
Public

SMART CONTRACT AUDIT REPORT

for

DCNTRL Network

Prepared By: Xiaomi Huang

PeckShield
July 30, 2023

1/23 PeckShield Audit Report #: 2023-173

contact@peckshield.com

Public

Document Properties

Client DCNTRL Network
Title Smart Contract Audit Report
Target DCNTRL Network
Version 1.0
Author Xuxian Jiang
Auditors Stephen Bie, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 July 30, 2023 Xuxian Jiang Final Release
1.0-rc1 July 23, 2023 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/23 PeckShield Audit Report #: 2023-173

Public

Contents

1 Introduction 4
1.1 About DCNTRL Network . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Incorrect TroveLiquidated Event in TroveManager 12
3.2 Revisited Caller Validation in SortedTroves::insert() 13
3.3 Enhanced Oracle Status in PriceFeed::_fetchPrice() 14
3.4 Improved Trove Close Logic in TroveManager . 16
3.5 Improved Validation in USDEFIToken/DCNXToken::permit() 17
3.6 Simplified Logic in Unipool::claimReward() . 18

4 Conclusion 21

References 22

3/23 PeckShield Audit Report #: 2023-173

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
DCNTRL Network protocol, we outline in the report our systematic approach to evaluate potential se-
curity issues in the smart contract implementation, expose possible semantic inconsistencies between
smart contract code and design document, and provide additional suggestions or recommendations
for improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About DCNTRL Network

DCNTRL Network is a decentralized borrowing protocol that allows you to draw low-interest loans against
the native asset used as collateral. Loans are paid out in USDEFI (a USD pegged stablecoin) and need
to maintain a minimum (configurable) collateral ratio. In addition to the collateral, the loans are
secured by a stability pool containing USDEFI and by borrowers collectively acting as guarantors of
last resort. Initially forked from Liquity, DCNTRL Network makes a number of extensions by supporting
customized tokenomics and fee structure, and allowing for governance-configurable risk parameters.
The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of DCNTRL Network

Item Description
Name DCNTRL Network
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 30, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used
in this audit. Note that DCNTRL Network assumes a trusted price oracle with timely market price

4/23 PeckShield Audit Report #: 2023-173

Public

feeds for supported assets and the oracle itself is not part of this audit.

• https://github.com/tenfinance/Decntral-contracts.git (a10e877)

And this is the commit ID after all fixes for the issues found in the audit have been checked in.

• https://github.com/tenfinance/Decntral-contracts.git (TBD)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/23 PeckShield Audit Report #: 2023-173

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/23 PeckShield Audit Report #: 2023-173

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

7/23 PeckShield Audit Report #: 2023-173

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/23 PeckShield Audit Report #: 2023-173

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/23 PeckShield Audit Report #: 2023-173

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the DCNTRL Network protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 4

Informational 2

Total 6

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/23 PeckShield Audit Report #: 2023-173

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 4 low-severity vulnerabilities
and 2 informational recommendations.

Table 2.1: Key DCNTRL Network Audit Findings

ID Severity Title Category Status
PVE-001 Low Incorrect TroveLiquidated Event in Tro-

veManager
Business Logic Confirmed

PVE-002 Low Revisited Caller Validation in Sort-
edTroves::insert()

Security Features Confirmed

PVE-003 Informational Enhanced Oracle Status in Price-
Feed::_fetchPrice()

Business Logic Confirmed

PVE-004 Low Improved Trove Close Logic in TroveM-
anager

Business Logic Confirmed

PVE-005 Low Improved Validation in USDEFITo-
ken/DCNXToken::permit()

Coding Practices Confirmed

PVE-006 Informational Simplified Logic in
Unipool::claimReward()

Business Logic Confirmed

Besides the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/23 PeckShield Audit Report #: 2023-173

Public

3 | Detailed Results

3.1 Incorrect TroveLiquidated Event in TroveManager

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: TroveManager

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the TroveManager contract as an example. This contract has public
functions that are used to manage current troves. While examining the TroveLiquidated events, we
notice the emitted information needs to be improved.

Specifically, when a trove is liquidated during the recovery mode, the _liquidateRecoveryMode()

routine will be invoked. By design, if there is USDEFI in the stability pool, the liquidation will only
offset, with no redistribution, but at a capped rate of 1.1 and only if the whole debt can be liquidated.
In the meantime, the remainder due to the capped rate will be claimable as collateral surplus. With
that, the TroveLiquidated event needs to reflect the actual debt/collateral being liquidated. The
current event logic shows the right debt amount (singleLiquidation.entireTroveDebt), but not the
collateral amount (singleLiquidation.collToSendToSP). The exact collateral amount being liquidated
is singleLiquidation.entireTroveColl - singleLiquidation.collSurplus (line 417).

404 ...
405 if ((_ICR >= MCR) && (_ICR < _TCR) && (singleLiquidation.entireTroveDebt <=

_USDEFIInStabPool)) {

12/23 PeckShield Audit Report #: 2023-173

Public

406 _movePendingTroveRewardsToActivePool(_activePool , _defaultPool , vars.
pendingDebtReward , vars.pendingCollReward);

407 assert(_USDEFIInStabPool != 0);

409 _removeStake(_borrower);
410 singleLiquidation = _getCappedOffsetVals(singleLiquidation.entireTroveDebt ,

singleLiquidation.entireTroveColl , _price);

412 _closeTrove(_borrower , Status.closedByLiquidation);
413 if (singleLiquidation.collSurplus > 0) {
414 collSurplusPool.accountSurplus(_borrower , singleLiquidation.collSurplus)

;
415 }

417 emit TroveLiquidated(_borrower , singleLiquidation.entireTroveDebt ,
singleLiquidation.collToSendToSP , TroveManagerOperation.
liquidateInRecoveryMode);

418 emit TroveUpdated(_borrower , 0, 0, 0, TroveManagerOperation.
liquidateInRecoveryMode);

420 }

Listing 3.1: TroveManager::_liquidateRecoveryMode()

Recommendation Properly emit the above TroveLiquidated event with the right debt/collateral
amount.

Status This issue has been confirmed.

3.2 Revisited Caller Validation in SortedTroves::insert()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: SortedTroves

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [5]

Description

The DCNTRL Network protocol has a core SortedTroves contract to maintain a sorted doubly linked
list of active troves in descending order accordingly to their nominal individual collateral ratios
(NICR). Our analysis shows that the key insert() operation is expected to be called only from the
borrowerOperations contract.

To elaborate, we show below the related insert() routine, which has a rather straightforward
logic in inserting a trove node into the list while maintaining the proper descending list based on

13/23 PeckShield Audit Report #: 2023-173

Public

its NICR. It comes to our attention that the caller is validated to be from either borrowerOperations

or TroveManager. However, the current TroveManager logic will only call the reInsert() function to
re-insert the node at a new position (based on its new NICR), not the insert() routine.

104 function insert (address _id , uint256 _NICR , address _prevId , address _nextId)
external override {

105 ITroveManager troveManagerCached = troveManager;

107 _requireCallerIsBOorTroveM(troveManagerCached);
108 _insert(troveManagerCached , _id , _NICR , _prevId , _nextId);
109 }

Listing 3.2: SortedTroves::insert()

Recommendation Revise the above caller-validating logic inside the insert() routine.

Status This issue has been confirmed.

3.3 Enhanced Oracle Status in PriceFeed::_fetchPrice()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PriceFeed

• Category: Business Logic [7]

• CWE subcategory: CWE-837 [4]

Description

The DCNTRL Network protocol is unique in supporting dual oracles, which necessitate the examina-
tion of current oracle states. In total, there are five different oracle states, i.e., chainlinkWorking,
usingTellorChainlinkUntrusted, bothOraclesUntrusted, usingTellorChainlinkFrozen, and usingChainlinkTellorUntrusted

. While examining possible transition from the fourth state, we notice the transition logic can be
revisited.

To elaborate, we show below the code snippet from the _fetchPrice() function. This function
is designed to fetch the current price and adjust the current oracle state accordingly. Starting
from the fourth state usingTellorChainlinkFrozen, the current logic considers the conditions of !

_chainlinkIsFrozen(chainlinkResponse) (line 269) and _tellorIsBroken(bandResponse) (line 284) to
still yield usingTellorChainlinkFrozen as the next state, which in fact can be better adjusted as
usingChainlinkTellorFrozen.

251 // --- CASE 4: Using Tellor , and Chainlink is frozen ---
252 if (status == Status.usingTellorChainlinkFrozen) {
253 if (_chainlinkIsBroken(chainlinkResponse , prevChainlinkResponse)) {
254 // If both Oracles are broken , return last good price

14/23 PeckShield Audit Report #: 2023-173

Public

255 if (_tellorIsBroken(tellorResponse)) {
256 _changeStatus(Status.bothOraclesUntrusted);
257 return lastGoodPrice;
258 }
259
260 // If Chainlink is broken , remember it and switch to using Tellor
261 _changeStatus(Status.usingTellorChainlinkUntrusted);
262
263 if (_tellorIsFrozen(tellorResponse)) {return lastGoodPrice ;}
264
265 // If Tellor is working , return Tellor current price
266 return _storeTellorPrice(tellorResponse);
267 }
268
269 if (_chainlinkIsFrozen(chainlinkResponse)) {
270 // if Chainlink is frozen and Tellor is broken , remember Tellor broke ,

and return last good price
271 if (_tellorIsBroken(tellorResponse)) {
272 _changeStatus(Status.usingChainlinkTellorUntrusted);
273 return lastGoodPrice;
274 }
275
276 // If both are frozen , just use lastGoodPrice
277 if (_tellorIsFrozen(tellorResponse)) {return lastGoodPrice ;}
278
279 // if Chainlink is frozen and Tellor is working , keep using Tellor (no

status change)
280 return _storeTellorPrice(tellorResponse);
281 }
282
283 // if Chainlink is live and Tellor is broken , remember Tellor broke , and

return Chainlink price
284 if (_tellorIsBroken(tellorResponse)) {
285 _changeStatus(Status.usingChainlinkTellorUntrusted);
286 return _storeChainlinkPrice(chainlinkResponse);
287 }
288
289 // If Chainlink is live and Tellor is frozen , just use last good price (no

status change) since we have no basis for comparison
290 if (_tellorIsFrozen(tellorResponse)) {return lastGoodPrice ;}
291
292 // If Chainlink is live and Tellor is working , compare prices. Switch to

Chainlink
293 // if prices are within 5%, and return Chainlink price.
294 if (_bothOraclesSimilarPrice(chainlinkResponse , tellorResponse)) {
295 _changeStatus(Status.chainlinkWorking);
296 return _storeChainlinkPrice(chainlinkResponse);
297 }
298
299 // Otherwise if Chainlink is live but price not within 5% of Tellor ,

distrust Chainlink , and return Tellor price
300 _changeStatus(Status.usingTellorChainlinkUntrusted);

15/23 PeckShield Audit Report #: 2023-173

Public

301 return _storeTellorPrice(tellorResponse);
302 }

Listing 3.3: PriceFeed::_fetchPrice()

Recommendation Apply the proper state-transition logic in _fetchPrice() as elaborated earlier.

Status This issue has been confirmed.

3.4 Improved Trove Close Logic in TroveManager

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: TroveManager

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [5]

Description

At the core of DCNTRL Network is the TroveManager contract which contains the logic to open, adjust
and close various troves. Note each trove is in essence an individual collateralized debt position for
borrowing users. While reviewing the current trove-closing logic, we notice the current implementa-
tion can be improved.

To elaborate, we show below the related _closeTrove() routine. The current logic properly releases
unused states, including the trove coll, debt, as well as the associated rewardSnapshots. However, it
does not release the trove index in the global owners, i.e., TroveOwners. The release of arrayIndex

needs to be performed after the call _removeTroveOwner() is completed.
1244 function _closeTrove(address _borrower , Status closedStatus) internal {
1245 assert(closedStatus != Status.nonExistent && closedStatus != Status.active);
1246
1247 uint TroveOwnersArrayLength = TroveOwners.length;
1248 _requireMoreThanOneTroveInSystem(TroveOwnersArrayLength);
1249
1250 Troves[_borrower]. status = closedStatus;
1251 Troves[_borrower].coll = 0;
1252 Troves[_borrower].debt = 0;
1253
1254 rewardSnapshots[_borrower].ETH = 0;
1255 rewardSnapshots[_borrower]. USDEFIDebt = 0;
1256
1257 _removeTroveOwner(_borrower , TroveOwnersArrayLength);
1258 sortedTroves.remove(_borrower);
1259 }

Listing 3.4: TroveManager::_closeTrove()

16/23 PeckShield Audit Report #: 2023-173

Public

Recommendation Release all unused states once a trove is closed. An example revision is
shown below:

1244 function _closeTrove(address _borrower , Status closedStatus) internal {
1245 assert(closedStatus != Status.nonExistent && closedStatus != Status.active);
1246
1247 uint TroveOwnersArrayLength = TroveOwners.length;
1248 _requireMoreThanOneTroveInSystem(TroveOwnersArrayLength);
1249
1250 Troves[_borrower]. status = closedStatus;
1251 Troves[_borrower].coll = 0;
1252 Troves[_borrower].debt = 0;
1253
1254 rewardSnapshots[_borrower].ETH = 0;
1255 rewardSnapshots[_borrower]. LUSDDebt = 0;
1256
1257 _removeTroveOwner(_borrower , TroveOwnersArrayLength);
1258 sortedTroves.remove(_borrower);
1259 Troves[_borrower]. arrayIndex = 0;
1260 }

Listing 3.5: TroveManager::_closeTrove()

Status This issue has been confirmed.

3.5 Improved Validation in
USDEFIToken/DCNXToken::permit()

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: USDEFIToken, DCNXToken

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [2]

Description

The DCNTRL Network protocol has two tokens USDEFIToken and DCNXToken, each supporting the EIP2612

functionality. In particular, the permit() function is introduced to simplify the token transfer process.
To elaborate, we show below this helper routine from the USDEFIToken contract. This routine

ensures that the given owner is indeed the one who signs the approve request. Note that the internal
implementation makes use of the ecrecover() precompile for validation. It comes to our attention
that the precompile-based validation needs to properly ensure the signer, i.e., owner, is not equal to
address(0). This issue is also applicable to the DCNXToken token contract.

17/23 PeckShield Audit Report #: 2023-173

Public

171 function permit
172 (
173 address owner ,
174 address spender ,
175 uint amount ,
176 uint deadline ,
177 uint8 v,
178 bytes32 r,
179 bytes32 s
180)
181 external
182 override
183 {
184 require(deadline >= now , ’USDEFI: expired deadline ’);
185 bytes32 digest = keccak256(abi.encodePacked(’\x19\x01’,
186 domainSeparator (), keccak256(abi.encode(
187 _PERMIT_TYPEHASH , owner , spender , amount ,
188 _nonces[owner]++, deadline))));
189 address recoveredAddress = ecrecover(digest , v, r, s);
190 require(recoveredAddress == owner , ’USDEFI: invalid signature ’);
191 _approve(owner , spender , amount);
192 }

Listing 3.6: USDEFIToken::permit()

Recommendation Strengthen the permit() routine to ensure the owner is not equal to address

(0).

Status This issue has been confirmed.

3.6 Simplified Logic in Unipool::claimReward()

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Unipool

• Category: Business Logic [7]

• CWE subcategory: CWE-770 [3]

Description

In the Unipool contract, the claimReward() routine is intended to obtain the calling user’s staking
rewards. The logic is rather straightforward in calculating possible reward, which, if not zero, is then
allocated to the calling (staking) user.

Our examination shows that the current implementation logic can be further optimized. In
particular, the claimReward() routine has internally invoked _updateAccountReward(msg.sender), which
timely updates the calling user’s (earned) rewards in rewards[msg.sender] (line 182).

18/23 PeckShield Audit Report #: 2023-173

Public

178 f unc t i on c la imReward () pub l i c o v e r r i d e {
179 r equ i r e (address (uniToken) != address (0) , "Liquidity Pool Token has not been set

yet") ;

181 _upda tePe r i odF in i sh () ;
182 _updateAccountReward (msg . sender) ;

184 uint256 reward = earned (msg . sender) ;

186 r equ i r e (reward > 0 , "Nothing to claim") ;

188 r ewards [msg . sender] = 0 ;
189 DCNXToken . t r a n s f e r (msg . sender , reward) ;
190 emit RewardPaid (msg . sender , reward) ;
191 }

Listing 3.7: Unipool :: claimReward()

235 f unc t i on _updateAccountReward (address account) i n t e r n a l {
236 _updateReward () ;

238 a s s e r t (account != address (0)) ;

240 r ewards [account] = earned (account) ;
241 userRewardPerTokenPaid [account] = rewardPerTokenStored ;
242 }

Listing 3.8: Unipool ::_updateAccountReward()

Having the internal routine _updateAccountReward(), there is no need to re-calculate the earned
reward for the caller msg.sender. In other words, we can simply re-use the calculated rewards[msg.

sender] and assign it to the reward variable (line 184).

Recommendation Avoid the duplicated calculation of the caller’s reward in claimReward(),
which also leads to (small) beneficial reduction of associated gas cost.

184 f unc t i on c la imReward () pub l i c o v e r r i d e {
185 r equ i r e (address (uniToken) != address (0) , "Liquidity Pool Token has not been set

yet") ;

187 _upda tePe r i odF in i sh () ;
188 _updateAccountReward (msg . sender) ;

190 uint256 reward = rewards [msg . sender] ;

192 r equ i r e (reward > 0 , "Nothing to claim") ;

194 r ewards [msg . sender] = 0 ;
195 l q tyToken . t r a n s f e r (msg . sender , reward) ;
196 emit RewardPaid (msg . sender , reward) ;
197 }

Listing 3.9: Revised Unipool :: claimReward()

19/23 PeckShield Audit Report #: 2023-173

Public

Status This issue has been confirmed.

20/23 PeckShield Audit Report #: 2023-173

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the DCNTRL Network protocol, which
is a decentralized borrowing protocol that allows to draw low-interest loans against the native asset
used as collateral. Loans are paid out in USDEFI (a USD pegged stablecoin) and need to maintain
a minimum (configurable) collateral ratio. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and addressed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

21/23 PeckShield Audit Report #: 2023-173

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE-770: Allocation of Resources Without Limits or Throttling. https://cwe.mitre.

org/data/definitions/770.html.

[4] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/

data/definitions/837.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

22/23 PeckShield Audit Report #: 2023-173

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Public

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

23/23 PeckShield Audit Report #: 2023-173

https://www.peckshield.com

	Introduction
	About DCNTRL Network
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incorrect TroveLiquidated Event in TroveManager
	Revisited Caller Validation in SortedTroves::insert()
	Enhanced Oracle Status in PriceFeed::_fetchPrice()
	Improved Trove Close Logic in TroveManager
	Improved Validation in USDEFIToken/DCNXToken::permit()
	Simplified Logic in Unipool::claimReward()

	Conclusion
	References

