
Audit Report
PUMPSPACE
January 2025

Repository github.com/bluewhale-logan/pump-contract-v2/tree/main

Commit c4e5c21286a737fb0793398f4005ee7417df863f

Audited by © cyberscope

https://github.com/bluewhale-logan/pump-contract-v2/tree/main

PUMPSPACE Audit 1

Table of Contents
Table of Contents 1
Risk Classification 5
Review 6

Audit Updates 6
Source Files 6

Overview 7
DEX Contracts 7
DexERC20 7
DexFactory 7
DexPair 7
DexRouter 8
DexToken 8
Keeper 8
MasterChef 8

Findings Breakdown 9
Diagnostics 10

APM - Allocation Points Mismatch 13
Description 13
Recommendation 15
Team Update 15

KBD - Keeper Balance Dependency 17
Description 17
Recommendation 17
Team Update 18

CCR - Contract Centralization Risk 19
Description 19
Recommendation 24
Team Update 24

FO - Function Optimization 25
Description 25
Recommendation 26
Team Update 26

HV - Hardcoded Values 27
Description 27
Recommendation 27
Team Update 27

IDI - Immutable Declaration Improvement 29
Description 29
Recommendation 29

PUMPSPACE Audit 2

Team Update 29
IOU - Inefficient Output Updates 30

Description 30
Recommendation 30
Team Update 31

MT - Mints Tokens 32
Description 32
Recommendation 32
Team Update 33

MCM - Misleading Comment Messages 34
Description 34
Recommendation 34
Team Update 34

MVN - Misleading Variables Naming 36
Description 36
Recommendation 36
Team Update 36

MC - Missing Check 38
Description 38
Recommendation 38
Team Update 38

MDTC - Missing Duplicate Token Check 40
Description 40
Recommendation 41
Team Update 41

MEE - Missing Events Emission 43
Description 43
Recommendation 43
Team Update 43

MU - Modifiers Usage 45
Description 45
Recommendation 45
Team Update 45

PSU - Potential Subtraction Underflow 47
Description 47
Recommendation 48
Team Update 48

PTAI - Potential Transfer Amount Inconsistency 50
Description 50
Recommendation 50
Team Update 51

RCD - Redundant Comment Declaration 52

PUMPSPACE Audit 3

Description 52
Recommendation 52
Team Update 52

RCM - Redundant Creator Mapping 53
Description 53
Recommendation 53
Team Update 54

RPC - Redundant Permission Check 55
Description 55
Recommendation 56
Team Update 56

RSML - Redundant SafeMath Library 58
Description 58
Recommendation 58
Team Update 58

RZAT - Restricted Zero Address Transfer 60
Description 60
Recommendation 62
Team Update 62

ST - Stops Transactions 63
Description 63
Recommendation 63
Team Update 64

TC - TODO Comments 65
Description 65
Recommendation 65
Team Update 65

TSI - Tokens Sufficiency Insurance 67
Description 67
Recommendation 67
Team Update 68

UVI - Uniswap V2 Incompatibility 69
Description 69
Recommendation 71
Team Update 71

L02 - State Variables could be Declared Constant 73
Description 73
Recommendation 73
Team Update 73

L04 - Conformance to Solidity Naming Conventions 75
Description 75
Recommendation 76

PUMPSPACE Audit 4

Team Update 76
L07 - Missing Events Arithmetic 77

Description 77
Recommendation 77
Team Update 77

L09 - Dead Code Elimination 79
Description 79
Recommendation 79
Team Update 79

L13 - Divide before Multiply Operation 81
Description 81
Recommendation 81
Team Update 81

L14 - Uninitialized Variables in Local Scope 83
Description 83
Recommendation 83
Team Update 83

L16 - Validate Variable Setters 84
Description 84
Recommendation 84
Team Update 84

L17 - Usage of Solidity Assembly 86
Description 86
Recommendation 86
Team Update 86

L19 - Stable Compiler Version 87
Description 87
Recommendation 87
Team Update 87

L20 - Succeeded Transfer Check 89
Description 89
Recommendation 89
Team Update 89

Functions Analysis 91
Inheritance Graph 97
Flow Graph 98
Summary 99
Disclaimer 100
About Cyberscope 101

PUMPSPACE Audit 5

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

PUMPSPACE Audit 6

Review

Repository https://github.com/bluewhale-logan/pump-contract-v2/tree/main

Commit c4e5c21286a737fb0793398f4005ee7417df863f

Audit Updates

Initial Audit 13 Jan 2025

Source Files

Filename SHA256

MasterChef.sol ba79319f60958755dc6a1a5016a9eef5c7ed90f4de7ab2acea3803c060724136

Keeper.sol 5eca2cbce005e12a6689e7ccb6fea45b88b4776de2ca9786af5c441b4117df2e

Errors.sol 8cafeb5f1eb20f1dc2f8a98668acb840a5b9ca6024ef6edf578f09c10578b33a

DexToken.sol 2ec5aa077f0d4e1c7a96ddf370d0695e736ae4997a8aaeaaefd4f0e664fe987b

DexRouter.sol 2bb17767038a3063b51195c75e5fdfc753fb5a956e18eedaa1b69750d156565c

DexPair.sol 87178a7efe017fb40ff126f7fb69c9dd6a650d0bc360dc6a5e314653de69fcf3

DexFactory.sol 81793b1c8d72331e304e40ab7865972c21fdcc37248bdc5ed7ad8a5d34e3a4a7

DexERC20.sol 7cdd6d86350ef9bc5f1b612af928374f858d6466bbdcbd0f4dabd29092002264

https://github.com/bluewhale-logan/pump-contract-v2/tree/main

PUMPSPACE Audit 7

Overview
DEX Contracts

The DEX contracts form a comprehensive framework for decentralised token swaps and

liquidity management. This system includes DexERC20 for token representation,

DexFactory for creating and managing liquidity pairs, DexPair for handling token

liquidity pools, and DexRouter for facilitating token swaps and liquidity provisioning.

These components work together to provide a secure, efficient, and trustless platform for

automated market making and seamless token exchanges.

DexERC20

The DexERC20 contract serves as the token standard for liquidity pool tokens, providing

core functionalities such as minting, burning, transferring, and approving tokens. It also

incorporates support for gasless approvals using the permit functionality, enhancing

user convenience. This token represents ownership of liquidity in the DEX pools and

underpins the ecosystem's token economics.

DexFactory

The DexFactory contract manages the creation and administration of liquidity pairs,

maintaining a registry of all pairs and enabling secure pair creation through role-based

access control. It allows the configuration of fee parameters, provides transparency through

events, and ensures flexibility with authorised creators. This contract serves as the core

management layer of the DEX infrastructure.

DexPair

The DexPair contract operates liquidity pools, enabling token swaps and liquidity

provisioning while maintaining accurate token reserves. It enforces invariants to ensure fair

and secure exchanges, calculates cumulative price data for analytics, and integrates a fee

mechanism to reward liquidity providers. With support for minting and burning liquidity

tokens, the contract ensures efficient pool contributions and withdrawals.

PUMPSPACE Audit 8

DexRouter

The DexRouter contract simplifies user interactions with the DEX by providing intuitive

interfaces for adding/removing liquidity and performing token swaps. It optimises token

amounts for trades and liquidity operations, protecting against slippage and ensuring

reliability. Supporting both native and token-based transactions, the router integrates

seamlessly with the other components, offering a versatile and user-friendly experience.

DexToken

The DexToken contract is a versatile ERC20 implementation designed to support token

minting, burning, pausing, and role-based access control. With an initial supply of 150

million tokens and a capped maximum of 7 billion, it enables secure governance through

roles such as MINTER_ROLE and PAUSER_ROLE . This ensures seamless token

distribution, transfer restrictions when necessary, and enhanced flexibility for diverse

decentralised applications.

Keeper

The Keeper contract acts as a secure storage mechanism for tokens, facilitating

controlled transfers based on access permissions. By leveraging TRANSFER_ROLE , it

restricts token transfers to authorised accounts, while its safeTokenTransfer function

ensures accurate distribution, even when the available token balance is insufficient for the

requested amount. This functionality makes it an ideal intermediary for managing token

flows in broader systems.

MasterChef

The MasterChef contract is a powerful staking and rewards distribution system,

managing liquidity pools and ensuring fair allocation of rewards. It supports role-based

management with PoolManager and Delegator permissions, dynamic reward

calculations, and a lock-up mechanism for enhanced security. With features like

massUpdatePools and pendingReward , it enables efficient pool updates and

real-time reward tracking, making it essential for incentivising liquidity providers in DeFi

ecosystems.

PUMPSPACE Audit 9

Findings Breakdown

⬤ Critical 0

⬤ Medium 2

⬤ Minor / Informative 33

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 2 0 0

⬤ Minor / Informative 0 33 0 0

PUMPSPACE Audit 10

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ APM Allocation Points Mismatch Acknowledged

⬤ KBD Keeper Balance Dependency Acknowledged

⬤ CCR Contract Centralization Risk Acknowledged

⬤ FO Function Optimazation Acknowledged

⬤ HV Hardcoded Values Acknowledged

⬤ IDI Immutable Declaration Improvement Acknowledged

⬤ IOU Inefficient Output Updates Acknowledged

⬤ MT Mints Tokens Acknowledged

⬤ MCM Misleading Comment Messages Acknowledged

⬤ MVN Misleading Variables Naming Acknowledged

⬤ MC Missing Check Acknowledged

⬤ MDTC Missing Duplicate Token Check Acknowledged

⬤ MEE Missing Events Emission Acknowledged

⬤ MU Modifiers Usage Acknowledged

PUMPSPACE Audit 11

⬤ PSU Potential Subtraction Underflow Acknowledged

⬤ PTAI Potential Transfer Amount Inconsistency Acknowledged

⬤ RCD Redundant Comment Declaration Acknowledged

⬤ RCM Redundant Creator Mapping Acknowledged

⬤ RPC Redundant Permission Check Acknowledged

⬤ RSML Redundant SafeMath Library Acknowledged

⬤ RZAT Restricted Zero Address Transfer Acknowledged

⬤ ST Stops Transactions Acknowledged

⬤ TC TODO Comments Acknowledged

⬤ TSI Tokens Sufficiency Insurance Acknowledged

⬤ UVI Uniswap V2 Incompatibility Acknowledged

⬤ L02 State Variables could be Declared Constant Acknowledged

⬤ L04 Conformance to Solidity Naming Conventions Acknowledged

⬤ L07 Missing Events Arithmetic Acknowledged

⬤ L09 Dead Code Elimination Acknowledged

⬤ L13 Divide before Multiply Operation Acknowledged

⬤ L14 Uninitialized Variables in Local Scope Acknowledged

⬤ L16 Validate Variable Setters Acknowledged

PUMPSPACE Audit 12

⬤ L17 Usage of Solidity Assembly Acknowledged

⬤ L19 Stable Compiler Version Acknowledged

⬤ L20 Succeeded Transfer Check Acknowledged

PUMPSPACE Audit 13

APM - Allocation Points Mismatch

Criticality Medium

Location MasterChef.sol#L99,204,381,399

Status Acknowledged

Description

The contract is designed with the resetPools and updatePoolsByAddress

functions, which allow modification of individual pool allocation points without appropriately

adjusting the totalAllocPoint value. As a result, the specific allocation of pools is

altered, but the total allocation points remain inaccurate. This creates an inconsistency in

the reward distribution calculations, as the totalAllocPoint no longer reflects the

actual allocation of individual pools.

Additionally, during the execution of the add function, the

_isUpdateTotalAllocPoint variable introduces illogical behaviour. Its

implementation does not consistently modify the totalAllocPoint in a meaningful

way. Instead, it arbitrarily increases the value, leading to further inaccuracies in reward

calculations and creating inconsistencies in the system.

These issues collectively result in incorrect reward allocations and potential disruptions in

the intended functionality of the contract, reducing its reliability and trustworthiness.

PUMPSPACE Audit 14

function add(
uint256 _allocPoint,
uint256 _lockUpPeriod,
IERC20 _lpToken,
bool _isDexPool,
bool _withUpdate,
bool _isUpdateTotalAllocPoint

) public onlyPoolManager {
if (_withUpdate) {

massUpdatePools();
}
uint256 lastRewardBlock = block.number > START_BLOCK

? block.number
: START_BLOCK;

if(_isUpdateTotalAllocPoint){
totalAllocPoint = totalAllocPoint.add(_allocPoint);

}
...
}

function updatePool(uint256 _pid) public {
...

uint256 multiplier = getMultiplier(pool.lastRewardBlock,
block.number);

uint256 tokenReward =
multiplier.mul(REWARD_PER_BLOCK).mul(pool.allocPoint).div(totalAllocPoin
t);

...
}

function resetPools() public onlyPoolManager {
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {

if (isFixedPool(pid)) {
continue;

}...
if (poolInfo[pid].allocPoint > 0) {

updatePool(pid);
poolInfo[pid].allocPoint = 0;

}
}
poolsReset = true;

}

function updatePoolsByAddress(address[] memory _poolAddresses)
external onlyPoolManager {

...

PUMPSPACE Audit 15

if (pid == 0) {
add(10, 0, IERC20(poolAddress), false, false, false);

} else {

if (poolInfo[pid].allocPoint > 0) {
updatePool(pid);

}

poolInfo[pid].allocPoint = 10;
emit setPoolInfo(10, 0, IERC20(poolAddress), false,

false);
}

}
poolsReset = false;

}

Recommendation

It is recommended to reconsider the modification of the totalAllocPoint logic. The

contract should maintain a specific and accurate relationship between the total allocation

points and the individual pool allocations. Functions like resetPools and

updatePoolsByAddress should ensure that any changes to pool allocation points are

consistently reflected in the totalAllocPoint value. Additionally, the

_isUpdateTotalAllocPoint variable logic should be refined to have a clear and

meaningful purpose, avoiding arbitrary increases that can disrupt reward calculations.

Proper adjustments will ensure accurate and consistent reward distributions across all

pools.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the issue raised regarding the totalAllocPoint logic. However, we believe

there is no critical issue with the current implementation. The totalAllocPoint is defined and

managed according to our specific requirements.

In our contract, totalAllocPoint is only updated if the newly assigned value is greater than

the current set value. This is an intentional design choice to ensure that the allocation points

remain aligned with our manual control over specific pools, particularly for meme coin

PUMPSPACE Audit 16

staking ratios. The decision to skip updates when the value is lower is deliberate to maintain

flexibility in managing pool allocations.

Furthermore, the pools in question are managed by the onlyPoolManager modifier, ensuring

that any changes are securely and consistently handled by authorized personnel. Given

these safeguards, we consider the current approach to be safe and aligned with our

operational goals. Therefore, no code changes have been made at this time. We will monitor

the system's performance and make adjustments if any issues arise in the future.

PUMPSPACE Audit 17

KBD - Keeper Balance Dependency

Criticality Medium

Location MasterChef.sol#L204

Status Acknowledged

Description

The updatePool function includes a require statement to check whether the

keeper contract has a sufficient token balance to cover the tokenReward . While this

check ensures the availability of rewards, it imposes an unnecessary restriction by requiring

the keeper contract to hold a token balance greater than or equal to the reward amount,

regardless of whether such a balance is strictly necessary at all times.

The updatePool function is invoked during various other functionalities of the contract,

such as deposit , making it a crusial dependency. If the keeper contract's balance is

inadequate, the require condition causes the updatePool function to revert.

Consequently, all functions depending on updatePool , such as deposit , become

unusable. This frozen state can persist until the keeper contract's balance is replenished,

potentially disrupting the normal operation of the contract and hindering user interactions.

function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
...
require(token.balanceOf(address(keeper)) >= tokenReward, "Keeper

has insufficient tokens");
...
}

Recommendation

It is recommended to reconsider the utility of the require check within the

updatePool function. If the check is specifically relevant for reward claims, consider

isolating it to the functions handling claims instead of applying it globally within a widely

used function. This adjustment would prevent unnecessary disruptions to unrelated

functionalities like deposit while still ensuring the intended validation during reward

related operations. Properly isolating the condition would enhance the contract's resilience,

PUMPSPACE Audit 18

reduce the risk of a frozen state, and avoid requiring the keeper contract to maintain an

unnecessarily high balance.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the require check within the updatePool function.

However, we believe that the current implementation is necessary and appropriate given our

specific operational model.

Unlike typical setups where tokens are minted directly, we distribute rewards using tokens

bridged from the KaiaChain to Avalanche through LayerZero. This approach requires us to

ensure that the keeper contract holds sufficient token balances at all times to avoid reward

distribution issues.

The balanceOf check is crucial to prevent a scenario where users might not receive rewards

due to an update without sufficient balance in the keeper contract. By enforcing this check,

we ensure that the reward distribution mechanism remains reliable and users' claims are

fulfilled without interruptions.

Additionally, we have already taken proactive measures to mitigate any potential issues by

transferring the required reward tokens to the keeper contract in advance. Given these

considerations, we believe that the risk of the contract entering a frozen state is negligible.

Therefore, we have decided not to modify the code at this time.

PUMPSPACE Audit 19

CCR - Contract Centralization Risk

Criticality Minor / Informative

Location DexToken.sol#L51
DexFactory.sol#L53,76
Keeper.sol#L20
MasterChef.sol#L89,276,313,353,367,399

Status Acknowledged

Description

The contract's functionality and behavior are heavily dependent on external parameters or

configurations. While external configuration can offer flexibility, it also poses several

centralization risks that warrant attention. Centralization risks arising from the dependence

on external configuration include Single Point of Control, Vulnerability to Attacks,

Operational Delays, Trust Dependencies, and Decentralization Erosion.

PUMPSPACE Audit 20

function addMinter(address account) public onlyOwner {
grantRole(MINTER_ROLE, account);

}

function removeMinter(address account) public onlyOwner {
revokeRole(MINTER_ROLE, account);

}

function addPauser(address account) public onlyOwner {
grantRole(PAUSER_ROLE, account);

}

function removePauser(address account) public onlyOwner {
revokeRole(PAUSER_ROLE, account);

}

function pause() public onlyPauser {
_pause();

}

function unpause() public onlyPauser {
_unpause();

}

function pauseAccount(address account) public onlyPauser {
pausedAccounts[account] = true;

}

function unpauseAccount(address account) public onlyPauser {
pausedAccounts[account] = false;

}

PUMPSPACE Audit 21

function createPair(address tokenA, address tokenB)
...
}

function setFeeTo(address _feeTo) external {
...

}

function setFeeToSetter(address _feeToSetter) external {
...

}

function setFeeRate(uint256 _feeRate) external {
...

}

function setSwapFeeTo(address _feeTo) external {
...

}

function grantCreator(address account) external onlyOwner {
...

}

function revokeCreator(address account) external onlyOwner {
...

}

PUMPSPACE Audit 22

function grantTransferRole(address account) public onlyOwner {
grantRole(TRANSFER_ROLE, account);

}

function revokeTransferRole(address account) public onlyOwner {
revokeRole(TRANSFER_ROLE, account);

}

function hasTransferRole(address account) public view returns (bool)
{

return hasRole(TRANSFER_ROLE, account);
}

function safeTokenTransfer(address _to, uint256 _amount) public
onlyTransfer {

...
}

PUMPSPACE Audit 23

function updateMultiplier(uint256 multiplierNumber) public onlyOwner
{

BONUS_MULTIPLIER = multiplierNumber;
}

function updateEndBlock(uint256 _endBlock) public onlyOwner {
END_BLOCK = _endBlock;

}

function add(
...

}

function set(
...
}

function withdrawForUser(address _account, uint256 _pid, uint256
_amount) public onlyDelegator {

_withdraw(_account, _pid, _amount);
}

function claimRewardForUser(address _account, uint256 _pid) public
onlyDelegator {

_claimReward(_account, _pid);
}

function addDelegator(address account) public onlyOwner {
require(!isDelegator(account), "caller is already delegator");
delegator[account] = true;

}

function removeDelegator(address account) public onlyOwner {
require(isDelegator(account), "caller is not delegator");
delegator[account] = false;

}

function addPoolManager(address account) public onlyOwner {
require(!isPoolManager(account), "caller is already

poolManager");
poolManager[account] = true;

}

function removePoolManager(address account) public onlyOwner {
require(isPoolManager(account), "caller is not poolManager");
poolManager[account] = false;

}

PUMPSPACE Audit 24

function resetPools() public onlyPoolManager {
...

}
function updatePoolsByAddress(address[] memory _poolAddresses)

external onlyPoolManager {
...

}

Recommendation

To address this finding and mitigate centralization risks, it is recommended to evaluate the

feasibility of migrating critical configurations and functionality into the contract's codebase

itself. This approach would reduce external dependencies and enhance the contract's

self-sufficiency. It is essential to carefully weigh the trade-offs between external

configuration flexibility and the risks associated with centralization.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the centralization risks highlighted in the audit. However, we believe that

the current configuration is necessary to ensure flexibility and adaptability, especially during

the early stages of the platform's operation.

The current structure allows us to efficiently manage initial fee events and adjust distribution

ratios after meme coins are listed on the DEX and trading volumes are established. This

hybrid approach, which leverages both on-chain and off-chain systems, provides the

necessary control to maintain a balanced and secure environment for users.

Moreover, all critical configurations and updates can only be modified by the contract owner

and the contract itself, ensuring that access is strictly limited and preventing any

unauthorized changes. We have carefully designed the system to minimize risks while

providing enough flexibility to adjust key parameters as needed.

Given these considerations, we have decided not to make any changes to the code at this

time. We will continue to monitor and evaluate the system’s performance to ensure it

remains secure and efficient.

PUMPSPACE Audit 25

FO - Function Optimization

Criticality Minor / Informative

Location DexToken.sol#L68
Keeper.sol#L37

Status Acknowledged

Description

The contract is designed to limit the total supply of tokens through the mint function,

but it currently allows successful execution even when the total supply has already reached

or exceeded the MAX_SUPPLY . Although no additional tokens are minted in this scenario,

the function's successful execution may lead to unnecessary gas consumption and

potential confusion for users or integrators expecting a revert or error. Furthermore, the

_mint function is redundantly called within separate conditional branches, which

increases the complexity and potential for maintenance issues. The if conditions should

only adjust the mintable amount, while _mint should be called once outside these

conditions to streamline the logic.

Additionally, the same issues exist within the safeTokenTransfer function.

function mint(address _to, uint256 _amount) public onlyMinter {
uint256 supplied = totalSupply();

if (supplied.add(_amount) <= MAX_SUPPLY) {
_mint(_to, _amount);

} else {
uint256 available = MAX_SUPPLY.sub(supplied);
_mint(_to, available);

}
}

PUMPSPACE Audit 26

function safeTokenTransfer(address _to, uint256 _amount) public
onlyTransfer {

uint256 tokenBalance = token.balanceOf(address(this));
if (_amount > tokenBalance) {

token.transfer(_to, tokenBalance);
} else {

token.transfer(_to, _amount);
}

}

Recommendation

It is recommended to refactor the mint function to ensure it reverts with a clear error

message when the total supply has reached or exceeded the MAX_SUPPLY . Additionally,

simplify the function's logic by consolidating the _mint function call to a single instance,

while adjusting the mint amount solely within the if conditions. This approach improves

readability, reduces gas usage, and mitigates unnecessary execution for scenarios where

no tokens can be minted.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the suggestion regarding function optimization. However, we believe the

current implementation is secure and does not introduce any significant inefficiencies or

risks.

The existing mint function logic ensures that no tokens are minted beyond the

MAX_SUPPLY limit. In cases where the total supply has already reached or exceeded

MAX_SUPPLY, the function adjusts the mintable amount accordingly. This prevents any

excess tokens from being minted while maintaining the intended behavior of the function.

The _mint function call within conditional branches is intentional to handle different

scenarios for mintable amounts. Consolidating the _mint function call into a single instance

would not necessarily improve efficiency, and it could potentially introduce additional

complexity without significant gains in gas optimization.

Therefore, we have decided not to modify the code at this time. The current logic is secure,

reliable, and aligned with our operational requirements.

PUMPSPACE Audit 27

HV - Hardcoded Values

Criticality Minor / Informative

Location DexRouter.sol#L60

Status Acknowledged

Description

The contract contains multiple instances where numeric values are directly hardcoded into

the code logic rather than being assigned to constant variables with descriptive names.

Hardcoding such values can lead to several issues, including reduced code readability,

increased risk of errors during updates or maintenance, and difficulty in consistently

managing values throughout the contract. Hardcoded values can obscure the intent behind

the numbers, making it challenging for developers to modify or for users to understand the

contract effectively.

(bool success, bytes memory data) =

token.call(abi.encodeWithSelector(0xa9059cbb, to, value));

Recommendation

It is recommended to replace hardcoded numeric values with variables that have

meaningful names. This practice improves code readability and maintainability by clearly

indicating the purpose of each value, reducing the likelihood of errors during future

modifications. Additionally, consider using constant variables which provide a reliable way

to centralize and manage values, improving gas optimization throughout the contract.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation regarding hardcoded values. However, we believe

that the current implementation is both appropriate and aligned with standard practices in

smart contract development.

PUMPSPACE Audit 28

The value 0xa9059cbb used in the code is the Function Selector for the

transfer(address,uint256) function as defined in the ERC-20 token standard. It is a widely

accepted and commonly used selector for invoking token transfers. Since this value is

standardized across all ERC-20 tokens, there is no risk of misinterpretation or inconsistency.

Replacing this selector with a variable would not provide any additional clarity or

functionality, as the meaning of 0xa9059cbb is already well-documented and recognized

within the Ethereum developer community. Moreover, introducing an extra variable to

represent this selector could slightly increase gas consumption without providing tangible

benefits.

For these reasons, we have decided to retain the current implementation. The use of this

hardcoded value ensures compliance with ERC-20 standards and maintains gas efficiency.

PUMPSPACE Audit 29

IDI - Immutable Declaration Improvement

Criticality Minor / Informative

Location MasterChef.sol#L76

Status Acknowledged

Description

The contract declares state variables that their value is initialized once in the constructor

and are not modified afterwards. The immutable is a special declaration for this kind of

state variables that saves gas when it is defined.

START_BLOCK

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain

optimizations. This can reduce the amount of storage and computation required by the

contract, and make it more gas-efficient.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to use the immutable keyword for the

START_BLOCK variable to achieve potential gas savings. However, this variable is only set

once during the initial contract deployment and remains unchanged thereafter.

While we understand the potential benefits of using immutable, we have already completed

thorough testing with the current implementation. Given the low risk and minimal impact on

gas fees for users, we prefer to maintain the existing code without modifications to ensure

stability and consistency across our deployment.

PUMPSPACE Audit 30

IOU - Inefficient Output Updates

Criticality Minor / Informative

Location DexRouter.sol#L443

Status Acknowledged

Description

The contract is designed with a `for` loop in the `_swapTransferTokens` function that iterates

through the `path` array. Within the loop, the `amountOut` variable is updated during every

iteration, even though only the final output value is ultimately relevant for the swap event or

transaction outcome. This results in inefficient operations, as updating the `amountOut`

repeatedly serves no practical purpose and adds unnecessary computation. The current

logic could lead to minor inefficiencies in gas usage and contract performance.

function _swapTransferTokens(
address[] memory path,
address _to

) internal virtual {
require(path.length >= 2, "DEX Router: INVALID_PATH");
if(_to == address(0)) revert InvalidAddressParameters("DEX

Router: SWAP_TO_ZERO_ADDRESS");
uint256 amountIn;
uint256 amountOut;
for (uint256 i = 0; i < path.length - 1; i++) {

...

if (i == 0) amountIn = amountInput;
amountOut = amountOutput;

}
...
}

Recommendation

It is recommended to update the amountOut variable only during the final iteration of

the loop. By setting the output value exclusively when i reaches its last iteration, the

function will avoid redundant operations, thereby improving efficiency and reducing gas

PUMPSPACE Audit 31

costs. This adjustment ensures that amountOut reflects the final swap output while

maintaining the intended functionality of the contract.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to optimize the amountOut update logic within the

_swapTransferTokens function. However, we believe that the current implementation offers

better clarity and maintainability without introducing any significant inefficiencies.

The existing logic updates the amountOut variable during each iteration of the loop to reflect

the intermediate output amounts at each swap step. This design choice enhances code

readability and makes it easier to track the state of the swap during each iteration, which can

be helpful for debugging and auditing purposes.

While we understand the suggestion to update amountOut only in the final iteration to

reduce gas costs, we believe that the potential gas savings would be minimal and unlikely to

provide a meaningful improvement in overall contract performance. Given that the current

code has already undergone thorough testing, we prefer to maintain the existing structure to

minimize any risks associated with modifying a well-tested function.

PUMPSPACE Audit 32

MT - Mints Tokens

Criticality Minor / Informative

Location DexToken.sol#L68

Status Acknowledged

Description

The Minter role has the authority to mint tokens. The minter may take advantage of it by

calling the mint function. As a result, the contract tokens will be highly inflated.

function mint(address _to, uint256 _amount) public onlyMinter {
uint256 supplied = totalSupply();

if (supplied.add(_amount) <= MAX_SUPPLY) {
_mint(_to, _amount);

} else {
uint256 available = MAX_SUPPLY.sub(supplied);
_mint(_to, available);

}
}

Recommendation

The team should carefully manage the private keys of the minter role’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

Permanent Solution:

● Mint the total supply of the tokens.

PUMPSPACE Audit 33

● Renouncing the ownership, which will eliminate the threats but it is non-reversible.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the concern regarding the minting of tokens and the potential risks

associated with the Minter role. However, we believe the current implementation sufficiently

addresses these concerns through strict access control mechanisms.

The Minter role is only granted to the contract itself, ensuring that no external users or

unauthorized parties can mint tokens arbitrarily. This structure effectively prevents any

unauthorized token issuance.

Furthermore, the contract owner is systematically managed and secured to minimize any

risks associated with private key management. Given these measures, we believe the risk of

token inflation or abuse is extremely low.

Therefore, we have decided not to implement additional security mechanisms at this time.

We will continue to monitor and evaluate the contract's security to ensure it remains robust

and reliable in the future.

PUMPSPACE Audit 34

MCM - Misleading Comment Messages

Criticality Minor / Informative

Location DexRouter.sol#L44
MasterChef.sol#L77

Status Acknowledged

Description

The contract is using misleading comment messages. These comment messages do not

accurately reflect the actual implementation, making it difficult to understand the source

code. As a result, the users will not comprehend the source code's actual implementation.

The contract includes comments written in a non-English language. This creates an

inconsistency with the rest of the comments and errors, which are written in English.

Inconsistent comment languages can hinder the readability and understanding of the code

for international teams, users, and developers who primarily use English as the standard

language for documentation and code comments.

// Todo. 유저 풀 생성 제한 검토 및 팩트로에서 생성 체크

// Todo. 종료 블럭 수정

// token.mint(address(keeper), tokenReward); Todo. 토큰 발행하지않고

브릿지를 이용하니까, 키퍼에 수량이 있는지 체크

Recommendation

The team is advised to carefully review the comment in order to reflect the actual

implementation. To improve code readability, the team should use more specific and

descriptive comment messages.

It is recommended to ensure consistency by translating all comments, including notes, into

English. This practice improves code readability, facilitates effective collaboration among

team members and users, and maintains a professional standard in the codebase. For

example, the comment in question can be translated and rewritten in English to align with

the rest of the contract.

Team Update

PUMPSPACE Audit 35

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the use of non-English and potentially misleading

comment messages in the codebase.

Some comments were written in Korean because our entire development team is based in

Korea. These comments were primarily intended for internal use to facilitate our

development and collaboration processes.

We understand the importance of maintaining consistency and professionalism in the

codebase, especially for international audits and collaborations. Therefore, we plan to

update these comments in a future version of the code by either translating them into

English or removing unnecessary comments to improve code readability and maintain a

professional standard.

Since comments do not impact the functionality or security of the contract, we have

decided to retain the current comments for now and address this issue during future

updates.

PUMPSPACE Audit 36

MVN - Misleading Variables Naming

Criticality Minor / Informative

Location Keeper.sol#L90,95

Status Acknowledged

Description

The contract declares variables BONUS_MULTIPLIER and END_BLOCK with

uppercase letters, which conventionally indicate immutable or constant variables in Solidity.

However, the presence of updateMultiplier and updateEndBlock functions

allows these variables to be modified after deployment. This naming convention is

misleading and may confuse developers, users, or auditors by implying these variables are

immutable when they are not. This inconsistency can lead to misunderstandings about the

contract’s behaviour and potentially result in misuse or incorrect assumptions.

function updateMultiplier(uint256 multiplierNumber) public onlyOwner
{

BONUS_MULTIPLIER = multiplierNumber;
}

function updateEndBlock(uint256 _endBlock) public onlyOwner {
END_BLOCK = _endBlock;

}

Recommendation

It is recommended to align the variable naming convention with their actual behaviour. If

these variables are intended to be mutable, consider renaming them using camelCase to

reflect their modifiable nature (e.g., bonusMultiplier , endBlock). Alternatively, if

immutability is desired, remove the setter functions and mark the variables as constant

or immutable . Maintaining consistent naming conventions improves code clarity and

prevents potential confusion or misuse.

Team Update

PUMPSPACE Audit 37

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the variable naming convention for

BONUS_MULTIPLIER and END_BLOCK.

These variables are intentionally named in uppercase for better visibility and recognition

within the code. While we understand that this may imply immutability, we believe that the

current naming does not impact the actual usage or behavior of the contract. The functions

updateMultiplier and updateEndBlock are clearly defined, ensuring that the contract’s

mutability is evident to developers and auditors.

Given that the naming convention does not affect the contract’s functionality, we have

decided not to modify the variable names at this time. Instead, we will add clarifying

comments in a future update to ensure that developers, owners, and auditors are fully aware

of the modifiable nature of these variables. This approach maintains code clarity while

avoiding unnecessary modifications.

PUMPSPACE Audit 38

MC - Missing Check

Criticality Minor / Informative

Location MasterChef.sol#L94

Status Acknowledged

Description

The contract is processing variables that have not been properly sanitized and checked that

they form the proper shape. These variables may produce vulnerability issues.

Specifically, the contract is missing a check to verify that the _endBlock value is in

greater than current block number.

function updateEndBlock(uint256 _endBlock) public onlyOwner {
END_BLOCK = _endBlock;

}

Recommendation

The team is advised to properly check the variables according to the required

specifications.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to add a validation check for the _endBlock value in

the updateEndBlock function.

This function was intentionally added to allow the owner to modify the END_BLOCK value if

future adjustments become necessary. The function is strictly controlled by the onlyOwner

modifier, ensuring that only the contract owner can execute this function. Given that the

system is currently functioning as expected and that this function does not pose any

immediate risks, we have decided not to implement additional checks at this time.

PUMPSPACE Audit 39

Since this function is designed for administrative purposes and is only accessible to the

owner, we believe the current implementation is secure.

PUMPSPACE Audit 40

MDTC - Missing Duplicate Token Check

Criticality Minor / Informative

Location MasterChef.sol#L90

Status Acknowledged

Description

The add function in the MasterChef contract is designed to add new liquidity pools (LP

tokens) with specific allocation points and configurations. However, the function does not

validate whether the same lpToken address has already been added. If the same LP

token address is provided multiple times, the contract may overwrite the previous mapping

or create a new pool without properly updating associated variables, potentially leading to

inconsistencies in pool data and allocation logic. This oversight could result in

unpredictable behaviour and inaccurate reward distribution.

PUMPSPACE Audit 41

function add(
uint256 _allocPoint,
uint256 _lockUpPeriod,
IERC20 _lpToken,
bool _isDexPool,
bool _withUpdate,
bool _isUpdateTotalAllocPoint

) public onlyPoolManager {
...
poolInfo.push(

PoolInfo({
lpToken: _lpToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accTokenPerShare: 0,
lockUpPeriod: _lockUpPeriod,
isDexPool: _isDexPool

})
);

uint256 pid = poolInfo.length - 1;
poolAddressToPid[address(_lpToken)] = pid; // 풀 주소와 ID 매핑

...
}

Recommendation

It is recommended to implement a validation check within the add function to ensure

that the provided lpToken address has not already been added. If the LP token exists,

the function should revert with an appropriate error message. This safeguard will prevent

duplicate entries and ensure consistent pool management. Additionally, consider reviewing

and testing the reward distribution and pool mapping logic to verify its robustness in edge

cases.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the lack of a duplicate token check in the add

function.

PUMPSPACE Audit 42

While we recognize that implementing a validation check for duplicate LP tokens could

enhance the robustness of the pool management logic, we believe that the current

implementation is secure and does not pose any immediate risks. The add function is strictly

controlled by the onlyPoolManager modifier, ensuring that only authorized pool managers

can add new pools. This restricted access minimizes the likelihood of duplicate entries.

Additionally, we have not encountered any issues related to duplicate LP tokens in the

current deployment and operations. Given the limited access to this function and the

absence of any related issues so far, we have decided not to modify the code at this time.

PUMPSPACE Audit 43

MEE - Missing Events Emission

Criticality Minor / Informative

Location DexToken.sol#L100

Status Acknowledged

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function pauseAccount(address account) public onlyPauser {
pausedAccounts[account] = true;

}

function unpauseAccount(address account) public onlyPauser {
pausedAccounts[account] = false;

}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to add event emissions for significant state changes,

such as in the pauseAccount and unpauseAccount functions.

PUMPSPACE Audit 44

We recognize that emitting events can improve the ability to track contract activity and

enhance transparency. However, the current implementation has been thoroughly tested

and verified, and we have not identified any practical issues or disputes related to these

functions in real-world usage.

Since the absence of event emissions does not impact the contract's functionality or

security, we have decided not to modify the code.

PUMPSPACE Audit 45

MU - Modifiers Usage

Criticality Minor / Informative

Location DexFactory.sol#L77,84,90,96
DexRouter.sol#L137,172

Status Acknowledged

Description

The contract is using repetitive statements on some methods to validate some

preconditions. In Solidity, the form of preconditions is usually represented by the modifiers.

Modifiers allow you to define a piece of code that can be reused across multiple functions

within a contract. This can be particularly useful when you have several functions that

require the same checks to be performed before executing the logic within the function.

if (msg.sender != feeToSetter) revert Unauthorized();

if(to == address(0)) revert InvalidAddressParameters("DEX Router:

RECIPIENT_ZERO_ADDRESS");

Recommendation

The team is advised to use modifiers since it is a useful tool for reducing code duplication

and improving the readability of smart contracts. By using modifiers to perform these

checks, it reduces the amount of code that is needed to write, which can make the smart

contract more efficient and easier to maintain.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to use modifiers to reduce repetitive validation

statements and improve code readability.

While we agree that modifiers can be a useful tool for simplifying precondition checks, the

current implementation has been thoroughly tested and verified without any issues. Given

PUMPSPACE Audit 46

the low criticality of this finding, we believe the existing validation logic is sufficient to ensure

secure and reliable operation of the contract.

Since the current structure does not impact the contract’s performance or security, we have

decided not to modify the code at this time.

PUMPSPACE Audit 47

PSU - Potential Subtraction Underflow

Criticality Minor / Informative

Location DexPair.sol#L78

Status Acknowledged

Description

The contract subtracts two values, the second value may be greater than the first value if

the contract owner misuses the configuration. As a result, the subtraction may underflow

and cause the execution to revert.

The contract performs arithmetic operations within an unchecked block, which

bypasses Solidity's default overflow and underflow checks. This approach may lead to

underflows, producing incorrect or unexpected values without reverting the transaction.

Specifically, operations such as subtraction and division in the unchecked block could

result in invalid calculations if the input values do not meet the expected conditions. This

issue can lead to inaccurate state updates, inconsistent contract behaviour, or erroneous

downstream logic, compromising the reliability of the contract.

PUMPSPACE Audit 48

function _update(
uint256 balance0,
uint256 balance1,
uint112 _reserve0,
uint112 _reserve1

) private {
if (balance0 > type(uint112).max || balance1 >

type(uint112).max) revert Overflow();
uint32 blockTimestamp = uint32(block.timestamp);
unchecked {

uint32 timeElapsed = blockTimestamp - blockTimestampLast;
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {

price0CumulativeLast +=
uint256(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;

price1CumulativeLast +=
uint256(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;

}
}
...
}

Recommendation

The team is advised to properly handle the code to avoid underflow subtractions and

ensure the reliability and safety of the contract. The contract should ensure that the first

value is always greater than the second value. It should add a sanity check in the setters of

the variable or not allow executing the corresponding section if the condition is violated.

It is recommended to add explicit validation checks before performing arithmetic operations

to ensure that the input values meet the expected constraints and prevent potential

underflows. If an invalid condition is detected, the function should revert with a descriptive

error message. By implementing these safeguards, the contract can ensure accurate

calculations and maintain its intended behaviour even in edge cases. Additionally, consider

using checked arithmetic where possible to enhance safety and minimise the risk of such

issues.

Team Update

The team has acknowledged that this is not a security issue and states:

PUMPSPACE Audit 49

We acknowledge the recommendation to implement explicit validation checks to prevent

potential underflow during arithmetic operations.

However, the _update function follows a well-established design pattern used in V2 DEX

implementations, and the logic has been thoroughly tested and verified in practice. The use

of unchecked arithmetic in this specific context is intentional to optimize gas usage,

particularly when handling time-based cumulative price calculations. Adding additional

validation checks would introduce unnecessary overhead without providing significant

security benefits.

Furthermore, the inputs to the _update function are derived from internal contract logic,

minimizing the likelihood of invalid values that could cause underflow. Given the low risk and

the performance optimization benefits, we have decided not to modify the existing

implementation.

PUMPSPACE Audit 50

PTAI - Potential Transfer Amount Inconsistency

Criticality Minor / Informative

Location Keeper.sol#L263

Status Acknowledged

Description

The transferFrom() function is used to transfer a specified amount of tokens to an

address. The fee or tax is an amount that is charged to the sender of an ERC20 token when

tokens are transferred to another address. According to the specification, the transferred

amount could potentially be less than the expected amount. This may produce

inconsistency between the expected and the actual behavior.

The following example depicts the diversion between the expected and actual amount.

Tax Amount Expected Actual

No Tax 100 100 100

10% Tax 100 100 90

pool.lpToken.transferFrom(msg.sender, address(this), _amount);

Recommendation

The team is advised to take into consideration the actual amount that has been transferred

instead of the expected.

It is important to note that an ERC20 transfer tax is not a standard feature of the ERC20

specification, and it is not universally implemented by all ERC20 contracts. Therefore, the

contract could produce the actual amount by calculating the difference between the

transfer call.

PUMPSPACE Audit 51

Actual Transferred Amount = Balance After Transfer - Balance

Before Transfer

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the concern regarding potential inconsistencies between the expected

and actual transferred amounts when using the transferFrom() function.

However, the tokens used in our contract do not implement any transfer tax or fee

mechanisms. As a result, the transferred amount will always match the expected amount

specified in the function call. Given this, the issue of potential transfer amount inconsistency

is not applicable to our contract.

Since there is no risk of divergence between the expected and actual transferred amounts,

we have decided not to modify the code.

PUMPSPACE Audit 52

RCD - Redundant Comment Declaration

Criticality Minor / Informative

Location DexPair.sol#L31

Status Acknowledged

Description

The contract is designed with a commented-out declaration, which serves no functional

purpose and does not contribute to the logic, readability, or documentation of the contract.

Such redundant comments can create confusion for developers or auditors, leading them to

question whether the commented-out code is intended to be part of the contract or is left

over from incomplete or discarded functionality.

// bool public isMEME;

Recommendation

It is recommended to remove the redundant comment if it is not intended for use. This will

help maintain a clean and concise codebase, improve readability, and avoid any ambiguity

about the functionality or intent of the contract. If the variable serves a purpose, it should be

implemented appropriately and supported with relevant documentation.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to remove redundant comments to maintain a clean

and concise codebase.

The commented-out declaration (// bool public isMEME;) does not impact the functionality

or security of the contract. While we agree that this comment is unnecessary, we do not

plan to make any code changes as part of this audit review.

We may consider removing redundant comments in future updates if necessary, but no

modifications will be made to the codebase at this time.

PUMPSPACE Audit 53

RCM - Redundant Creator Mapping

Criticality Minor / Informative

Location DexFactory.sol#L102

Status Acknowledged

Description

The contract is designed to include functionality for managing a _isCreator mapping,

allowing the owner to grant or revoke "creator" status to specific accounts. However, this

mapping and its associated checks are not utilized in any other functions within the

contract. As a result, the _isCreator functionality is redundant and serves no purpose

in the current implementation. This can lead to unnecessary gas costs, code complexity,

and potential confusion for developers or users regarding the intent of the contract's

design.

function grantCreator(address account) external onlyOwner {
require(!_isCreator[account], "DexFactory: Already authorized");
_isCreator[account] = true;
emit CreatorGranted(account);

}

function revokeCreator(address account) external onlyOwner {
require(_isCreator[account], "DexFactory: Not authorized");
_isCreator[account] = false;
emit CreatorRevoked(account);

}

function isCreator(address account) external view returns (bool) {
return _isCreator[account];

}

Recommendation

It is recommended to reconsider the intended functionality of the `_isCreator` mapping. If it

is meant to play a significant role in the contract's logic, the implementation should include

appropriate usage of the mapping in relevant functions. If the functionality is not required,

PUMPSPACE Audit 54

consider removing the `_isCreator` mapping and its associated grant, revoke, and check

functions to simplify the contract and avoid unnecessary resource usage.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the _isCreator mapping.

The _isCreator mapping is not redundant, as it is specifically used to manage the

onlyCreator modifier, which is applied to the createPair function. This mapping is essential

for controlling access to the pair creation functionality, ensuring that only authorized

accounts can create new pairs.

The grantCreator and revokeCreator functions allow the contract owner to dynamically

manage creator permissions, enhancing the security and flexibility of the DEX. Given that the

onlyCreator modifier plays a key role in restricting access to a critical function, we believe

that the _isCreator mapping serves its intended purpose and is necessary for the contract’s

proper operation.

Therefore, we do not see any reason to modify or remove this functionality.

PUMPSPACE Audit 55

RPC - Redundant Permission Check

Criticality Minor / Informative

Location MasterChef.sol#L282,319

Status Acknowledged

Description

The contract includes a require statement in the _withdraw and _claimReward

functions to verify that the _account matches the msg.sender or that the caller is a

delegator. However, these internal functions are only called from withdraw ,

withdrawForUser , claimReward , and claimRewardForUser , which already

enforce the same checks through their access control modifiers (e.g., onlyDelegator).

As a result, the require statements in the internal functions are redundant and increase

gas costs unnecessarily without adding any additional security or functionality.

PUMPSPACE Audit 56

function withdraw(uint256 _pid, uint256 _amount) public {
_withdraw(_msgSender(), _pid, _amount);

}

function withdrawForUser(address _account, uint256 _pid, uint256
_amount) public onlyDelegator {

_withdraw(_account, _pid, _amount);
}

function _withdraw(address _account, uint256 _pid, uint256 _amount)
internal {

require(!isLockEnable, "It is currently locked up.");
require(_account == msg.sender || isDelegator(msg.sender), "No

permission");
...
}

function claimReward(uint256 _pid) public {
_claimReward(_msgSender(), _pid);

}
function claimRewardForUser(address _account, uint256 _pid) public

onlyDelegator {
_claimReward(_account, _pid);

}

function _claimReward(address _account, uint256 _pid) internal {

require(_account == msg.sender || isDelegator(msg.sender), "No
permission");

...
}

Recommendation

It is recommended to remove the redundant require checks in the _withdraw and

_claimReward functions, as the calling functions already ensure proper access control.

This simplification reduces gas costs, improves code readability, and eliminates

unnecessary operations while maintaining the intended functionality and security of the

contract.

Team Update

The team has acknowledged that this is not a security issue and states:

PUMPSPACE Audit 57

We acknowledge the recommendation to remove the redundant require checks in the

_withdraw and _claimReward functions to optimize gas usage and improve code readability.

While we agree that these checks are already enforced by the calling functions through

access control modifiers, the additional require statements were added as an extra

precaution to ensure that the functions are secure in various call scenarios. Removing these

checks would slightly reduce gas consumption, but the difference is negligible in practice.

Given that the current implementation has been thoroughly tested and verified, we believe

that modifying the code at this stage is unnecessary and could introduce unforeseen risks.

Therefore, we have decided to retain the existing checks to maintain the stability and

reliability of the contract.

PUMPSPACE Audit 58

RSML - Redundant SafeMath Library

Criticality Minor / Informative

Location MasterChef.sol
Keeper.sol
DexToken.sol

Status Acknowledged

Description

SafeMath is a popular Solidity library that provides a set of functions for performing

common arithmetic operations in a way that is resistant to integer overflows and

underflows.

Starting with Solidity versions that are greater than or equal to 0.8.0, the arithmetic

operations revert to underflow and overflow. As a result, the native functionality of the

Solidity operations replaces the SafeMath library. Hence, the usage of the SafeMath library

adds complexity, overhead and increases gas consumption unnecessarily in cases where

the explanatory error message is not used.

library SafeMath {...}

Recommendation

The team is advised to remove the SafeMath library in cases where the revert error

message is not used. Since the version of the contract is greater than 0.8.0 then the

pure Solidity arithmetic operations produce the same result.

If the previous functionality is required, then the contract could exploit the unchecked {

... } statement.

Read more about the breaking change on

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking

-changes.

Team Update

https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes
https://docs.soliditylang.org/en/stable/080-breaking-changes.html#solidity-v0-8-0-breaking-changes

PUMPSPACE Audit 59

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to remove the SafeMath library to optimize gas

consumption, as arithmetic operations in Solidity versions 0.8.0 and above include built-in

overflow and underflow checks.

While we understand that removing the SafeMath library could result in slight gas savings,

the current implementation has been thoroughly tested and verified without any issues. The

use of SafeMath ensures that the arithmetic operations are explicitly safe and helps improve

code readability for developers and auditors.

Given that the gas cost difference is not significant in our current setup, and considering the

potential risks associated with modifying a well-tested codebase, we have decided to retain

the existing implementation without any changes.

PUMPSPACE Audit 60

RZAT - Restricted Zero Address Transfer

Criticality Minor / Informative

Location DexRouter.sol#L118

Status Acknowledged

Description

The contract contains an if condition in the addLiquidityETH function that reverts

the transaction if the to address is the zero address. This restriction prevents the

functionality of directly transferring tokens to the zero address, which is sometimes used as

a mechanism to burn tokens. While this restriction may be intentional to prevent mistakes or

misuse, it limits the flexibility of the contract for scenarios where sending tokens to the zero

address is desired or required.

Additionally, the same check exist within the addLiquidityETH and

removeLiquidity functions.

PUMPSPACE Audit 61

function addLiquidityETH(
...
address to,
...

)
external
payable
virtual
override
ensure(deadline)
returns (

uint256 amountToken,
uint256 amountETH,
uint256 liquidity

)
{

if(to == address(0)) revert InvalidAddressParameters("DEX
Router: RECIPIENT_ZERO_ADDRESS");

...
liquidity = IDexPair(pair).mint(to);
if (msg.value > amountETH && (msg.value - amountETH) > 0) {

TransferHelper.safeTransferETH(msg.sender, msg.value -
amountETH);

}
emit AddLiquidity(token, WETH, amountTokenDesired, msg.value,

to);
}

function removeLiquidity(
address tokenA,
address tokenB,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline

)
public
virtual
override
ensure(deadline)
returns (uint256 amountA, uint256 amountB)

{
if(to == address(0)) revert InvalidAddressParameters("DEX

Router: RECIPIENT_ZERO_ADDRESS");
...
}

PUMPSPACE Audit 62

Recommendation

It is recommended to assess whether this restriction aligns with the intended functionality of

the contract. If allowing transfers to the zero address is not critical for the application's use

case, the check can remain to prevent unintended errors. However, if burning tokens by

sending them to the zero address is a desired feature, consider removing the to ==

address(0) check to enable such functionality. Ensure that the final implementation

reflects the intended behaviour and is well-documented for clarity.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation regarding the to == address(0) check in the

addLiquidityETH and removeLiquidity functions.

This check is intentionally included to prevent users from accidentally sending tokens or

liquidity to the zero address. In the context of depositing or withdrawing liquidity, sending

assets to the zero address would likely be a mistake rather than an intentional token burn.

Allowing such transfers could lead to unintended asset loss for users.

Since the primary purpose of these functions is to manage liquidity, we believe that

preventing transfers to the zero address enhances the security and reliability of the contract.

If token burning is required, it can be implemented through a separate, dedicated function

to ensure clarity and avoid any potential misuse.

Given these considerations, we have decided to retain the current checks to protect users

from unintended errors.

PUMPSPACE Audit 63

ST - Stops Transactions

Criticality Minor / Informative

Location DexToken.sol#L87

Status Acknowledged

Description

The contract owner has the authority to stop the sales for all users excluding the owner. The

owner may take advantage of it by setting the pause functionalities. As a result, the contract

users will be unable to transfer, sell or buy tokens.

function pause() public onlyPauser {
_pause();

}

function unpause() public onlyPauser {
_unpause();

}

function pauseAccount(address account) public onlyPauser {
pausedAccounts[account] = true;

}

function unpauseAccount(address account) public onlyPauser {
pausedAccounts[account] = false;

}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

● Introduce a time-locker mechanism with a reasonable delay.

PUMPSPACE Audit 64

● Introduce a multi-signature wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

Permanent Solution:

● Renouncing the ownership, which will eliminate the threats but it is non-reversible.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the pause and unpause functionalities that allow

the owner to temporarily halt token transfers.

The ability to pause transactions is an intentional design choice made to safeguard the

contract and its users in case of potential security threats or unexpected issues. This feature

provides an essential mechanism to mitigate risks, such as vulnerabilities, hacks, or exploits,

by enabling the contract owner to take immediate action when needed.

The contract owner account is carefully managed with strict security measures to minimize

any risk of unauthorized access. Considering the security benefits and the low likelihood of

misuse, we have decided to retain the current implementation without modification.

We will continue to monitor the contract's security practices and ensure that the owner

account is securely maintained to prevent any potential abuse.

PUMPSPACE Audit 65

TC - TODO Comments

Criticality Minor / Informative

Location DexRouter.sol#L44
MasterChef.sol#L77

Status Acknowledged

Description

The contract contains TODO comments, which indicate incomplete or planned

functionality. These comments suggest that certain aspects of the contract may still be

under development or require further review and implementation. While the presence of

TODO comments can be helpful during the development phase, their inclusion in deployed

or production-ready contracts may raise concerns about the completeness and readiness

of the contract for deployment.

// Todo.
// Todo. 종료 블럭 수정

// token.mint(address(keeper), tokenReward); Todo. 토큰 발행하지않고

브릿지를 이용하니까, 키퍼에 수량이 있는지 체크

Recommendation

It is recommended to review and address all TODO comments in the contract. If the

associated functionality is essential, ensure it is fully implemented, tested, and documented.

If the TODO comments refer to non-critical or deferred features, consider removing them

to avoid confusion and present the contract as a finished and polished product. Maintaining

a clean codebase enhances clarity, professionalism, and confidence for users and auditors.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the presence of TODO comments in the contract.

PUMPSPACE Audit 66

These comments were added during the development phase as reminders for internal

checks and tasks to be completed before deployment. However, the TODO comments do

not impact the functionality, security, or performance of the contract.

Since these comments are unrelated to the contract’s core functionality and security, we

have decided not to take any action as part of this audit review. We plan to remove the

TODO comments in a future update to maintain a clean and polished codebase.

PUMPSPACE Audit 67

TSI - Tokens Sufficiency Insurance

Criticality Minor / Informative

Location Keeper.sol#L37
MasterChef.sol#L204,340

Status Acknowledged

Description

The tokens are not held within the contract itself. Instead, the contract is designed to

provide the tokens from an external administrator. While external administration can provide

flexibility, it introduces a dependency on the administrator's actions, which can lead to

various issues and centralization risks.

function safeTokenTransfer(address _to, uint256 _amount) public
onlyTransfer {

uint256 tokenBalance = token.balanceOf(address(this));
if (_amount > tokenBalance) {

token.transfer(_to, tokenBalance);
} else {

token.transfer(_to, _amount);
}

function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
...
require(token.balanceOf(address(keeper)) >= tokenReward, "Keeper

has insufficient tokens");
...
}

function safeTokenTransfer(address _to, uint256 _amount) internal {
keeper.safeTokenTransfer(_to, _amount);

}

Recommendation

It is recommended to consider implementing a more decentralized and automated

approach for handling the contract tokens. One possible solution is to hold the tokens

PUMPSPACE Audit 68

within the contract itself. If the contract guarantees the process it can enhance its reliability,

security, and participant trust, ultimately leading to a more successful and efficient process.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding token sufficiency and the reliance on an external

administrator for token transfers.

The current design is intentional due to the use of a cross-chain bridge to distribute tokens.

The tokens are not minted within the contract but are instead transferred from KaiaChain to

Avalanche through LayerZero. This structure ensures that tokens are securely transferred

and managed across chains.

The safeTokenTransfer function includes a balance check to ensure that the keeper has

sufficient tokens before processing any transfers. This safeguard minimizes the risk of

insufficient balance issues and ensures that reward distributions remain secure and reliable.

Given that the current structure is well-tested and aligns with our cross-chain strategy, we

have decided not to modify the implementation. The dependency on an external

administrator is a necessary and secure part of our bridging process.

PUMPSPACE Audit 69

UVI - Uniswap V2 Incompatibility

Criticality Minor / Informative

Location DexPair.sol#166,208
DexRouter.sol#L41

Status Acknowledged

Description

The contract is contains the transferTokens function that calculates and deducts

fees directly from the reserves of the liquidity pair. However, this implementation can result

in inconsistencies, as the fee deductions are performed without dynamically accounting for

changes in token price or reserve balances. Such an approach could lead to incorrect

calculations and inaccurate fee distributions over time.

Additionally, the addLiquidity function reverts if the pair already exists, preventing the

addition of liquidity for existing pairs. This behaviour deviates from the standard Uniswap

V2 model, where additional liquidity can be added seamlessly to an existing pair.

These issues render the contract incompatible with classical V2 swap applications and

could disrupt expected user workflows.

PUMPSPACE Audit 70

function _addLiquidity(
address tokenA,
address tokenB,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin

) internal virtual returns (uint256 amountA, uint256 amountB) {

if (IDexFactory(factory).getPair(tokenA, tokenB) == address(0))
{

// IDexFactory(factory).createPair(tokenA, tokenB);
revert("DexFactory: Pair does not exist. Please contact the

administrator.");
...

}

function swap(
uint256 amount0Out,
uint256 amount1Out,
address to,
bytes calldata data

) external lock {
...

(uint256 fee0, uint256 fee1) = transferTokens(_token0,
_token1, amount0In, amount1In);

if(fee0 > 0) balance0 = balance0-fee0;
if(fee1 > 0) balance1 = balance1-fee1;

}
...
}

function transferTokens(address _token0, address _token1, uint256
amount0In, uint256 amount1In) internal returns (uint256, uint256) {

address swapFeeTo = IDexFactory(factory).swapFeeTo();

uint256 feeAmount0 = calculateFee(amount0In, swapFeeTo);
uint256 feeAmount1 = calculateFee(amount1In, swapFeeTo);

if (feeAmount0 > 0) _safeTransfer(_token0, swapFeeTo,
feeAmount0);

if (feeAmount1 > 0) _safeTransfer(_token1, swapFeeTo,
feeAmount1);

return (feeAmount0, feeAmount1);
}

function calculateFee(uint256 amount, address swapFeeTo) internal
view returns (uint256) {

PUMPSPACE Audit 71

uint256 swapFeeRate = IDexFactory(factory).swapFeeRate();

if (swapFeeRate <= 0 || swapFeeRate > 1000) {
return 0; // Invalid feeRate, return 0

}

if (swapFeeTo != address(0)) {
unchecked {

uint256 feeAmount = (amount * 5) / 1000; // 0.5% of
amount

uint256 feeToRecieve = feeAmount / swapFeeRate; // 50%
to feeTo address

return feeToRecieve; // 0.25% of amount
}

}
return 0;

}

Recommendation

It is recommended to either review and modify the transferTokens function to

account for dynamic reserve changes and ensure consistency in fee calculations, or

consider to remove it. Moreover, the addLiquidity function should be updated to

allow adding liquidity to existing pairs, aligning with the standard V2 liquidity addition

process. This will improve the compatibility and reliability of the contract.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the compatibility with Uniswap V2 standards,

particularly concerning the transferTokens and addLiquidity functions.

The current design intentionally restricts the creation of liquidity pairs to pool managers only.

This restriction is in place to ensure that users cannot create new pairs on their own. As this

is a meme token DEX, liquidity pools are automatically created during the migration process

when the meme tokens are deployed. Allowing users to create pairs would disrupt the

intended workflow and introduce unnecessary risks. Therefore, we have deliberately

disabled automatic pair creation for user deposits.

Regarding the transferTokens function and fee calculation logic, the current implementation

has been thoroughly tested and verified. The fee is consistently applied at a 0.5% rate on

PUMPSPACE Audit 72

the swap amount and is transferred to the designated fee recipient address. This process

does not impose any additional burden on users beyond the intended fee.

While we recognize the potential impact of slippage, this is a user-controlled parameter that

does not directly result from the fee calculation logic. Users are responsible for setting their

own slippage tolerance, and the risk associated with slippage is considered minimal.

Given these considerations, we have decided not to modify the current implementation, as it

aligns with our platform's operational requirements and ensures stability in the fee

calculation process.

PUMPSPACE Audit 73

L02 - State Variables could be Declared Constant

Criticality Minor / Informative

Location MasterChef.sol#L37
DexERC20.sol#L10

Status Acknowledged

Description

State variables can be declared as constant using the constant keyword. This means that

the value of the state variable cannot be changed after it has been set. Additionally, the

constant variables decrease gas consumption of the corresponding transaction.

uint256 public REWARD_PER_BLOCK = 10 * 1e18
string public name = 'TestLP'

Recommendation

Constant state variables can be useful when the contract wants to ensure that the value of a

state variable cannot be changed by any function in the contract. This can be useful for

storing values that are important to the contract's behavior, such as the contract's address

or the maximum number of times a certain function can be called. The team is advised to

add the constant keyword to state variables that never change.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the recommendation to declare certain state variables as constant to

reduce gas consumption.

The current implementation is intentional, as these variables may be subject to change

during the deployment or testing phases. For example, the REWARD_PER_BLOCK value

could be adjusted based on different reward structures. Similarly, the name variable in

DexERC20.sol is designed to be dynamically set during token creation.

While we understand that declaring these variables as constant could optimize gas usage,

the current implementation provides more flexibility for managing contract parameters.

PUMPSPACE Audit 74

Given that the contract has been thoroughly tested and validated, we have decided to retain

the existing structure without modification.

PUMPSPACE Audit 75

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location MasterChef.sol#L35,36,37,38,69,94,100,101,102,103,104,105,136,137,138,13
9,140,141,160,175,176,192,204,226,230,272,276,310,313,340,344,349,395,39
9
Keeper.sol#L37
interfaces/IDexRouter.sol#L7
interfaces/IDexPair.sol#L20
interfaces/IDexERC20.sol#L9,10
DexToken.sol#L68
DexRouter.sol#L14
DexPair.sol#L68,208
DexFactory.sol#L76,82,89,95
DexERC20.sol#L17

Status Acknowledged

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

PUMPSPACE Audit 76

uint256 public START_BLOCK
uint256 public END_BLOCK
uint256 public REWARD_PER_BLOCK = 10 * 1e18
uint256 public BONUS_MULTIPLIER = 1
...

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the adherence to Solidity naming conventions and

style guidelines.

While we agree that following naming conventions can improve code readability and

maintainability, the current implementation has already been thoroughly tested and

validated. Our priority is to maintain the stability and reliability of the codebase, and we do

not believe that making stylistic changes at this stage would provide any significant

functional or security improvements.

Since the naming conventions do not impact the functionality or security of the contract, we

have decided not to modify the code. We will consider addressing these stylistic

recommendations in a future update if necessary.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

PUMPSPACE Audit 77

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location MasterChef.sol#L90,95

Status Acknowledged

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

BONUS_MULTIPLIER = multiplierNumber;
END_BLOCK = _endBlock;

Recommendation

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the missing event emissions for changes to the

BONUS_MULTIPLIER and END_BLOCK variables.

The functions that update these variables are restricted to the owner only, and they are not

meant to be frequently used. Given that these functions are controlled by the contract

owner and have been thoroughly tested without any issues, we do not believe that adding

event emissions is necessary at this stage.

PUMPSPACE Audit 78

The current implementation has been verified to be secure and functional. Therefore, we

have decided to retain the existing structure without modification.

PUMPSPACE Audit 79

L09 - Dead Code Elimination

Criticality Minor / Informative

Location DexRouter.sol#L404

Status Acknowledged

Description

In Solidity, dead code is code that is written in the contract, but is never executed or

reached during normal contract execution. Dead code can occur for a variety of reasons,

such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

function _swapTransferTokens(
address[] memory path,
address _to

) internal virtual {
...

}

Recommendation

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

Team Update

The team has acknowledged that this is not a security issue and states:

PUMPSPACE Audit 80

We acknowledge the feedback regarding the dead code in the _swapTransferTokens

function in DexRouter.sol.

Upon reviewing the code, we confirm that this function is currently not being used in the

contract and can be considered as dead code. It appears that the function was originally

implemented to handle an alternative token swap logic but has since been replaced by the

_swap function, which is actively used in the contract.

However, since the code has already undergone an audit, we do not intend to modify the

contract at this stage. Additionally, the presence of this function only impacts gas costs

during the contract deployment and does not affect users during normal contract

interactions. Therefore, we have decided to retain the current implementation without any

changes.

PUMPSPACE Audit 81

L13 - Divide before Multiply Operation

Criticality Minor / Informative

Location MasterChef.sol#L185,186,216,221

Status Acknowledged

Description

It is important to be aware of the order of operations when performing arithmetic

calculations. This is especially important when working with large numbers, as the order of

operations can affect the final result of the calculation. Performing divisions before

multiplications may cause loss of prediction.

uint256 clamReward =
multiplier.mul(REWARD_PER_BLOCK).mul(pool.allocPoint).div(totalAllocPoin
t);

accTokenPerShare =
accTokenPerShare.add(clamReward.mul(1e12).div(lpSupply));
...
uint256 tokenReward =
multiplier.mul(REWARD_PER_BLOCK).mul(pool.allocPoint).div(totalAllocPoin
t);
...
pool.accTokenPerShare =

pool.accTokenPerShare.add(tokenReward.mul(1e12).div(lpSupply));

Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when

performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses

to specify the order of operations. The basic rule is that the multiplications should be prior

to the divisions.

Team Update

The team has acknowledged that this is not a security issue and states:

PUMPSPACE Audit 82

We acknowledge the recommendation regarding the order of operations in arithmetic

calculations, specifically the suggestion to prioritize multiplications before divisions to

prevent potential loss of precision.

We are aware of the impact that the order of operations can have on calculations, especially

when dealing with large numbers. However, the current implementation has been carefully

tested to ensure accuracy and reliability.

While we recognize the auditor's recommendation, we do not plan to modify the code

during the ongoing audit process, as the current arithmetic operations have not caused any

issues in practical use cases. Additionally, the calculations in question involve controlled

values, which significantly reduce the risk of precision loss.

PUMPSPACE Audit 83

L14 - Uninitialized Variables in Local Scope

Criticality Minor / Informative

Location DexRouter.sol#L410

Status Acknowledged

Description

Using an uninitialized local variable can lead to unpredictable behavior and potentially

cause errors in the contract. It's important to always initialize local variables with

appropriate values before using them.

uint256 amountIn;
uint256 amountOut;

Recommendation

By initializing local variables before using them, the contract ensures that the functions

behave as expected and avoid potential issues.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding uninitialized local variables in DexRouter.sol.

In Solidity, local variables such as uint256 are automatically initialized to a default value of 0

if no explicit initialization is provided. The variables amountIn and amountOut in the

_swapTransferTokens function fall under this category.

While we understand the importance of explicitly initializing variables to avoid potential

errors, the current implementation is intentional and has been thoroughly tested. Since

these variables are automatically set to 0 by default, there is no risk of unpredictable

behavior in this case.

We appreciate the recommendation, but we do not plan to modify this part of the code

during the ongoing audit process.

PUMPSPACE Audit 84

L16 - Validate Variable Setters

Criticality Minor / Informative

Location DexPair.sol#L70,71
DexFactory.sol#L78,97

Status Acknowledged

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

token0 = _token0
token1 = _token1
feeTo = _feeTo
swapFeeTo = _feeTo

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the validation of variable setters in DexPair.sol and

DexFactory.sol.

The current implementation intentionally allows some variables to be set to zero, as this

reflects specific configurations within our system. For example:

Fee-related variables such as feeTo and swapFeeTo can be set to zero to indicate a 0% fee.

This is a valid and intended use case to provide flexibility in configuring fee rates. Token pair

PUMPSPACE Audit 85

variables such as token0 and token1 are managed automatically by the contract during the

creation of meme token pairs. These values are derived from controlled inputs within the

contract logic, ensuring that they are always valid and that no issues arise from zero values.

Given that the current implementation has been thoroughly tested and validated, and that

there is no risk of unexpected behavior due to zero values in these specific cases, we do not

plan to modify the code.

PUMPSPACE Audit 86

L17 - Usage of Solidity Assembly

Criticality Minor / Informative

Location DexERC20.sol#L27

Status Acknowledged

Description

Using assembly can be useful for optimizing code, but it can also be error-prone. It's

important to carefully test and debug assembly code to ensure that it is correct and does

not contain any errors.

Some common types of errors that can occur when using assembly in Solidity include

Syntax, Type, Out-of-bounds, Stack, and Revert.

assembly {
chainId := chainid()

}

Recommendation

It is recommended to use assembly sparingly and only when necessary, as it can be difficult

to read and understand compared to Solidity code.

Team Update

The team has acknowledged that this is not a security issue and states:

While we recognize that Solidity version 0.8.0 and above allows accessing chainId directly

using block.chainid without the need for assembly, the current implementation has been

tested and verified. Therefore, we do not plan to modify the code during the ongoing audit

process.

PUMPSPACE Audit 87

L19 - Stable Compiler Version

Criticality Minor / Informative

Location MasterChef.sol#L2
Keeper.sol#L2
DexToken.sol#L2

Status Acknowledged

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.0;
pragma solidity ^0.8.12;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the use of a floating compiler version (^) in

MasterChef.sol, Keeper.sol, and DexToken.sol.

The current implementation specifies pragma solidity ^0.8.12, which ensures compatibility

with all minor and patch versions of Solidity starting from 0.8.12. We understand that locking

PUMPSPACE Audit 88

the compiler version can provide stability by preventing the contract from being compiled

with unexpected versions.

However, we have carefully tested the contract across multiple Solidity versions to ensure

compatibility and functionality. Since no issues have been encountered during testing, we

believe that the current compiler version specification is sufficient and stable for our project.

Given that this approach allows for greater flexibility in future updates while maintaining

compatibility, we do not plan to modify the pragma statement at this stage.

PUMPSPACE Audit 89

L20 - Succeeded Transfer Check

Criticality Minor / Informative

Location MasterChef.sol#L263,303
Keeper.sol#L40,42
DexRouter.sol#L174

Status Acknowledged

Description

According to the ERC20 specification, the transfer methods should be checked if the result

is successful. Otherwise, the contract may wrongly assume that the transfer has been

established.

pool.lpToken.transferFrom(msg.sender, address(this), _amount);
...
pool.lpToken.transfer(address(_account), _amount);
...
token.transfer(_to, tokenBalance);
...
token.transfer(_to, _amount);
...
IDexPair(pair).transferFrom(msg.sender, pair, liquidity);

Recommendation

The contract should check if the result of the transfer methods is successful. The team is

advised to check the SafeERC20 library from the Openzeppelin library.

Team Update

The team has acknowledged that this is not a security issue and states:

We acknowledge the feedback regarding the lack of success checks for transfer methods in

MasterChef.sol, Keeper.sol, and DexRouter.sol.

We understand that, according to the ERC20 specification, it is recommended to verify

whether a transfer or transferFrom call succeeds. This can help ensure that the contract

does not assume a transfer was completed when it was not.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

PUMPSPACE Audit 90

However, the tokens used in our project follow a standard ERC20 implementation, where

transfers are expected to return a boolean value and revert on failure. We have thoroughly

tested the relevant tokens to ensure that transfer and transferFrom methods operate as

intended, without any unexpected behavior.

Additionally, the current implementation has been carefully tested and there have been no

issues in practice. Since all transfers revert upon failure, there is no risk of the contract

incorrectly assuming a failed transfer was successful. Therefore, we do not plan to modify

the code during the ongoing audit process.

PUMPSPACE Audit 91

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

MasterChef Implementation Ownable,
ReentrancyG
uard

Public ✓ -

poolLength External -

updateMultiplier Public ✓ onlyOwner

updateEndBlock Public ✓ onlyOwner

add Public ✓ onlyPoolManag
er

set Public ✓ onlyPoolManag
er

updateStakingPool Internal ✓

pendingReward External -

getMultiplier Public -

massUpdatePools Public ✓ -

updatePool Public ✓ -

deposit Public ✓ -

depositForUser Public ✓ onlyDelegator

_deposit Internal ✓

withdraw Public ✓ -

withdrawForUser Public ✓ onlyDelegator

_withdraw Internal ✓

PUMPSPACE Audit 92

claimReward Public ✓ -

claimRewardForUser Public ✓ onlyDelegator

_claimReward Internal ✓

safeTokenTransfer Internal ✓

setLockUp External ✓ onlyOwner

getUserAddressCount Public -

addDelegator Public ✓ onlyOwner

removeDelegator Public ✓ onlyOwner

isDelegator Public -

addPoolManager Public ✓ onlyOwner

removePoolManager Public ✓ onlyOwner

isPoolManager Public -

resetPools Public ✓ onlyPoolManag
er

isFixedPool Internal

updatePoolsByAddress External ✓ onlyPoolManag
er

Keeper Implementation Ownable,
AccessContr
ol

Public ✓ -

grantTransferRole Public ✓ onlyOwner

revokeTransferRole Public ✓ onlyOwner

hasTransferRole Public -

safeTokenTransfer Public ✓ onlyTransfer

PUMPSPACE Audit 93

DexToken Implementation ERC20Burna
ble,
Ownable,
AccessContr
ol, Pausable

Public ✓ ERC20

addMinter Public ✓ onlyOwner

removeMinter Public ✓ onlyOwner

isMinter Public -

addPauser Public ✓ onlyOwner

removePauser Public ✓ onlyOwner

isPauser Public -

mint Public ✓ onlyMinter

transfer Public ✓ whenNotPause
d
whenNotPause
dByAccount

transferFrom Public ✓ whenNotPause
d
whenNotPause
dByAccount

pause Public ✓ onlyPauser

unpause Public ✓ onlyPauser

pauseAccount Public ✓ onlyPauser

unpauseAccount Public ✓ onlyPauser

DexRouter Implementation IDexRouter

Public ✓ -

External Payable -

PUMPSPACE Audit 94

_addLiquidity Internal ✓

addLiquidity External ✓ ensure

addLiquidityETH External Payable ensure

removeLiquidity Public ✓ ensure

removeLiquidityETH Public ✓ ensure

_swap Internal ✓

swapExactTokensForTokens External ✓ ensure

swapTokensForExactTokens External ✓ ensure

swapExactETHForTokens External Payable ensure

swapTokensForExactETH External ✓ ensure

swapExactTokensForETH External ✓ ensure

swapETHForExactTokens External Payable ensure

_swapTransferTokens Internal ✓

quote Public -

getAmountOut Public -

getAmountIn Public -

getAmountsOut Public -

getAmountsIn Public -

DexPair Implementation IDexPair,
DexERC20

getReserves Public -

_safeTransfer Private ✓

Public ✓ -

PUMPSPACE Audit 95

initialize External ✓ -

_update Private ✓

_mintFee Private ✓

mint External ✓ lock

burn External ✓ lock

swap External ✓ lock

transferTokens Internal ✓

calculateFee Internal

skim External ✓ lock

sync External ✓ lock

DexFactory Implementation Ownable

Public ✓ -

allPairsLength External -

createPair External ✓ onlyCreator

setFeeTo External ✓ -

setFeeToSetter External ✓ -

setFeeRate External ✓ -

setSwapFeeTo External ✓ -

grantCreator External ✓ onlyOwner

revokeCreator External ✓ onlyOwner

isCreator External -

PUMPSPACE Audit 96

DexERC20 Implementation IDexERC20

Public ✓ -

_mint Internal ✓

_burn Internal ✓

_approve Private ✓

_transfer Private ✓

approve External ✓ -

transfer External ✓ -

transferFrom External ✓ -

permit External ✓ -

PUMPSPACE Audit 97

Inheritance Graph

PUMPSPACE Audit 98

Flow Graph

PUMPSPACE Audit 99

Summary
The DEX contract suite implements a comprehensive decentralized exchange mechanism,

including token standards, liquidity pool management, and swap functionalities. This audit

investigates security vulnerabilities, evaluates the correctness of business logic, and

identifies potential improvements to ensure the reliability, efficiency, and trustlessness of

the DEX platform. The team has acknowledged the findings.

PUMPSPACE Audit
100

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

