

Audit Report
PUMPSPACE
January 2025

Repository https://github.com/bluewhale-logan/pumpspace-contract

Commit 6116e49d2de55c963555a06c884bbbd46111af6b

Audited by © cyberscope

https://github.com/bluewhale-logan/pumpspace-contract

PUMPSPACE Audit 1

Table of Contents
Table of Contents 1
Risk Classification 5
Review 6

Audit Updates 6
Source Files 6

Overview 7
Router 7
Factory 7
Pair 7
Migrator 8
MemeToken 8

Findings Breakdown 9
Diagnostics 10

AMF - Automated Migration Failure 12
Description 12
Recommendation 12
Team Update 13

IFC - Inconsistent Fee Calculation 14
Description 14
Recommendation 15
Team Update 15

ITH - Incorrect Token Handling 16
Description 16
Recommendation 18
Team Update 18

MRFM - Manipulable Referral Fee Mechanism 19
Description 19
Recommendation 21
Team Update 21

MAC - Missing Access Control 22
Description 22
Recommendation 23
Team Update 23

MEM - Misleading Error Message 24
Description 24
Recommendation 24
Team Update 24

RSV - Redundant Struct Variables 25
Description 25

PUMPSPACE Audit 2

Recommendation 26
Team Update 27

UAC - Unchecked Arithmetic Calculations 28
Description 28
Recommendation 28
Team Update 29

USF - Unchecked Swap Fee 30
Description 30
Recommendation 30
Team Update 30

CR - Code Repetition 31
Description 31
Recommendation 31
Team Update 32

CCR - Contract Centralization Risk 33
Description 33
Recommendation 35
Team Update 35

DPR - Duplicate Pair Registration 36
Description 36
Recommendation 36
Team Update 36

DTC - Duplicate Token Creation 37
Description 37
Recommendation 37
Team Update 38

EPR - Exceeded Purchase Reverts 39
Description 39
Recommendation 39
Team Update 40

HV - Hardcoded Values 41
Description 41
Recommendation 42
Team Update 42

IDI - Immutable Declaration Improvement 43
Description 43
Recommendation 43
Team Update 43

IUDH - Inconsistent User Data Handling 44
Description 44
Recommendation 44
Team Update 45

PUMPSPACE Audit 3

MCM - Misleading Comment Messages 46
Description 46
Recommendation 46
Team Update 46

MEE - Missing Events Emission 47
Description 47
Recommendation 48
Team Update 48

MSF - Missing Sync Functionality 49
Description 49
Recommendation 49
Team Update 49

MU - Modifiers Usage 50
Description 50
Recommendation 50
Team Update 50

PBV - Percentage Boundaries Validation 51
Description 51
Recommendation 52
Team Update 52

PSU - Potential Subtraction Underflow 53
Description 53
Recommendation 54
Team Update 54

RMI - Reserve Misallocation Issue 55
Description 55
Recommendation 55
Team Update 56

UPC - Uncontrolled Pair Cloning 57
Description 57
Recommendation 57
Team Update 57

UAR - Unutilized Admin Role 58
Description 58
Recommendation 58
Team Update 59

L04 - Conformance to Solidity Naming Conventions 60
Description 60
Recommendation 61
Team Update 61

L06 - Missing Events Access Control 62
Description 62

PUMPSPACE Audit 4

Recommendation 62
Team Update 62

L16 - Validate Variable Setters 63
Description 63
Recommendation 63
Team Update 63

L19 - Stable Compiler Version 64
Description 64
Recommendation 64
Team Update 64

Functions Analysis 65
Inheritance Graph 69
Flow Graph 70
Summary 71
Disclaimer 72
About Cyberscope 73

PUMPSPACE Audit 5

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

PUMPSPACE Audit 6

Review

Repository https://github.com/bluewhale-logan/pumpspace-contract

Commit 6116e49d2de55c963555a06c884bbbd46111af6b

Audit Updates

Initial Audit 13 Jan 2025

Source Files

Filename SHA256

Router.sol 5ed960fb6d87169ed3371b5469aa8a00dd

f1fefd7daa4be6d7a8b5c4b215970a

Pair.sol 2607ac74a6478f2d0980e142122e6c5b0f3

bef81330e93d5f055f2ed74e780da

Migrator.sol b190e326d9a8ca887b4afa09838c07d2bf8

c20cb1b44915c17f8b632eb2d1886

Factory.sol 2480a11d58af8ab5b8e6673532ea371790

eb538cb454ed75653e97eceba633d5

structs/PumpStructs.sol ec774831e41cc04e590992aac0a3f72e16f

648830df426e5058b703bca1a328c

https://github.com/bluewhale-logan/pumpspace-contract

PUMPSPACE Audit 7

Overview
Pump Space is a decentralized application (dApp) designed to provide users with tools for

token creation, liquidity management, and trading. It features an integrated ecosystem of

contracts, including a Router, Factory, Pair, Migrator, and MemeToken, each serving a

distinct role. These components work together to facilitate token creation, liquidity

provision, fee management, and migration to external decentralized exchanges.

Router

The Router acts as the central contract for user interactions within Pump Space. It enables

users to create new tokens (pump or pumpWithETH) and their associated liquidity

pools while handling fee calculations and transfers. The Router manages swaps, token

buying and selling, and tracks creators and tokens via mappings. It also initiates migration

processes when liquidity pools meet specific conditions, ensuring seamless integration with

external exchanges.

Factory

The Factory is responsible for creating and managing liquidity pools (Pairs). It initializes

pools with default reserve values and assigns them unique addresses, ensuring that no

duplicate pools exist for a given token. The Factory maintains a mapping of tokens to their

corresponding pools, allowing efficient lookups. It also enforces the Factory-initiated

lifecycle of pools, supporting the Router in token and liquidity management.

Pair

The Pair contract represents an individual liquidity pool, maintaining reserves for two tokens

and handling swaps between them. It enforces the rules for token trading, tracks trading

activity, and calculates fees. Additionally, the Pair supports user tracking and integrates a

role-based access control system for secure operations. It emits key events such as Swap

and Sync , ensuring transparency and traceability.

PUMPSPACE Audit 8

Migrator

The Migrator manages the migration of liquidity from Pump Space pools to external

decentralized exchanges. It calculates migration fees, allocates them to creators, referrals,

and the designated fee address, and handles token burning to adjust reserves. The Migrator

ensures that liquidity transitions are smooth and compliant with the defined fee structure,

enabling compatibility with other protocols.

MemeToken

The MemeToken is a customizable ERC-20 token created through the Router. Each token is

initialized with metadata such as a name, symbol, description, and social media links.

Tokens are minted with a predefined supply and are associated with a creator and an

optional referral. MemeToken serves as the core asset for trading and liquidity provisioning

within the Pump Space ecosystem.

PUMPSPACE Audit 9

Findings Breakdown

⬤ Critical 0

⬤ Medium 5

⬤ Minor / Informative 25

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 5 0 0

⬤ Minor / Informative 0 25 0 0

PUMPSPACE Audit 10

Diagnostics

 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ AMF Automated Migration Failure Acknowledged

⬤ IFC Inconsistent Fee Calculation Acknowledged

⬤ ITH Incorrect Token Handling Acknowledged

⬤ MRFM Manipulable Referral Fee Mechanism Acknowledged

⬤ MAC Missing Access Control Acknowledged

⬤ MEM Misleading Error Message Acknowledged

⬤ RSV Redundant Struct Variables Acknowledged

⬤ UAC Unchecked Arithmetic Calculations Acknowledged

⬤ USF Unchecked Swap Fee Acknowledged

⬤ CR Code Repetition Acknowledged

⬤ CCR Contract Centralization Risk Acknowledged

⬤ DPR Duplicate Pair Registration Acknowledged

⬤ DTC Duplicate Token Creation Acknowledged

⬤ EPR Exceeded Purchase Reverts Acknowledged

PUMPSPACE Audit 11

⬤ HV Hardcoded Values Acknowledged

⬤ IDI Immutable Declaration Improvement Acknowledged

⬤ IUDH Inconsistent User Data Handling Acknowledged

⬤ MCM Misleading Comment Messages Acknowledged

⬤ MEE Missing Events Emission Acknowledged

⬤ MSF Missing Sync Functionality Acknowledged

⬤ MU Modifiers Usage Acknowledged

⬤ PBV Percentage Boundaries Validation Acknowledged

⬤ PSU Potential Subtraction Underflow Acknowledged

⬤ RMI Reserve Misallocation Issue Acknowledged

⬤ UPC Uncontrolled Pair Cloning Acknowledged

⬤ UAR Unutilized Admin Role Acknowledged

⬤ L04 Conformance to Solidity Naming Conventions Acknowledged

⬤ L06 Missing Events Access Control Acknowledged

⬤ L16 Validate Variable Setters Acknowledged

⬤ L19 Stable Compiler Version Acknowledged

PUMPSPACE Audit 12

AMF - Automated Migration Failure

Criticality Medium

Location Router.sol#L166

Status Acknowledged

Description

The createPoolAndTransfer function in the router contract calls the swap function

of the Pair contract but does not check the _isTokenSoldout variable returned from it.

This omission can cause an issue when the creator immediately buys the full allocation of

tokens, effectively triggering a condition where the tokens are sold out. In such cases, the

migration step, which is expected to automate the transition to the next phase, is not

performed because the createPoolAndTransfer function lacks the necessary logic

to handle this scenario. This results in the automated migration process not being executed,

potentially disrupting the intended functionality of the system.

function createPoolAndTransfer(
 address _token0,
 uint256 _inAmount,
 bool _isETH,
 address sender
) internal returns (address pool) {

 ...

 if (swapAmount > 0) {
 (uint256 outAmount, uint256 fee,) =
IPumpPair(pool).swap(sender, swapAmount, true, swapFeeTo);

 _safeTransfer(_token0, sender, outAmount);
 if (fee > 0) _safeTransfer(_token1, swapFeeTo, fee);
 }
 ...

Recommendation

It is recommended to check the _isTokenSoldout variable returned from the swap

function during the execution of the createPoolAndTransfer function. If the variable

PUMPSPACE Audit 13

indicates that the tokens are sold out, the contract should initiate the migration process to

ensure seamless automation and alignment with the expected behavior. This enhancement

will improve the system's reliability and ensure the correct execution of all phases in the

token lifecycle.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 14

IFC - Inconsistent Fee Calculation

Criticality Medium

Location Router.sol#L82,161

Status Acknowledged

Description

The pump function in the router contract allows users to specify an initAmount for

token purchases. However, during the createPoolAndTransfer process, the function

transfers the initAmount plus the fee to the contract. This approach increases the total

transferred amount beyond the specified initAmount , which can result in

inconsistencies, particularly if the user's token allowance is set to exactly match the

initAmount . The increased transfer amount due to the added fee may cause the

transaction to fail with insufficient allowance errors, even when the user intended to provide

sufficient funds. This inconsistency does not occur in the ETH case, where the fee is

correctly deducted from the initAmount .

PUMPSPACE Audit 15

 function pump(
 string memory name,
 string memory symbol,
 string memory desc,
 string memory img,
 string[4] memory urls,
 uint256 initAmount,
 address referral
) external override returns (address, address) {
 return
initializeTokenAndPool(PumpStructs.InitTokenParams(msg.sender,
referral, name, symbol, desc, img, urls, initAmount, false));
 }

 function createPoolAndTransfer(
 address _token0,
 uint256 _inAmount,
 bool _isETH,
 address sender
) internal returns (address pool) {

 address _token1 = _isETH ? WETH : token1;
 uint256 _pumpFee = _isETH ? pumpETHFee : pumpFee;
 uint256 swapAmount = _inAmount;

 ...
 } else {
 _safeTransferFrom(_token1, sender, address(this), _inAmount
+ _pumpFee);
 }
 ...

Recommendation

It is recommended to refactor the contract logic to calculate the fee by deducting it from the

initAmount , similar to how it is handled in the ETH case. This ensures consistency

across different scenarios and prevents unexpected allowance errors. The contract should

consider only the adjusted initAmount and calculate the fee based on the initial

amount, ensuring predictable behavior and a smoother user experience.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 16

ITH - Incorrect Token Handling

Criticality Medium

Location Router.sol#L222
Factory.sol#L38
Pair.sol#L142

Status Acknowledged

Description

The contract is designed to allow users to purchase tokens using ETH. However, it fails to

properly differentiate cases where the token1 of a trading pair is not ETH but another

token. Instead, the contract assumes token1 behaves as ETH in all scenarios. This

incorrect handling can result in unexpected behaviour, including failed transactions or

incorrect fee allocations, when token1 is a different token. Additionally, the contract

enforces a restriction where only one pool can be created using a specific token0 . As a

result, it is not possible for a pair to simultaneously have both token1 and ETH, limiting

the flexibility of pool creation. This issue arises from the lack of functionality separation to

handle non-ETH tokens as token1 .

PUMPSPACE Audit 17

function buyToken(address _token, uint256 amountOutMin) external
payable override returns (uint256) {

 ...
 require(pool != address(0), "Pool not found for this token");

 IWETH(WETH).deposit{value: sentValue}();

 (uint256 outAmount, uint256 fee, bool isTokenSoldout) =
IPumpPair(pool).swap(sender, sentValue, true, _swapFeeTo);
 ...
 }
 function createPool(address token0, address token1, address
routerAddress, bool isETH) external onlyRouter returns (address
poolAddress) {
 require(tokenToPool[token0] == address(0), "Pool already exists
for this token");
 ...
 }

 constructor(address _token0, address _token1, uint112 _reserve0,
uint112 _reserve1, address _router, bool _isETH) {
 token0 = _token0;
 token1 = _token1;
 ...
 }

 function swap(
 address account,
 uint256 inAmount,
 bool isBuy,
 address swapFeeTo
) external lock nonReentrant onlyRouter returns (uint256 outAmount,
uint256 fee, bool _isTokenSoldout) {
 require(!isTokenSoldout, "Token Sold");

 (uint112 _reserve0, uint112 _reserve1,) = getReserves();
 uint256 _swapFeeRate = swapFeeTo != address(0) ? swapFeeRate :
0;
 uint256 _totalSoldAmount = totalSoldAmount;

 uint256 balance0 = 0;
 uint256 balance1 = 0;

 if (isBuy) {

 ...

 } else {
 ...

PUMPSPACE Audit 18

 }

Recommendation

It is recommended to implement a clear separation of functionality to distinguish between

token1 being ETH and token1 being any other token. The contract should include

additional checks and logic to correctly manage non-ETH tokens as token1 , ensuring

proper transaction flow, fee distribution, and output validation. Furthermore, the contract

logic should be reviewed to allow the creation of pools that can handle both token1 and

ETH in a flexible manner, or clearly document and justify this limitation.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 19

MRFM - Manipulable Referral Fee Mechanism

Criticality Medium

Location Router.sol#L82,94,301

Status Acknowledged

Description

The transferMigrationFee function of the Router contract allows a fee

deducted from the migration process to be transferred to the referral address

provided by users during the pump or pumpWithETH functions. However, since the

referral address is directly supplied by users, it can be manipulated. Malicious users may

provide their own addresses as the referral, enabling them to receive the referral fee

intended for legitimate referrals or the migrationFeeTo address. This vulnerability

could lead to unauthorized fund allocation and exploitation of the referral mechanism.

PUMPSPACE Audit 20

 function pump(
 string memory name,
 string memory symbol,
 string memory desc,
 string memory img,
 string[4] memory urls,
 uint256 initAmount,
 address referral
) external override returns (address, address) {
 return
initializeTokenAndPool(PumpStructs.InitTokenParams(msg.sender,
referral, name, symbol, desc, img, urls, initAmount, false));
 }

 function pumpWithETH(
 string memory name,
 string memory symbol,
 string memory desc,
 string memory img,
 string[4] memory urls,
 address referral
) external payable override returns (address, address) {
 return
initializeTokenAndPool(PumpStructs.InitTokenParams(msg.sender,
referral, name, symbol, desc, img, urls, msg.value, true));
 }

 function transferMigrationFee(uint256 feeAmount, address _token0,
address _token1, bool isETH) internal {

 address creator = tokenDatas[_token0].creator;
 address referral = tokenDatas[_token0].referral;

 (uint256 creatorAmount, uint256 referralAmount, uint256
migrationFee, address migrationFeeTo) =
migrator.handleMigrationFee(feeAmount, referral, isETH);

 if (isETH) {
 IWETH(_token1).withdraw(feeAmount);
 if (creatorAmount > 0) _safeTransferETH(creator,
creatorAmount);
 if (referralAmount > 0) _safeTransferETH(referral,
referralAmount);
 _safeTransferETH(migrationFeeTo, migrationFee);
 } else {
 if (creatorAmount > 0) _safeTransfer(_token1, creator,
creatorAmount);
 if (referralAmount > 0) _safeTransfer(_token1, referral,
referralAmount);
 _safeTransfer(_token1, migrationFeeTo, migrationFee);

PUMPSPACE Audit 21

 }
 }

Recommendation

It is recommended to enhance the referral validation process to prevent misuse. The

contract could verify if the referral address is already part of the system, such as by

checking whether the address has previously participated in specific activities (e.g., token

creation or active buy amount). Alternatively, the fee allocation logic could be adjusted to

base the referral fee on the creator 's contribution, or the system could enforce stricter

rules for referral eligibility. These measures will help ensure that referral fees are

appropriately distributed and protect against abuse.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 22

MAC - Missing Access Control

Criticality Medium

Location Router.sol#L56
Migrator.sol#L23
Factory.sol#L24

Status Acknowledged

Description

The initialize functions can be frontrun during deployment, allowing administrative

roles to be transferred to third parties not associated with the team. Such third parties

would gain access to all the functions of the system.

 function initialization(
 address _factory, address _migrator, address _token1, address
_wETH, address _pumpFeeTo, address _swapFeeTo
) public initializer {
 ...
 }

 function initialization() public initializer {
 __Ownable_init();

 defaultReserve0 = 1_073_000_000 * 10 ** 18;
 defaultReserve1 = 4000 * 10 ** 18;
 defaultReserve1ByETH = 120 * 10 ** 18;
 }

 function initialization(address _feeTo) public initializer {
 __Ownable_init();

 feeTo = _feeTo;

 migrationFee = 7;

 creatorFee = 40;
 referralFee = 10;

 creatorFeeETH = 20;
 referralFeeETH = 5;
 }

PUMPSPACE Audit 23

Recommendation

The team is advised to implement proper access controls to ensure that only authorized

team members can call these functions.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 24

MEM - Misleading Error Message

Criticality Minor / Informative

Location Pair.sol#L183

Status Acknowledged

Description

The contract contains a require statement with the error message "Not enough

ETH" that is triggered when amountOutWithFee exceeds _reserve1 . However,

_reserve1 does not necessarily represent ETH, as it can correspond to any token

depending on the pair's configuration. This inconsistency between the error message and

the actual functionality can mislead developers and users, potentially causing confusion

when diagnosing and resolving transaction failures. Misleading error messages reduce the

contract's readability and increase the likelihood of misunderstanding its behavior.

require(amountOutWithFee <= _reserve1, "Not enough ETH");

Recommendation

It is recommended to update the error message to accurately reflect the condition being

checked. For example, a message like "Insufficient reserves for token

output" would more accurately describe the scenario and apply universally, regardless

of the token type in _reserve1 . Ensuring clear and context-appropriate error messages

improves the contract's usability and aids in efficient debugging.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 25

RSV - Redundant Struct Variables

Criticality Minor / Informative

Location PumpStructs.sol#L6

Status Acknowledged

Description

The InitTokenParams and TokenData structs contain several overlapping

variables, such as creator , referral , description , image , and isETH .

This redundancy increases the potential for inconsistencies between different parts of the

contract where these structs are used or updated. Additionally, duplicating variables across

structs unnecessarily increases storage and computational costs, particularly when these

structs are passed or stored in mappings.

PUMPSPACE Audit 26

struct InitTokenParams {
 address creator;
 address referral;
 string name;
 string symbol;
 string description;
 string image;
 string[4] urls;
 uint256 inAmount;
 bool isETH;
 }

 struct TokenData {
 address creator;
 address referral;
 address token;
 address pair;
 string description;
 string image;
 string twitter;
 string telegram;
 string youtube;
 string website;
 bool trading;
 bool tradingOnUniswap;
 bool isETH;
 }

 struct Creator {
 address user;
 address[] tokens;
 }

 struct Holder {
 address user;
 uint256 swappedAmount;
 }

Recommendation

It is recommended to refactor the structs to minimize redundancy. Shared variables should

be extracted into a base or shared struct that both InitTokenParams and

TokenData can reference. For instance, a separate struct for common metadata (e.g.,

BasicTokenInfo) could help reduce duplication. This approach will improve the

PUMPSPACE Audit 27

maintainability of the code, reduce storage costs, and prevent potential mismatches or

errors caused by redundant variables.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 28

UAC - Unchecked Arithmetic Calculations

Criticality Minor / Informative

Location Pair.sol#L129

Status Acknowledged

Description

The contract is implemented with an unchecked block in the code handling cumulative

price updates. While the unchecked keyword can optimise gas costs by bypassing

Solidity's default overflow and underflow checks, it introduces a significant risk. If variables

such as blockTimestamp , blockTimestampLast , _reserve0 , or

_reserve1 are manipulated or unexpected values are encountered, overflow or

underflow issues could occur. This could lead to incorrect price calculations, impacting

trading dynamics and reserve management within the contract.

 unchecked {
 uint32 timeElapsed = blockTimestamp - blockTimestampLast;
 if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
 price0CumulativeLast +=
uint256(CustomUQ112x112.encode(_reserve1).divide(_reserve0)) *
timeElapsed;
 price1CumulativeLast +=
uint256(CustomUQ112x112.encode(_reserve0).divide(_reserve1)) *
timeElapsed;
 }
 }

Recommendation

It is recommended to carefully review and validate all inputs to the unchecked block to

ensure they remain within safe boundaries. Additionally, consider implementing explicit

range checks or alternative safety mechanisms to mitigate overflow or underflow risks.

While unchecked can improve efficiency, its use should be limited to scenarios where

there is absolute certainty of input integrity.

PUMPSPACE Audit 29

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 30

USF - Unchecked Swap Fee

Criticality Minor / Informative

Location Pair.sol#L228

Status Acknowledged

Description

The contract is implemented with a setSwapFeeRate function, which allows the owner

to modify the swapFeeRate variable without any constraints or validation. Since this

variable directly impacts the calculation of swap fees, any unintended or malicious changes

to it could distort token prices and potentially destabilise the reserve balance. This creates a

significant risk, as an excessively high fee rate could disincentivise swaps or cause financial

losses to users, while an unreasonably low fee rate might result in insufficient fees to

maintain reserve sustainability.

 function setSwapFeeRate(uint256 _swapFeeRate) public onlyOwner {
 swapFeeRate = _swapFeeRate;
 }

Recommendation

It is recommended to implement robust checks on the `swapFeeRate` variable to ensure

that updates remain within a safe and predefined range. Additionally, consider introducing a

governance mechanism or multi-signature approval process to limit unilateral modifications

by a single actor.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 31

CR - Code Repetition

Criticality Minor / Informative

Location Router.sol#L189,222,247

Status Acknowledged

Description

The contract contains repetitive code segments. There are potential issues that can arise

when using code segments in Solidity. Some of them can lead to issues like gas efficiency,

complexity, readability, security, and maintainability of the source code. It is generally a

good idea to try to minimize code repetition where possible.

 function swapToken(address _token, uint256 amountIn, uint256
amountOutMin, bool isBuy) external override returns (uint256) {
 ...

 return outAmount;
 }

 function buyToken(address _token, uint256 amountOutMin) external
payable override returns (uint256) {

 ...

 return outAmount;
 }

 function sellToken(address _token, uint256 amountIn, uint256
amountOutMin) external override returns (uint256) {
 ...

 return outAmount;
 }

Recommendation

The team is advised to avoid repeating the same code in multiple places, which can make

the contract easier to read and maintain. The authors could try to reuse code wherever

possible, as this can help reduce the complexity and size of the contract. For instance, the

PUMPSPACE Audit 32

contract could reuse the common code segments in an internal function in order to avoid

repeating the same code in multiple places.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 33

CCR - Contract Centralization Risk

Criticality Minor / Informative

Location Router.sol#L320
Factory.sol#L67
Pair.sol#L228
Migrator.sol#L80

Status Acknowledged

Description

The contract's functionality and behavior are heavily dependent on external parameters or

configurations. While external configuration can offer flexibility, it also poses several

centralization risks that warrant attention. Centralization risks arising from the dependence

on external configuration include Single Point of Control, Vulnerability to Attacks,

Operational Delays, Trust Dependencies, and Decentralization Erosion.

PUMPSPACE Audit 34

 function setSwapFeeTo(address _swapFeeTo) external onlyOwner {
 swapFeeTo = _swapFeeTo;
 }

 function setPumpFeeTo(address _pumpFeeTo) external onlyOwner {
 pumpFeeTo = _pumpFeeTo;
 }

 function setFactory(address _factory) external onlyOwner {
 factory = IPumpFactory(_factory);
 }

 function setRouter(address _router) public onlyOwner {
 router = _router;
 }

 function addPairRouter(address _pair, address _router) public
onlyOwner {
 Pair(_pair).addRouter(_router);
 }

 function removePairRouter(address _pair, address _router) public
onlyOwner {
 Pair(_pair).removeRouter(_router);
 }

 function setCreatePairReserve0(uint112 _defaultReserve0) external
onlyOwner {
 defaultReserve0 = _defaultReserve0;
 }

 function setCreatePairReserve1(uint112 _defaultReserve1) external
onlyOwner {
 defaultReserve1 = _defaultReserve1;
 }

 function setCreatePairReserve1ByETH(uint112 _defaultReserve1ByETH)
external onlyOwner {
 defaultReserve1ByETH = _defaultReserve1ByETH;
 }

 function allPairsLength() external view returns (uint) {
 return allPairs.length;
 }

 function setSwapFeeRate(uint256 _swapFeeRate) public onlyOwner {
 swapFeeRate = _swapFeeRate;
 }

 function setDexRouter(address _dexRouter) external onlyOwner {

PUMPSPACE Audit 35

 dexRouter = _dexRouter;
 }

 function setMigrationFee(uint256 _migrationFee) external onlyOwner
{
 migrationFee = _migrationFee;
 }

 function setCreatorFee(uint256 _creatorFee) external onlyOwner {
 creatorFee = _creatorFee;
 }

 function setReferralFee(uint256 _referralFee) external onlyOwner {
 referralFee = _referralFee;
 }

 function setCreatorFeeETH(uint256 _creatorFeeETH) external
onlyOwner {
 creatorFeeETH = _creatorFeeETH;
 }

 function setReferralFeeETH(uint256 _referralFeeETH) external
onlyOwner {
 referralFeeETH = _referralFeeETH;
 }

Recommendation

To address this finding and mitigate centralization risks, it is recommended to evaluate the

feasibility of migrating critical configurations and functionality into the contract's codebase

itself. This approach would reduce external dependencies and enhance the contract's

self-sufficiency. It is essential to carefully weigh the trade-offs between external

configuration flexibility and the risks associated with centralization.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 36

DPR - Duplicate Pair Registration

Criticality Minor / Informative

Location Factory.sol#L38

Status Acknowledged

Description

The contract is designed to allow the creation of liquidity pools for token pairs. However, it

only performs a check to ensure that a pool for the token0 address does not already

exist. It does not verify whether a pair for both token1-token0 and token0-token1

already exists, as is the standard practice in most implementations. This omission can result

in both token1-token0 and token0-token1 pairs being registered

simultaneously, causing confusion and potential inconsistencies in liquidity allocation and

trading.

 function createPool(address token0, address token1, address
routerAddress, bool isETH) external onlyRouter returns (address
poolAddress) {
 require(tokenToPool[token0] == address(0), "Pool already exists
for this token");
 ...
 }

Recommendation

It is recommended to implement a comprehensive validation mechanism that ensures a pair

is registered only once, regardless of the order of tokens (token0 and token1). The

contract should verify the existence of both token1-token0 and token0-token1

pairs before proceeding with the creation of a new pool to prevent duplication and maintain

clarity in the liquidity pool system.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 37

DTC - Duplicate Token Creation

Criticality Minor / Informative

Location tokens/MemeToken.sol#L19

Status Acknowledged

Description

The MemeToken contract is designed to create new meme tokens based on specific

characteristics provided during deployment. However, it does not ensure that tokens with

the same characteristics, such as description , image , or other properties, are

distinguished from one another. As a result, two or more tokens with identical

characteristics but different deployment addresses may coexist. This could lead to

confusion among users or token holders, as the tokens might appear identical but

functionally differ based on their contract addresses. This issue undermines the uniqueness

and integrity of each token instance created by the contract.

 constructor(
 string memory _name,
 string memory _symbol,
 PumpStructs.InitTokenParams memory params
) ERC20(_name, _symbol) {

 creator = params.creator;
 referral = params.referral;
 description = params.description;
 image = params.image;
 twitter = params.urls[0];
 telegram = params.urls[1];
 youtube = params.urls[2];
 website = params.urls[3];
 isETH = params.isETH;

 _mint(msg.sender, 1_000_000_000 * 10 ** 18);
 }

Recommendation

PUMPSPACE Audit 38

It is recommended to implement a mechanism to validate the uniqueness of the

characteristics provided during token creation. Consider including a registry or mapping to

track existing tokens based on their defining characteristics, ensuring that duplicate tokens

cannot be deployed. Additionally, you may implement a hashing or signature method to

enforce the uniqueness of each token's attributes. This approach will maintain the intended

distinction and prevent potential misuse or confusion among users.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 39

EPR - Exceeded Purchase Reverts

Criticality Minor / Informative

Location Pair.sol#L169

Status Acknowledged

Description

The contract is designed to enforce a limit on the total tokens that can be sold

(`_totalSoldAmount`) by reverting transactions where the desired purchase amount

(`outAmount`) would cause this limit to be exceeded. While this ensures the cap is not

breached, it results in a poor user experience for buyers attempting to purchase tokens near

the limit, as their transactions revert entirely instead of partially fulfilling the request for the

remaining available tokens.

 function swap(
 address account,
 uint256 inAmount,
 bool isBuy,
 address swapFeeTo
) external lock nonReentrant onlyRouter returns (uint256 outAmount,
uint256 fee, bool _isTokenSoldout) {
 ...

 if (isBuy) {
 ...

 require(_totalSoldAmount < 820_000_000 * 10 ** 18,
"MAX_820_000_000 reached");

 if (_totalSoldAmount >= 800_000_000 * 10 ** 18) {
 isTokenSoldout = true;
 _isTokenSoldout = true;
 }

Recommendation

It is recommended to refactor the code to calculate the remaining tokens available for

purchase when the limit is approached. The contract should allocate these remaining

tokens to the buyer, adjust the _totalSoldAmount accordingly, and set the

PUMPSPACE Audit 40

isTokenSoldout flag to true once the limit is reached. This approach would

enhance the user experience, ensure the efficient and complete allocation of tokens, and

provide a clear indication of the token's sold-out status.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 41

HV - Hardcoded Values

Criticality Minor / Informative

Location Router.sol#L278
Factory.sol#L24
Pair.sol#L102,169
Migrator.sol#L49

Status Acknowledged

Description

The contract contains multiple instances where numeric values are directly hardcoded into

the code logic rather than being assigned to constant variables with descriptive names.

Hardcoding such values can lead to several issues, including reduced code readability,

increased risk of errors during updates or maintenance, and difficulty in consistently

managing values throughout the contract. Hardcoded values can obscure the intent behind

the numbers, making it challenging for developers to modify or for users to understand the

contract effectively.

if(_migrationDexRouter != address(0) && 800_000_000 * 10 ** 18 <=

pair.totalSoldAmount()) {

 function initialization() public initializer {
 __Ownable_init();

 defaultReserve0 = 1_073_000_000 * 10 ** 18;
 defaultReserve1 = 4000 * 10 ** 18;
 defaultReserve1ByETH = 120 * 10 ** 18;
 }

PUMPSPACE Audit 42

uint256 _minReserveAfterSale = 253_000_000 * 10 ** 18;
...
 require(_totalSoldAmount < 820_000_000 * 10 ** 18, "MAX_820_000_000
reached");
if (_totalSoldAmount >= 800_000_000 * 10 ** 18) {
 isTokenSoldout = true;
 _isTokenSoldout = true;
}

uint256 defaultReserve0 = 73_000_000 * 10 ** 18;

Recommendation

It is recommended to replace hardcoded numeric values with variables that have

meaningful names. This practice improves code readability and maintainability by clearly

indicating the purpose of each value, reducing the likelihood of errors during future

modifications. Additionally, consider using constant variables which provide a reliable way

to centralize and manage values, improving gas optimization throughout the contract.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 43

IDI - Immutable Declaration Improvement

Criticality Minor / Informative

Location Pair.sol#L57,58,62,63,66,69
tokens/MemeToken.sol#L25,26,33

Status Acknowledged

Description

The contract declares state variables that their value is initialized once in the constructor

and are not modified afterwards. The immutable is a special declaration for this kind of

state variables that saves gas when it is defined.

token0
token1
factory
router
isETH
reserve1Init
creator
referral

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain

optimizations. This can reduce the amount of storage and computation required by the

contract, and make it more gas-efficient.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 44

IUDH - Inconsistent User Data Handling

Criticality Minor / Informative

Location Pair.sol#L201

Status Acknowledged

Description

The Pair contract include the updateUserData function, which adds a user to the

users array during a "buy" operation if the user does not already exist. However, it does

not remove the user when their userSwappedAmount becomes zero after a "sell"

operation. This results in the users array containing entries for accounts with zero

balances, unnecessarily bloating the array with irrelevant data. This inconsistency in

handling user data can lead to inefficient storage usage and increased gas costs for future

operations involving the users array.

 function updateUserData(address account, uint256 outAmount, bool
isBuy) private {

 if (isBuy) {
 if (!userExists[account]) {
 users.push(account);
 userExists[account] = true;
 }
 userSwappedAmount[account] += outAmount;

 } else {
 userSwappedAmount[account] -= outAmount;
 }
 }

Recommendation

It is recommended to implement logic to remove users from the users array when their

userSwappedAmount reaches zero. This can help maintain a clean and efficient data

structure. Alternatively, if maintaining such entries is required for historical or tracking

purposes, consider documenting this behavior to ensure clarity and consistency in the

contract's functionality.

PUMPSPACE Audit 45

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 46

MCM - Misleading Comment Messages

Criticality Minor / Informative

Location Router.sol#L211

Status Acknowledged

Description

The contract is using misleading comment messages. These comment messages do not

accurately reflect the actual implementation, making it difficult to understand the source

code. As a result, the users will not comprehend the source code's actual implementation.

if (outAmount < amountOutMin) // 슬리피지 계산을 위해

Recommendation

The team is advised to carefully review the comment in order to reflect the actual

implementation. To improve code readability, the team should use more specific and

descriptive comment messages.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 47

MEE - Missing Events Emission

Criticality Minor / Informative

Location Pair.sol#L228
Migrator.sol#L84

Status Acknowledged

Description

The contracts perform actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function setSwapFeeRate(uint256 _swapFeeRate) public onlyOwner {
 swapFeeRate = _swapFeeRate;
}

 function setMigrationFee(uint256 _migrationFee) external onlyOwner {
 migrationFee = _migrationFee;
 }

 function setCreatorFee(uint256 _creatorFee) external onlyOwner {
 creatorFee = _creatorFee;
 }

 function setReferralFee(uint256 _referralFee) external onlyOwner {
 referralFee = _referralFee;
 }

 function setCreatorFeeETH(uint256 _creatorFeeETH) external
onlyOwner {
 creatorFeeETH = _creatorFeeETH;
 }

 function setReferralFeeETH(uint256 _referralFeeETH) external
onlyOwner {
 referralFeeETH = _referralFeeETH;
 }

PUMPSPACE Audit 48

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 49

MSF - Missing Sync Functionality

Criticality Minor / Informative

Location Pair.sol

Status Acknowledged

Description

The Pair contract does not include a .sync function, which is typically used in

Automated Market Maker (AMM) designs to ensure the stored reserves (reserve0 and

reserve1) are consistent with the actual token balances held by the contract. The

absence of this functionality may lead to issues if tokens are accidentally or intentionally

transferred directly to the contract without going through its controlled functions. Such

discrepancies can result in inaccurate reserve values, leading to calculation errors during

swaps or other reserve-dependent operations. This can compromise the reliability of the

contract and potentially cause unexpected behavior.

Recommendation

It is recommended to consider including a .sync function in the Pair contract to

manually synchronize the stored reserves with the actual token balances in the contract.

This function can act as a safeguard to restore reserve consistency in scenarios where

external transfers or unforeseen events lead to discrepancies. Implementing this

functionality ensures that the contract operates reliably and maintains accurate reserve

values at all times.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 50

MU - Modifiers Usage

Criticality Minor / Informative

Location Router.sol#L193,236,253,259

Status Acknowledged

Description

The contract is using repetitive statements on some methods to validate some

preconditions. In Solidity, the form of preconditions is usually represented by the modifiers.

Modifiers allow you to define a piece of code that can be reused across multiple functions

within a contract. This can be particularly useful when you have several functions that

require the same checks to be performed before executing the logic within the function.

address pool = factory.getPoolByToken(_token);
require(pool != address(0), "Pool not found for this token pair");
...
if (outAmount < amountOutMin)
 revert InsufficientAmount("Router: INSUFFICIENT_OUTPUT_AMOUNT");

Recommendation

The team is advised to use modifiers since it is a useful tool for reducing code duplication

and improving the readability of smart contracts. By using modifiers to perform these

checks, it reduces the amount of code that is needed to write, which can make the smart

contract more efficient and easier to maintain.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 51

PBV - Percentage Boundaries Validation

Criticality Minor / Informative

Location Pair.sol#L228
Migrator.sol#L84

Status Acknowledged

Description

The contracts utilize variables for percentage-based calculations that are required for its

operations. These variables are involved in multiplication and division operations to

determine proportions related to the contract's logic. If such variables are set to values

beyond their logical or intended maximum limits, it could result in incorrect calculations.

This misconfiguration has the potential to cause unintended behavior or financial

discrepancies, affecting the contract's integrity and the accuracy of its calculations.

function setSwapFeeRate(uint256 _swapFeeRate) public onlyOwner {
 swapFeeRate = _swapFeeRate;
}

 function setMigrationFee(uint256 _migrationFee) external onlyOwner {
 migrationFee = _migrationFee;
 }

 function setCreatorFee(uint256 _creatorFee) external onlyOwner {
 creatorFee = _creatorFee;
 }

 function setReferralFee(uint256 _referralFee) external onlyOwner {
 referralFee = _referralFee;
 }

 function setCreatorFeeETH(uint256 _creatorFeeETH) external
onlyOwner {
 creatorFeeETH = _creatorFeeETH;
 }

 function setReferralFeeETH(uint256 _referralFeeETH) external
onlyOwner {
 referralFeeETH = _referralFeeETH;

PUMPSPACE Audit 52

 }

Recommendation

To mitigate risks associated with boundary violations, it is important to implement validation

checks for variables used in percentage-based calculations. Ensure that these variables do

not exceed their maximum logical values. This can be accomplished by incorporating

require statements or similar validation mechanisms whenever such variables are

assigned or modified. These safeguards will enforce correct operational boundaries,

preserving the contract's intended functionality and preventing computational errors.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 53

PSU - Potential Subtraction Underflow

Criticality Minor / Informative

Location Migrator.sol#L41

Status Acknowledged

Description

The contract subtracts two values, the second value may be greater than the first value if

the contract owner misuses the configuration. As a result, the subtraction may underflow

and cause the execution to revert.

The migrationFeeCalc function computes various reserve values, including

burnAmountReserve0 , which is derived from _reserve0 , defaultReserve0 ,

and correspondingReserve0 . However, the calculation does not verify whether the

resulting burnAmountReserve0 is a positive number. In scenarios where _reserve0

is insufficient to cover defaultReserve0 and correspondingReserve0 , an

underflow could occur, leading to erroneous values and potentially breaking downstream

logic or reverting transactions.

 function migrationFeeCalc(IPumpPair pair) public view returns
(uint256, uint256, uint256, uint256) {
 (uint112 _reserve0, uint112 _reserve1,) = pair.getReserves();
 uint112 initReserve1 = pair.reserve1Init();
 uint256 calcReserve1 = _reserve1 - initReserve1;

 uint256 feeAmount = (calcReserve1 * migrationFee) / 100;
 uint256 remainingReserve1 = calcReserve1 - feeAmount;
 uint256 correspondingReserve0 = (remainingReserve1 * _reserve0)
/ _reserve1;
 uint256 defaultReserve0 = 73_000_000 * 10 ** 18;
 uint256 burnAmountReserve0 = _reserve0 - defaultReserve0 -
correspondingReserve0;

 return (burnAmountReserve0, correspondingReserve0,
remainingReserve1, feeAmount);
 }

PUMPSPACE Audit 54

Recommendation

The team is advised to properly handle the code to avoid underflow subtractions and

ensure the reliability and safety of the contract. The contract should ensure that the first

value is always greater than the second value. It should add a sanity check in the setters of

the variable or not allow executing the corresponding section if the condition is violated.

It is recommended to add a check to ensure that burnAmountReserve0 is

non-negative before returning the value. If the value is negative, the function should handle

this appropriately, such as by setting it to zero or reverting the transaction with a descriptive

error message. This safeguard will prevent potential underflows and ensure the function

operates as intended, even in edge cases.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 55

RMI - Reserve Misallocation Issue

Criticality Minor / Informative

Status Acknowledged

Description

The contract is designed to initialise reserves (reserve0 and reserve1) during its

deployment. However, it does so without handling the actual transfer of tokens to the pair

contract. This creates a discrepancy between the stated reserves and the actual token

balances of the contract, potentially leading to misrepresentation of liquidity and

manipulation of the pool's functionality. This issue can result in vulnerabilities that exploit

the disparity between the reserves and the actual token holdings.

constructor(address _token0, address _token1, uint112 _reserve0,
uint112 _reserve1, address _router, bool _isETH) {
 token0 = _token0;
 token1 = _token1;
 price0CumulativeLast = 0;
 price1CumulativeLast = 0;
 blockTimestampLast = uint32(block.timestamp);
 factory = msg.sender;
 router = _router;
 swapFeeRate = 10;

 isETH = _isETH;
 reserve0 = _reserve0;
 reserve1 = _reserve1;
 reserve1Init = _reserve1;

...
 }

Recommendation

It is recommended to ensure that reserve initialisation aligns with the actual transfer of

tokens to the pair contract. Token balances should be synchronised with the declared

reserves to maintain consistency, prevent exploitation, and ensure the integrity of the

liquidity pool.

PUMPSPACE Audit 56

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 57

UPC - Uncontrolled Pair Cloning

Criticality Minor / Informative

Location Factory.sol#L46

Status Acknowledged

Description

The contract is designed to create a new pair using direct instantiation (new Pair(...)

), but it does not include mechanisms to restrict or control the cloning of the Pair

contract. This means that the Pair logic can be replicated by anyone outside the

intended factory or deployment process. As a result, unauthorized clones of the Pair

contract can be deployed, mimicking legitimate pairs while potentially introducing malicious

behaviour or inconsistencies. This lack of control over pair creation could lead to confusion,

exploitation, and reduced trust in the protocol.

Pair newPool = new Pair(token0, token1, _reserve0, _reserve1,

routerAddress, isETH);

Recommendation

It is recommended to implement strict controls within the Pair contract to ensure it can

only be deployed by the intended factory or authorized addresses. This can be achieved by

requiring the factory address in the constructor and validating it during deployment.

Additionally, mechanisms should be added to verify and recognize only authorized pairs

within the protocol to prevent unauthorized or malicious clones.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 58

UAR - Unutilized Admin Role

Criticality Minor / Informative

Location Pair.sol#L74

Status Acknowledged

Description

The pair contract is found to declare the DEFAULT_ADMIN_ROLE and assign it to the

factory address (via msg.sender) during deployment. However, throughout the

implementation, this role is not utilized in any function or logic within the contract. Instead,

the msg.sender (the router contract) is responsible for managing operations. As a

result, the inclusion of the DEFAULT_ADMIN_ROLE serves no functional purpose and

may lead to confusion or unnecessary complexity in understanding the contract's design

and intended role hierarchy.

 constructor(address _token0, address _token1, uint112 _reserve0,
uint112 _reserve1, address _router, bool _isETH) {
 ...
 factory = msg.sender;
 router = _router;
 ...

 _setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
 grantRole(ROUTER_ROLE, _router);
 }

Recommendation

It is recommended to consider the intended functionality of the DEFAULT_ADMIN_ROLE .

If the role was intended to control specific administrative functions, the contract should be

updated to enforce its use in relevant operations. Otherwise, if it was not meant to serve

any functional purpose, it can be safely removed to simplify the contract's logic and reduce

unnecessary gas costs associated with role management.

PUMPSPACE Audit 59

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 60

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location Router.sol#L44,57,145,146,147,179,189,222,247,269,301,320,324,328,332,34
0
Pair.sol#L215,228
Migrator.sol#L23,76,80,84,88,92,96,100
Factory.sol#L67,71,75,79,83,87

Status Acknowledged

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

PUMPSPACE Audit 61

address public WETH
address _token1
address _wETH
address _migrator
address _swapFeeTo
address _pumpFeeTo
address _factory
address _token0
uint256 _inAmount
bool _isETH
address _token
uint256 amountOu
uint256 amountIn
(bool isETH) publ

...

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

Team Update

The team has acknowledged that this is not a security issue.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

PUMPSPACE Audit 62

L06 - Missing Events Access Control

Criticality Minor / Informative

Location Factory.sol#L68

Status Acknowledged

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

There are functions that have no event emitted, so it is difficult to track off-chain changes.

router = _router

Recommendation

To avoid this issue, it's important to carefully design and implement the events in a contract,

and to ensure that all required events are included. It's also a good idea to test the contract

to ensure that all events are being properly triggered and logged.

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 63

L16 - Validate Variable Setters

Criticality Minor / Informative

Location Router.sol#L64,65,67,68,321,325
Pair.sol#L57,58,63
Migrator.sol#L26,77,81
Factory.sol#L68

Status Acknowledged

Description

The contract performs operations on variables that have been configured on user-supplied

input. These variables are missing of proper check for the case where a value is zero. This

can lead to problems when the contract is executed, as certain actions may not be properly

handled when the value is zero.

token1 = _token1
WETH = _wETH
swapFeeTo = _swapFeeTo
pumpFeeTo = _pumpFeeTo
...
token0 = _token0
router = _router
feeTo = _feeTo
dexRouter = _dexRouter

Recommendation

By adding the proper check, the contract will not allow the variables to be configured with

zero value. This will ensure that the contract can handle all possible input values and avoid

unexpected behavior or errors. Hence, it can help to prevent the contract from being

exploited or operating unexpectedly.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 64

L19 - Stable Compiler Version

Criticality Minor / Informative

Location tokens/MemeToken.sol#L2
Router.sol#L2
Pair.sol#L2
Migrator.sol#L2
interfaces/IPumpRouter.sol#L2
interfaces/IPumpPair.sol#L2
interfaces/IPumpMigrator.sol#L2
interfaces/IPumpFactory.sol#L2
Factory.sol#L2

Status Acknowledged

Description

The ^ symbol indicates that any version of Solidity that is compatible with the specified

version (i.e., any version that is a higher minor or patch version) can be used to compile the

contract. The version lock is a mechanism that allows the author to specify a minimum

version of the Solidity compiler that must be used to compile the contract code. This is

useful because it ensures that the contract will be compiled using a version of the compiler

that is known to be compatible with the code.

pragma solidity ^0.8.0;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The locked

pragma version ensures that the contract will not be deployed with an unexpected version.

An unexpected version may produce vulnerabilities and undiscovered bugs. The compiler

should be configured to the lowest version that provides all the required functionality for the

codebase. As a result, the project will be compiled in a well-tested LTS (Long Term Support)

environment.

Team Update

The team has acknowledged that this is not a security issue.

PUMPSPACE Audit 65

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

Router Implementation IPumpRouter
, Initializable,
OwnableUpg
radeable,
TransferUtil

 initialization Public ✓ initializer

 External Payable -

 version External -

 pump External ✓ -

 pumpWithETH External Payable -

 initializeTokenAndPool Internal ✓

 createPoolAndTransfer Internal ✓

 getAmountOut External -

 swapToken External ✓ -

 buyToken External Payable -

 sellToken External ✓ -

 runDexMigration Public ✓ onlyOwner

 _migration Internal ✓

 transferMigrationFee Internal ✓

 setSwapFeeTo External ✓ onlyOwner

 setPumpFeeTo External ✓ onlyOwner

 setFactory External ✓ onlyOwner

PUMPSPACE Audit 66

 getToken Public -

 getTokensByUser Public -

 setMigrator External ✓ onlyOwner

Pair Implementation Ownable,
AccessContr
ol,
ReentrancyG
uard

 Public ✓ -

 addRouter Public ✓ onlyOwner

 removeRouter Public ✓ onlyOwner

 getReserves Public -

 getBuyAmountOut Public -

 getSellAmountOut Public -

 _update Private ✓

 swap External ✓ lock
nonReentrant
onlyRouter

 updateUserData Private ✓

 calculateFee Internal

 setSwapFeeRate Public ✓ onlyOwner

 getHolders External -

Migrator Implementation Initializable,
OwnableUpg
radeable

 initialization Public ✓ initializer

 version External -

PUMPSPACE Audit 67

 migrationFeeCalc Public -

 handleMigrationFee Public -

 setFeeTo External ✓ onlyOwner

 setDexRouter External ✓ onlyOwner

 setMigrationFee External ✓ onlyOwner

 setCreatorFee External ✓ onlyOwner

 setReferralFee External ✓ onlyOwner

 setCreatorFeeETH External ✓ onlyOwner

 setReferralFeeETH External ✓ onlyOwner

Factory Implementation Initializable,
OwnableUpg
radeable

 initialization Public ✓ initializer

 version External -

 createPool External ✓ onlyRouter

 getPoolByToken External -

 getPoolByIndex External -

 setRouter Public ✓ onlyOwner

 addPairRouter Public ✓ onlyOwner

 removePairRouter Public ✓ onlyOwner

 setCreatePairReserve0 External ✓ onlyOwner

 setCreatePairReserve1 External ✓ onlyOwner

 setCreatePairReserve1ByETH External ✓ onlyOwner

 allPairsLength External -

PUMPSPACE Audit 68

MemeToken Implementation ERC20

 Public ✓ ERC20

PUMPSPACE Audit 69

Inheritance Graph

PUMPSPACE Audit 70

Flow Graph

PUMPSPACE Audit 71

Summary
Pump Space contract implements a decentralized token creation and liquidity management

mechanism. This audit investigates security issues, business logic concerns, and potential

improvements to ensure the integrity of token creation, liquidity handling, migration

processes, and fee allocation while maintaining a seamless user experience. The team has

acknowledged the findings.

PUMPSPACE Audit 72

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Overview
	Router
	Factory
	Pair
	
	Migrator
	MemeToken

	Findings Breakdown
	Diagnostics
	
	AMF - Automated Migration Failure
	Description
	Recommendation
	Team Update

	
	IFC - Inconsistent Fee Calculation
	Description
	Recommendation
	Team Update

	ITH - Incorrect Token Handling
	Description
	Recommendation
	Team Update

	
	MRFM - Manipulable Referral Fee Mechanism
	Description
	Recommendation
	Team Update

	
	MAC - Missing Access Control
	Description
	Recommendation
	Team Update

	
	MEM - Misleading Error Message
	Description
	Recommendation
	Team Update

	
	RSV - Redundant Struct Variables
	Description
	Recommendation
	Team Update

	
	UAC - Unchecked Arithmetic Calculations
	Description
	Recommendation
	
	Team Update

	
	USF - Unchecked Swap Fee
	Description
	Recommendation
	Team Update

	
	CR - Code Repetition
	Description
	Recommendation
	Team Update

	
	CCR - Contract Centralization Risk
	Description
	Recommendation
	Team Update

	
	DPR - Duplicate Pair Registration
	Description
	Recommendation
	Team Update

	DTC - Duplicate Token Creation
	Description
	Recommendation
	Team Update

	
	EPR - Exceeded Purchase Reverts
	Description
	Recommendation
	Team Update

	
	HV - Hardcoded Values
	Description
	Recommendation
	Team Update

	
	IDI - Immutable Declaration Improvement
	Description
	Recommendation
	Team Update

	
	IUDH - Inconsistent User Data Handling
	Description
	Recommendation
	Team Update

	
	MCM - Misleading Comment Messages
	Description
	Recommendation
	Team Update

	
	MEE - Missing Events Emission
	Description
	Recommendation
	Team Update

	
	MSF - Missing Sync Functionality
	Description
	Recommendation
	Team Update

	
	MU - Modifiers Usage
	Description
	Recommendation
	Team Update

	
	PBV - Percentage Boundaries Validation
	Description
	Recommendation
	Team Update

	
	PSU - Potential Subtraction Underflow
	Description
	
	Recommendation
	Team Update

	
	RMI - Reserve Misallocation Issue
	Description
	Recommendation
	Team Update

	
	UPC - Uncontrolled Pair Cloning
	Description
	Recommendation
	Team Update

	
	UAR - Unutilized Admin Role
	Description
	Recommendation
	
	Team Update

	
	L04 - Conformance to Solidity Naming Conventions
	Description
	Recommendation
	Team Update

	
	L06 - Missing Events Access Control
	Description
	Recommendation
	Team Update

	
	L16 - Validate Variable Setters
	Description
	Recommendation
	Team Update

	
	L19 - Stable Compiler Version
	Description
	Recommendation
	Team Update

	Functions Analysis
	Inheritance Graph
	Flow Graph
	Summary
	Disclaimer
	About Cyberscope

