks!

Credits

This presentation is under copyright
For use contact me at: brunlorenz99@gmail.com

Happy coding!
Lorenzo Bruno

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28

